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Background and Motivation 

• Photons as reagents for mode selective chemistry 

• Rapid intramolecular vibrational redistribution (IVR) 

defeats mode specificity (1 ps) 

• Critical conditions needed to overcome IVR: 

• Ultrafast excitation 

• Ultrashort reaction times 

• Requires the use of intense, ultrafast lasers 

• Laser fields of 1014 W cm-2 are strong enough to 

distort the potential energy surface and to affect the 

dynamics of molecules 



Ab Initio Classical Trajectory on the 

Born-Oppenheimer Surface Using Hessians 

Calculate the energy, 

gradient and Hessian 

in the laser field 

Solve the classical 

equations of motion on a  

local 5th order polynomial surface 

Millam, J. M.; Bakken, V.; Chen, 

W.; Hase, W. L.; Schlegel, H. B.; 

J. Chem. Phys. 1999, 111, 3800-5.  
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Distortion of the PES by a  

Low Frequency, Strong Laser Field 
(collaboration with Prof. Wen Li, WSU) 

• Laser fields of 1014 W cm-2 are strong enough to distort the 

potential energy surface and to affect the dynamics of molecules 

• Wagging tail model for  

     H+ dissociation in HCl+  

• Wardlaw and coworkers 

     JCP 1995, 102, 7462  

     JCP 2004, 120, 1279 



HCO+ → H+ + CO Dissociation in a  

CW Laser Field (10 m,  2.9×1014 W cm-2) 

Lee, S. K.; Li, W.; Schlegel, H. B. 

Chem. Phys. Lett. 2012, 536, 14 



Formyl Chloride Cation 

Lee, S. K.; Suits A. G.; Schlegel, H. B.; Li, W.  

J. Phys. Chem. Lett. 2012, 3, 2541 

ClCHO+  Cl + HCO+ (0.30 eV) 

                H + ClCO+ (1.26 eV) 

                HCl+ + CO (1.34 eV) 

Strong field dissociation by 

ultrashort mid-infrared laser pulses 

 

- Mode selective chemistry 

- Dependence of branching ratios on 

the wavelength and orientation of 

the field  



Field-free Dissociation Times 

ClCHO+  Cl + HCO+ 

                H + ClCO+ 

                HCl+ + CO 



Dissociation Times with Laser Field 

ClCHO+  Cl + HCO+ 

                H + ClCO+ 

                HCl+ + CO 



Dissociation at 7 m: HCl+ channel 

• A closer look at trajectories of the HCl+ channel: 

      C-Cl bond stretch, C-H stretch and rock, followed by H+ migration 



Field Orientation Dependency 

ClCHO+  Cl + HCO+ 

                H + ClCO+ 

                HCl+ + CO 



Charge Oscillation ClCHO+  

due to the Laser Field 
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Bromofluoroform cation (CF3Br+) 

Iodobenzene dication (C6H5I
2+) 

• Molecules can 

be aligned and 

electric field 

applied along 

specific bonds 

• Laser parameters 

• Gaussian pulse envelope 

• Number of cycle = 5 

• Emax = 0.07 and 0.09 a.u.  

• Wavelength : 4 ~10 m  

 

 

Lee, S. K.; Schlegel, H. B.; Li, W.   J. Phys. Chem. A 2013, 117, 11202 



Field directed along  

a C-F bond of CF3Br+ 

F

Br

F*

0.07 a.u.
F

Br

0.09 a.u.

• C-F avg. stretching :  

~7.8 m (field-free) 

“near-resonance 

effect”  
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F

Br

0.09 a.u.

• Poor bond selectivity at 

0.07 a.u. 

• Multi-body dissociation 

dominant at 10 m 

Field directed along  

a C-Br bond of CF3Br+ 
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Field direction 
Field strength of 0.09 a.u. at 10 m 

I Ortho H Meta H Para H No Rx 

Perpendicular  

to C-I 
0 13 15 0 73 

Parallel to C-I 0 0 0 100 0 

Along Ortho/Meta   

C-H 
0 0 59 40 0 

• A very high degree of spatial 

alignment can be achieved 

experimentally for C6H5I  

Bond Selective Dissociation 

in Iodobenzene Dication 



CH3OH+ Isomerization Driven 

by Short, Intense Laser Pulses 

• Yamanouchi and co-workers have examined the 
fragmentation of methanol by intense 800 nm laser pulses 

• 40 fs 800 nm pump pulse produces methanol monocation 

• probe pulse delayed by 100 – 800 fs generates the dication 

• coincidence momentum imaging of CH3
+/OH+ and 

CH2
+/H2O

+ showed that ultrafast CH3OH+  CH2OH2
+ 

isomerization during the pulse and slower isomerization 
occurred after the pulse 

• BOMD simulations of isomerization and fragmentation by a 
800 nm laser pulse with CAM-B3LYP/6-31G(d) 

 B. Thapa, H.B. Schlegel, J. Phys. Chem. A, 2014, 118, 1769 



Simulation of Strong Field 

Isomerization and Dissociation of 

CH3OH+ 

• Classical trajectory calculations of ground state CH3OH+ 

with CAM-B3LYP/6-31G(d,p) level of theory 

• 40 fs 800 nm trapezoidal laser pulse (randomly oriented) 

• 0, 0.07 and 0.09 au field strength ( corresponds to          

0, 0.881014 and 2.91014 W/cm2) 

• 75, 100, 125 kcal/mol added vibrational energy to 

simulate extra energy gained on ionization 

• 200 trajectories of 400 fs for each case 



Potential Energy Surface for CH3OH+ 
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Low energy channels include CH2OH++ H, HCOH++ H2 and isomerization 

(CAM-B3LYP/6-31G(d,p), CBS-QB3 (italics) and CBS-APNO (bold)) 



Branching Ratios for CH3OH+ 

Dissociation and Isomerization 
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• H dissociation most 

abundant in all cases 

• H2 next most abundant 

channel 

• Much less migration 

and OH dissociation 

• Little or no dissociation 

after migration 

 



• C-O dissociation after H migration seen in experiment 

with intense 800 nm laser pulses but not in simulations 

for ground state CH3OH+ 

• With 800 nm laser pulses, some C-O dissociations may 

occur on excited state surfaces of CH3OH+ 

• CH3OH+ gains considerable energy from the pulse in 

experiments but not in adiabatic BOMD simulations 

• May be due to non-adiabatic dynamics during the 

pump intense 800 nm pulse 

 

Isomerization and Dissociation of 

CH3OH+ by Intense 800 nm Laser Fields 



• At 800 nm, classical dynamics simulations showed that ground 

state methanol cation gained very little energy from the laser 

• Mid-IR laser pulses can interact directly with the molecular 

vibrations and are less likely to cause excitation or ionization 

• Studies of ClCHO+, CF3Br+ and C6H5I
2+ showed that 

orientation can enhance specific reactions by mid-IR lasers 

• Simulations using CAM-B3LYP/6-31G(d,p) with a 15 cycle  

95 fs 7 m trapezoidal laser pulse (randomly oriented and C-O 

aligned) with intensities of 0.881014 and 1.71014 W/cm2 

(0.05, 0.07 au) 

Isomerization and Dissociation of 

CH3OH+ by Mid-IR Laser Fields 



Energy Deposited in CH3OH+ 

by a 4 cycle 7 m pulse 

0.07 au field strength 

Average energy deposited 

(random / aligned) 

 42 / 76 kcal/mol at 0.05 au   

 81 / 120 kcal/mol at 0.07 au 

B. Thapa, H.B. Schlegel, 

Chem. Phys. Lett. 2014, 

610-611, 219-222 

0.05 au field strength 



Infrared spectrum of  CH3OH+ 

• When the laser polarization is aligned with the C-O bond, the 
vibrational intensities in the mid-IR range are higher and 
nearly twice as much energy is deposited by the 7 m pulse 

randomly oriented 

C-O aligned 

 
4 cycle 7 m pulse: 

1430 cm-1 with  

600 cm-1 FWHM 



• CH3OH+ gains an order of magnitude more energy 

from a 7 m pulse than from a 800 nm pulse 

• For a 7 m pulse, CH3OH+ gains nearly twice as much 

energy for intensity of 1.71014 W/cm2 than for 

0.881014 W/cm2  

• Aligned CH3OH+ gains 50 - 80% more energy than 

randomly oriented 

• This is in accord with the higher vibrational 

intensities in the mid-IR range for aligned CH3OH+ 

Isomerization and Dissociation of 

CH3OH+ by Mid-IR Laser Fields 



Comparison of Potential Energy Surfaces  

for CH3X
+

 (X = NH2, OH, F) 

• Explore effect of changes in 

potential energy surface (PES) 

on the reactions driven by the 

laser field.   

• H elimination has lowest     

barrier in all cases 

• CH3NH2
+ has                        

higher barriers than                 

CH3OH+ and CH3F
+ 

• Largest change is                       

in C-X dissociation           

energies  

B. Thapa, H.B. Schlegel, J. Phys. Chem. 2014, 118, 10067-72  



Randomly oriented and aligned  

CH3NH2
+, CH3OH+, CH3F

+  

in a 7 m Laser Pulse 



• CH3X
+ gains an order of magnitude more energy from a 7 m 

pulse than from a 800 nm pulse 

• Aligned CH3X
+ gains nearly twice as much energy as randomly 

oriented 

• Energy gained: CH3NH2
+ > CH3OH+ > CH3F

+  

• CH3NH2
+ less reactive than CH3OH+ and CH3F

+ because of 

higher barriers 

• Most abundant reaction path is CH2X
+ + H (63%-93%) with 2nd 

most favorable path HCX+ + H2 (4-33%) 

• Only CH3F
+ showed C-X cleavage after isomerization  

Isomerization and Dissociation of 

CH3NH2
+, CH3OH+ and CH3F

+  

by 7 m Laser Fields 



New algorithm for  

MD in an intense laser pulse 
HBS  J. Chem. Theory Comput., 2013, 9, 3293 

 
• Algorithm accounts for the variation of the electric field during 

the integration time step 
• Calculate predictor step on a local polynomial surface for the 

gradient that includes the electric field dependence 
• Dipole derivative and polarizability derivative give the 

dependence of the gradient on the electric field 
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Corrector step for integrating 

MD in an intense laser pulse 

• calculate corrector step on a distance weighted interpolant surface that 

includes the electric field 

• use velocity Verlet to integrate on the DWI surface (t=t/100) 

 

 

 

 

 

 

 

 

 

• Hessians are updated (CFD-Bofill1) and are recalculated only every 20 steps 

• 3rd derivatives approximated by the finite difference of the two Hessians 
 

                1 Wu, Rahman, Wang, Louderaj, Hase, Zhuang JCP 2010, 133, 074101 
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Effect of dipole and polarizability 

derivatives on a HCO+ trajectory 

(2.91014 W cm2, CW, t=0.25 fs) 



Electronic Response of Molecules 

Short, Intense Laser Pulses 

• Non-linear response – cannot be treated by perturbation theory 

• rt-TD-HF and rt TD-DFT: real time integration of the HF or KS equations 

 i ħ dP(t)/dt = [F(t), P(t)] 

• TD-CI: integration of the time dependent Schrodinger equation expanded in terms of 
the field-free ground and excited states 

 

 

 

 

 

 

 

 

• Requires the energies of the field-free states, i, and their transition dipoles, ij 

• Need to limit the expansion to a subset of the excitations (e.g. single excitations) 

• Excited states calculated by CIS, CIS(D), EOM-CCSD, RPA, TD-DFT 
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Strong Field Ionization using 

Complex Absorbing Potentials 

( ) ˆ ˆ( )el abs
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
• Ionization corresponds to 

exciting a electron  into an 

unbound continuum state 

• Standard molecular orbital 

calculations with atom-centered 

basis functions cannot represent 

unbound electrons 

• Add an complex potential 

outside the valence region to 

absorb the unbound electron 

density 



Hydrogen atom in 

 a constant field 

• Ramp up the field gradually to 

its maximum value 

• Dipole moment reaches a 

constant value 

• The complex absorbing 

potential causes the norm of 

the wavefunction to decay 

exponentially 

• The decay rate corresponds to 

the ionization rate 

Electric field 

Dipole 

Density 

Krause, P.; Sonk, J. A.; Schlegel, H. B. J. Chem. Phys. 2014, 140, 174113  



Hydrogen atom ionization rate 

as a function of field strength 

Ionization rates 

using complex 

absorbing potentials 

compared to 

accurate, grid-based 

calculations 



Ionization rate of H2
+ as a 

function of bond length 

As the bond length is stretched,  
the ionization rate increases due to  
charge resonance enhanced ionization (CREI) 

1064 nm, z 
800 nm, z 
800 nm, y 

Using gaussian basis functions 

(suitable for many electron systems) 

Accurate grid-based method 

Bandrauk and co-workers 

(only suitable for1 and 2 electron systems) 



Ionization of HCl+ 

as a function of 

bond length 

(a) Lowest 6 excited states for 

field free HCl+  

(b) ionization rates for 800 nm 

(0.057 au) 

(c) ionization rates for 1064 nm 

(0.043 au) 

 

Blue - aug-cc-pVTZ 

Green - aug-cc-pVTZ plus 

absorbing basis at bond midpoint 

Red - aug-cc-pVTZ plus 

absorbing basis on H and Cl 



(a) Lowest 6 excited states for 

field free HCO+  

(b) ionization rates for 800 nm 

(0.057 au) 

(c) ionization rates for 1064 nm 

(0.043 au) 

 

Blue - aug-cc-pVTZ 

Green - aug-cc-pVTZ plus 

absorbing basis at bond midpoint 

Red - aug-cc-pVTZ plus 

absorbing basis on H and Cl 

Ionization of HCO+ 

as a function of 

bond length 



Ground state and * 

state populations for  

(a) HCl+ and (b) HCO+ 
 

Similar to H2
+, a charge-

resonance enhanced 

ionization mechanism 

contributes to the increased 

ionization rate as the bonds 

are elongated 

Time-dependent excited state 

populations of HCl+ and HCO+ 



Ionization of Ethylene, 

Butadiene and Hexatriene 

• 7 cycle 800 nm cosine 

squared, 0.881014 W/cm2  

• TD-CIS with complex 

absorbing potential using 

aug-cc-pVTZ basis plus    

3 s, 2 p, 3 d and 1 f diffuse 

functions on each atom 

 

  C2H4 – 1849 states 

  C4H6 – 5468 states 

  C6H8 – 10897 states 

Krause, P.; Schlegel, H. B. J. Chem. Phys. 2014, 141, 174104  



Ionization of Ethylene, 

Butadiene and Hexatriene 

Number of states 

used in the TD-CI 

propagation can 

be reduced 

 

States with 

energies greater 

than 5 au do not 

contribute to the 

ionization rate 



Orientation Dependence of 

Ionization Rate for  

Ethylene, Butadiene, Hexatriene 



Angular Dependence of Ionization 

Rate for Butadiene 
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