

Ab initio molecular dynamics of molecules in strong laser fields

Prof. H. Bernhard Schlegel Department of Chemistry Wayne State University

Current Research Group

Dr. Pascal Krause Dr. Suk Kyoung Lee Xuetao Shi Yi-Jung Tu Dr. Shivnath Mazumder Adam Birkholz Bishnu Thapa Sebastian Hebert

Recent Group Members

Prof. Hrant Hratchian Prof. Xiaosong Li Prof. Jason Sonnenberg Prof. Smriti Anand Dr. Jia Zhou Prof. Richard Lord Prof. Peng Tao Prof. Barbara Munk Dr. Jason Sonk

Prof. Wen Li

Dr. Suk Young Lee

Bishnu Thapa

Dr. Pascal Krause

Background and Motivation

- Photons as reagents for mode selective chemistry
- Rapid intramolecular vibrational redistribution (IVR) defeats mode specificity (~1 ps)
- Critical conditions needed to overcome IVR:
 - Ultrafast excitation
 - Ultrashort reaction times
- Requires the use of intense, ultrafast lasers
- Laser fields of 10¹⁴ W cm⁻² are strong enough to distort the potential energy surface and to affect the dynamics of molecules

Ab Initio Classical Trajectory on the Born-Oppenheimer Surface Using Hessians

Distortion of the PES by a Low Frequency, Strong Laser Field (collaboration with Prof. Wen Li, WSU)

10

- Laser fields of 10¹⁴ W cm⁻² are strong enough to distort the potential energy surface and to affect the dynamics of molecules
- Wagging tail model for 0.4H⁺ dissociation in HCl⁺ • Wardlaw and coworkers_ 0.2Energy (a.u.) *JCP* **1995**, *102*, 7462 *JCP* **2004**, *120*, 1279 0 $KE_{\rm max} \approx 0.25 D_{\circ}$ -0.2 $+2\sqrt{2D_eU_{pm}}$ -0.4 $+8U_{pm}$ 0 $\mathbf{2}$ 8 6 R (a.u.) $U_{pm} = E_{max}^2 / 4\mu\omega^2$

HCO⁺ \rightarrow H⁺ + CO Dissociation in a CW Laser Field (10 µm, 2.9×10¹⁴ W cm⁻²)

Formyl Chloride Cation

Strong field dissociation by ultrashort mid-infrared laser pulses

- Mode selective chemistry
- Dependence of branching ratios on the wavelength and orientation of the field

 $\begin{array}{l} \text{ClCHO}^+ \rightarrow \text{Cl} + \text{HCO}^+ \ (0.30 \text{ eV}) \\ \rightarrow \text{H} + \text{ClCO}^+ \ (1.26 \text{ eV}) \\ \rightarrow \text{HCl}^+ + \text{CO} \ (1.34 \text{ eV}) \end{array}$

Lee, S. K.; Suits A. G.; Schlegel, H. B.; Li, W. *J. Phys. Chem. Lett.* 2012, *3*, 2541

Field-free Dissociation Times

Dissociation Times with Laser Field

Dissociation at 7 µm: HCl⁺ channel

A closer look at trajectories of the HCl⁺ channel:
 C-Cl bond stretch, C-H stretch and rock, followed by H⁺ migration

Field Orientation Dependency

Charge Oscillation ClCHO+ due to the Laser Field

Time (fs)

Bromofluoroform cation (CF₃Br⁺) Iodobenzene dication (C₆H₅I²⁺)

F C F

 Molecules can be aligned and electric field applied along specific bonds

Laser parameters

- Gaussian pulse envelope
- Number of cycle = 5
- $E_{max} = 0.07$ and 0.09 a.u.
- Wavelength : $4 \sim 10 \ \mu m$

Lee, S. K.; Schlegel, H. B.; Li, W. J. Phys. Chem. A 2013, 117, 11202

Field directed along a C-F bond of CF₃Br⁺

0.07 a.u. 0.09 a.u. → F → F ···•· F* → Br → Br

Br

 C-F avg. stretching : ~7.8 µm (field-free)
 "near-resonance effect"

Bond Selective Dissociation in Iodobenzene Dication

• A very high degree of spatial alignment can be achieved experimentally for C_6H_5I

Field direction -	Field strength of 0.09 a.u. at 10 µm				
	Ι	Ortho H	Meta H	Para H	No Rx
Perpendicular to C-I	0	13	15	0	73
Parallel to C-I	0	0	0	100	0
Along Ortho/Meta C-H	0	0	59	40	0

CH₃OH⁺ Isomerization Driven by Short, Intense Laser Pulses

- Yamanouchi and co-workers have examined the fragmentation of methanol by intense 800 nm laser pulses
- 40 fs 800 nm pump pulse produces methanol monocation
- probe pulse delayed by 100 800 fs generates the dication
- coincidence momentum imaging of CH_3^+/OH^+ and CH_2^+/H_2O^+ showed that ultrafast $CH_3OH^+ \rightarrow CH_2OH_2^+$ isomerization during the pulse and slower isomerization occurred after the pulse
- BOMD simulations of isomerization and fragmentation by a 800 nm laser pulse with CAM-B3LYP/6-31G(d)

B. Thapa, H.B. Schlegel, J. Phys. Chem. A, 2014, 118, 1769

Simulation of Strong Field Isomerization and Dissociation of CH₃OH⁺

- Classical trajectory calculations of ground state CH₃OH⁺ with CAM-B3LYP/6-31G(d,p) level of theory
- 40 fs 800 nm trapezoidal laser pulse (randomly oriented)
- 0, 0.07 and 0.09 au field strength (corresponds to 0, 0.88×10^{14} and 2.9×10^{14} W/cm²)
- 75, 100, 125 kcal/mol added vibrational energy to simulate extra energy gained on ionization
- 200 trajectories of 400 fs for each case

Potential Energy Surface for CH₃OH⁺

Low energy channels include CH_2OH^+ + H, HCOH⁺+ H₂ and isomerization (CAM-B3LYP/6-31G(d,p), CBS-QB3 (italics) and CBS-APNO (bold))

Branching Ratios for CH₃OH⁺ Dissociation and Isomerization

- H dissociation most abundant in all cases
- H₂ next most abundant channel
- Much less migration and OH dissociation
- Little or no dissociation after migration

Isomerization and Dissociation of CH₃OH⁺ by Intense 800 nm Laser Fields

- C-O dissociation after H migration seen in experiment with intense 800 nm laser pulses but not in simulations for ground state CH₃OH⁺
- With 800 nm laser pulses, some C-O dissociations may occur on excited state surfaces of CH_3OH^+
- CH₃OH⁺ gains considerable energy from the pulse in experiments but not in adiabatic BOMD simulations
- May be due to non-adiabatic dynamics during the pump intense 800 nm pulse

Isomerization and Dissociation of CH₃OH⁺ by Mid-IR Laser Fields

- At 800 nm, classical dynamics simulations showed that ground state methanol cation gained very little energy from the laser
- Mid-IR laser pulses can interact directly with the molecular vibrations and are less likely to cause excitation or ionization
- Studies of ClCHO⁺, CF₃Br⁺ and C₆H₅I²⁺ showed that orientation can enhance specific reactions by mid-IR lasers
- Simulations using CAM-B3LYP/6-31G(d,p) with a 15 cycle 95 fs 7 μm trapezoidal laser pulse (randomly oriented and C-O aligned) with intensities of 0.88×10¹⁴ and 1.7×10¹⁴ W/cm² (0.05, 0.07 au)

Energy Deposited in CH₃OH⁺ by a 4 cycle 7 µm pulse

Infrared spectrum of CH₃OH⁺

• When the laser polarization is aligned with the C-O bond, the vibrational intensities in the mid-IR range are higher and nearly twice as much energy is deposited by the 7 μ m pulse

Isomerization and Dissociation of CH₃OH⁺ by Mid-IR Laser Fields

- CH_3OH^+ gains an order of magnitude more energy from a 7 μ m pulse than from a 800 nm pulse
- For a 7 μ m pulse, CH₃OH⁺ gains nearly twice as much energy for intensity of 1.7×10¹⁴ W/cm² than for 0.88×10¹⁴ W/cm²
- Aligned CH₃OH⁺ gains 50 80% more energy than randomly oriented
 - This is in accord with the higher vibrational intensities in the mid-IR range for aligned CH₃OH⁺

Comparison of Potential Energy Surfaces for $CH_3X^+(X = NH_2, OH, F)$

- Explore effect of changes in potential energy surface (PES) on the reactions driven by the laser field.
- H elimination has lowest barrier in all cases
- CH₃NH₂⁺ has higher barriers than CH₃OH⁺ and CH₃F⁺
- Largest change is in C-X dissociation energies

B. Thapa, H.B. Schlegel, J. Phys. Chem. 2014, 118, 10067-72

Isomerization and Dissociation of CH₃NH₂⁺, CH₃OH⁺ and CH₃F⁺ by 7 µm Laser Fields

- CH_3X^+ gains an order of magnitude more energy from a 7 μ m pulse than from a 800 nm pulse
- Aligned CH_3X^+ gains nearly twice as much energy as randomly oriented
- Energy gained: $CH_3NH_2^+ > CH_3OH^+ > CH_3F^+$
- CH₃NH₂⁺ less reactive than CH₃OH⁺ and CH₃F⁺ because of higher barriers
- Most abundant reaction path is $CH_2X^+ + H$ (63%-93%) with 2nd most favorable path HCX⁺ + H₂ (4-33%)
- Only CH₃F⁺ showed C-X cleavage after isomerization

New algorithm for MD in an intense laser pulse

HBS J. Chem. Theory Comput., 2013, 9, 3293

- Algorithm accounts for the variation of the electric field during the integration time step
- Calculate predictor step on a local polynomial surface for the gradient that includes the electric field dependence
- Dipole derivative and polarizability derivative give the dependence of the gradient on the electric field

$$\vec{g}(\vec{x}, \vec{\varepsilon}(t)) = \vec{g}(\vec{x}_1, \vec{\varepsilon}(t_1)) + \frac{\partial \vec{g}}{\partial \vec{x}} \bigg|_{\vec{x}_1, \vec{\varepsilon}(t_1)} (\vec{x} - \vec{x}_1)$$

$$+\frac{\partial \vec{g}}{\partial \vec{\varepsilon}}\Big|_{\vec{x}_{1},\vec{\varepsilon}(t_{1})}(\vec{\varepsilon}(t)-\vec{\varepsilon}(t_{1})) +\frac{1}{2}\frac{\partial^{2}\vec{g}}{\partial \vec{\varepsilon}^{2}}\Big|_{\vec{x}_{1},\vec{\varepsilon}(t_{1})}(\vec{\varepsilon}(t)-\vec{\varepsilon}(t_{1}))^{2}$$

where
$$\frac{\partial \vec{g}}{\partial \vec{\varepsilon}} = \frac{\partial^2 E}{\partial \vec{\varepsilon} \partial \vec{x}} = \frac{\partial \vec{\mu}}{\partial \vec{x}}$$
 $\frac{\partial^2 \vec{g}}{\partial \vec{\varepsilon}^2} = \frac{\partial^3 E}{\partial \vec{\varepsilon}^2 \partial \vec{x}} = \frac{\partial \underline{\alpha}}{\partial \vec{x}}$

Corrector step for integrating MD in an intense laser pulse

- calculate corrector step on a distance weighted interpolant surface that includes the electric field
- use velocity Verlet to integrate on the DWI surface ($\delta t = \Delta t/100$)

$$\begin{split} \vec{g}(\vec{x},\vec{\varepsilon}(t)) &= w_1(\vec{x})\vec{g}_1(\vec{x},\vec{\varepsilon}(t)) + w_2(\vec{x})\vec{g}_2(\vec{x},\vec{\varepsilon}(t)) \\ w_1(\vec{x}) &= |\vec{x} - \vec{x}_2|^2 / (|\vec{x} - \vec{x}_1|^2 + |\vec{x} - \vec{x}_2|^2), w_2(\vec{x}) = |\vec{x} - \vec{x}_1|^2 / (|\vec{x} - \vec{x}_1|^2 + |\vec{x} - \vec{x}_2|^2) \\ \vec{g}_n(\vec{x},\vec{\varepsilon}(t)) &= \vec{g}(\vec{x}_n,\vec{\varepsilon}(t_n)) + \frac{\partial \vec{g}}{\partial \vec{x}} \Big|_{\vec{x}_n,\vec{\varepsilon}(t_n)} (\vec{x} - \vec{x}_n) + \frac{1}{2} \frac{\partial^2 \vec{g}}{\partial \vec{x}^2} \Big|_{\vec{x}_n,\vec{\varepsilon}(t_n)} (\vec{x} - \vec{x}_n)^2 \\ &+ \frac{\partial \vec{g}}{\partial \vec{\varepsilon}} \Big|_{\vec{x}_n,\vec{\varepsilon}(t_n)} (\vec{\varepsilon}(t) - \vec{\varepsilon}(t_n)) + \frac{1}{2} \frac{\partial^2 \vec{g}}{\partial \vec{\varepsilon}^2} \Big|_{\vec{x}_n,\vec{\varepsilon}(t_n)} (\vec{\varepsilon}(t) - \vec{\varepsilon}(t_n))^2 \end{split}$$

- Hessians are updated (CFD-Bofill¹) and are recalculated only every 20 steps
- 3rd derivatives approximated by the finite difference of the two Hessians

¹ Wu, Rahman, Wang, Louderaj, Hase, Zhuang *JCP* **2010**, *133*, 074101

Effect of dipole and polarizability derivatives on a HCO⁺ trajectory (2.9×10¹⁴ W cm², CW, Δt=0.25 fs)

Electronic Response of Molecules Short, Intense Laser Pulses

- Non-linear response cannot be treated by perturbation theory
- rt-TD-HF and rt TD-DFT: real time integration of the HF or KS equations $i \hbar dP(t)/dt = [F(t), P(t)]$
- TD-CI: integration of the time dependent Schrodinger equation expanded in terms of the field-free ground and excited states

$$i\hbar d\Psi / dt = \hat{H}\Psi$$

$$\Psi(t) = \sum C_i(t) \psi_i$$

$$i\hbar \begin{bmatrix} dC_1 / dt \\ dC_2 / dt \\ \vdots \\ dC_n / dt \end{bmatrix} = \begin{bmatrix} \omega_1 + \vec{E}(t) \cdot \vec{\mu}_{11} & \vec{E}(t) \cdot \vec{\mu}_{12} & \cdots & \vec{E}(t) \cdot \vec{\mu}_{1n} \\ \vec{E}(t) \cdot \vec{\mu}_{21} & \omega_2 + \vec{E}(t) \cdot \vec{\mu}_{22} & \vec{E}(t) \cdot \vec{\mu}_{2n} \\ \vdots & \ddots & \vdots \\ \vec{E}(t) \cdot \vec{\mu}_{n1} & \vec{E}(t) \cdot \vec{\mu}_{n2} & \cdots & \omega_n + \vec{E}(t) \cdot \vec{\mu}_{nn} \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \\ \vdots \\ C_n \end{bmatrix}$$

- Requires the energies of the field-free states, ω_i , and their transition dipoles, μ_{ij}
- Need to limit the expansion to a subset of the excitations (e.g. single excitations)
- Excited states calculated by CIS, CIS(D), EOM-CCSD, RPA, TD-DFT

Strong Field Ionization using Complex Absorbing Potentials

- Ionization corresponds to exciting a electron into an unbound continuum state
- Standard molecular orbital calculations with atom-centered basis functions cannot represent unbound electrons
- Add an complex potential outside the valence region to absorb the unbound electron density

$$\dot{t}\frac{\partial\Psi(t)}{\partial t} = \hat{H}_{el} - \vec{\mu}\vec{E}(t) - i\hat{V}_{abs}$$

Hydrogen atom in

a constant field

- Ramp up the field gradually to its maximum value
- Dipole moment reaches a constant value
- The complex absorbing potential causes the norm of the wavefunction to decay exponentially
- The decay rate corresponds to the ionization rate

Krause, P.; Sonk, J. A.; Schlegel, H. B. J. Chem. Phys. 2014, 140, 174113

Hydrogen atom ionization rate as a function of field strength

Ionization rate of H₂⁺ as a function of bond length

As the bond length is stretched, the ionization rate increases due to charge resonance enhanced ionization (CREI)

Accurate grid-based method Bandrauk and co-workers (only suitable for1 and 2 electron systems) Using gaussian basis functions (suitable for many electron systems)

Time-dependent excited state populations of HCl⁺ and HCO⁺

Ground state and $\sigma \rightarrow \sigma^*$ state populations for (a) HCl⁺ and (b) HCO⁺

Similar to H_2^+ , a chargeresonance enhanced ionization mechanism contributes to the increased ionization rate as the bonds are elongated

Ionization of Ethylene, Butadiene and Hexatriene

Krause, P.; Schlegel, H. B. J. Chem. Phys. 2014, 141, 174104

Ionization of Ethylene, Butadiene and Hexatriene

Number of states used in the TD-CI propagation can be reduced

States with energies greater than 5 au do not contribute to the ionization rate

Orientation Dependence of Ionization Rate for Ethylene, Butadiene, Hexatriene

Angular Dependence of Ionization Rate for Butadiene

Acknowledgements

Current Research Group

Dr. Shivnath Mazumder Dr. Pascal Krause Dr. Suk Kyoung Lee **Bishnu Thapa** Sebastian Hebert

Recent Group Members

Prof. Richard Lord, Grand Valley State U Prof. Hrant Hratchian, UC Merced Prof. Peng Tao, Southern Methodist U Prof. Xiaosong Li, U. of Washington Dr. Brian Psciuk (Batista group, Yale) Dr. Jason Sonk (Barker group, U. Michigan) Dr. Jia Zhou (post-doc, Oak Ridge NL) Prof. Barbara Munk, WSU Prof. Jason Sonnenberg, Stevenson U. Prof. Smriti Anand, Northern Virginia CC

Adam Birkholz

Xuetao Shi

Yi-Jung Tu

Funding and Resources:

Current and Past Collaborators:

Prof. J. F. Endicott, WSU Prof. E. M. Goldfield, WSU Prof. Wen Li, WSU Prof. J. SantaLucia, WSU Prof. C. Verani, WSU

Prof. D. Gatti, WSU Prof. J. J. Kodanko, WSU Prof. D. B. Rorabacher, WSU Prof. A. G. Suits, WSU Prof. C. H. Winter, WSU

Prof. R. D. Bach, U. Delaware Prof. C. J. Burrows, U. of Utah Dr. M. Caricato, Gaussian Inc. Prof. D. Case, Scripps Prof. T. E. Cheatham, U. of Utah Prof. O. Farkas, ELTE Dr. M. J. Frisch, Gaussian Inc. Prof. T. Goodson, U. of Michigan Prof. W. L Hase, Texas Tech U Prof. S. Iyengar, Indiana U Prof. R. J. Levis, Temple U. Prof. W. H. Miller, UC Berkeley Prof. S. O. Mobashery, Notre Dame U. Prof. J. W. Montgomery, U. of Michigan Prof. M. A. Robb, Imperial, London Prof. D. A. Romanov Prof. G. Scuseria, Rice Univ. Prof. S. Shaik, Hebrew University Prof. G. Voth, U. Chicago