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Unrestricted Hartree—Fock (UHF) wave functions and Méller-Plesset perturbation theory
(UMPn) based on a single spin-unrestricted reference determinant can contain significant
contamination from unwanted spin states. This contamination may lead to large distortions of
the potential energy surface, particularly at the UMPn level. A simple approximation to
projected UMPn theory (PMPn) improves the shape of the potential energy surface
significantly. Formulas for analytical gradients of the PUHF and approximate projected
UMP2 energies with single annihilation have been derived and programmed. This code has
been applied to the optimization of transition states for H + C,H,, H + CH,0 and H + C,H,

at the PMP2/6-31G* level.

INTRODUCTION

Spin-unrestricted Hartree—Fock' (UHF) calculations
and unrestricted M¢ller-Plesset perturbation theory® are
usually quite reliable for open shell systems and yield reason-
able energetics and optimized geometries. However, if spin
contamination is significant, the unwanted spin states can
distort the energy surface significantly, especially when elec-
tron correlation corrections are treated by Méller—Plesset
perturbation theory. Spin-projection methods offer one ap-
proach for overcoming the difficulties caused by spin conta-
mination.>~® These methods are based on the Léwdin spin-
projection operator* or the corresponding spin-annihilation
operators
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Early work focused on spin-projected unrestricted Har-
tree-Fock (PUHF) and spin-extended Hartree-Fock
(EHF) methods.>® Recent work has examined the use of
spin-projection and spin-annihilation methods to improve
energies at the MPn level.”-'° The simplest approximation to
spin-projected Méller-Plesset perturbation theory,” de-
noted by PMPn, involves the annihilation of the largest spin
contaminant in the UHF wave function, followed by a cor-
rection for the configurations already in the UMPI1 to
UMPn-1 wave functions. This approximation was used suc-
cessfully in a number of studies.”''~'* Subsequently, formu-
las for full spin-projected UMPn were developed,®'° and cal-
culations confirmed that the initial approximate method
yields satisfactory results when the contamination is domi-
nated by a single higher spin.

In this paper, the formulas for analytical gradients of the
PUHF energy and the PMP2 energy with single annihilation
are derived. These equations have been programmed and
interfaced with the development version GAUSSIAN 88 series
of programs. '’ Initial timings suggest that little extra effort is
required than for UMP2 derivatives. The analytical PMP2
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gradients have been applied to the optimization of the transi-
tion states for H + C,H,, H + CH,0 and H + C,H..

PUHF and PMP2 energies
The Hartree—Fock energy after annihilation of the next
highest spin state is given by

(®|H (4, , , D) o ~
Ol "| - =EUHF + <¢0|V|¢o>
<¢0IAS+ l(DO)

d (DT W I(,[52|D,)
=E,
vnr + Z (¢()1S2|¢0) —(s+1)(s+2)

= Eyur + AEpyunr, (2)

where 25 +1 Is the operator which annihilates states with

spins + 1, V'is the usual Méller—Plesset perturbation opera-
tor and @, is the UHF reference determinant. The correc-
tion for spin annihilation of states with spin s + 1, ®,, is
given by
sd 2
By WWEe)
7 (D|S? D) — (s+ 1) (s +2)
The summation in Eq. (3) runs over all singly and doubly
excited determinants. The MP2 energy and the first order

wave function @, are

d ~
Eymp2 = Eynr — z (V,|V|®o)*/(E; — Ep), (4)

d A
@) = — 2 |W Y|V | @)/ (E; — Ey). &)

As a first approximation to the spin projected MP2 en-
ergy, the correction for spin contamination at the UHF level,
50, must be reduced by the fraction contained in ®,. With
this approximation, the PMP2 energy may be written as

EPMPZ = EUMPZ + AEPUHF (1 - (‘Dllt‘iO)/(&)Ol[ﬁO) )é
(6)

This approximation has been used successfully in a number
of studies.”! 14
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PUHF gradients

The first derivative of the PUHF energy can be written
as

Ei’{UHF =E5HF +AE§UHF’ @)

The superscript X is used to indicate differentiation with
respect to X. The expression for the first derivative of the
Hartree-Fock energy is well-known.'®

The derivative of AEp ¢ is given by

g

AE foue = S U@ | P |05 (W2[S 2Dy

ijab

+ (D] P [W2) (W[5 2| ) F !

— ABpunr (®|S2[ @), (8)
where

Q = [(D,[S2|Pe) — (s + 1) (s +2)] )

and ‘Il;;.” denotes a doubly excited determinant in which the
electrons from occupied orbitals i and j are promoted to vir-
tual orbitals g and b.

To simplify the notation, a number of conventions are
adopted: indices i, j, k, /, etc. are used for occupied orbitals; a,
b, ¢, d, etc. denote virtual orbitals and p, g, 7, etc. refer to
either set. For cases where it is necessary to distinguish spin,
indices i, k, etc. and q, ¢, etc. are used for alpha spin and
indices j, /, etc. and b, d, etc. are used for beta spin. Greek
letters refer to the atomic orbital basis functions. The a—8
overlap integrals are denoted as :S",-j with the convention that
all pairs of integral indices have the « label first and the S
label second. R

The expectation value of S and its derivative are given
by

(©|S2|®p) =52 +5, + 15 — 3 53, (10)
i

(Do[S?| D) ¥ = — 23 8,87, (11)
7
where n; is the number of beta electrons and
§l’]" = 2 C;)t(isﬂvcvf + Cui‘gf)fvcvj + C#,-SM,C(,‘;
uv

=Y U,S, + SP+YS,U, (12)
P P
and
ac, -
ﬁ:c,{q:%"cﬂpUm. (13)

The C,, refer to the unperturbed UHF orbital coefficients
and the U, are the first order orbital coefficients obtained
from the solution of the coupled perturbed Hartree—Fock
(CPHF) equations.!”'® A superscript X in parentheses indi-
cates an integral derivative evaluated in the atomic orbital
basis and transformed by the unperturbed orbital coeffi-

cients [e.g., § ® in Eq. (12)].

A
The matrix elements of S between the ground and af
doubly excited configurations ¥§’ can be written as

(®o|S 2| Wy = — 5,5, (14)
The derivatives of these matrix elements are

(D[S 2|ty = —5X3, 5,5, (15)

ij

In the same notation, the derivatives of the integrals of 4
between the ground and doubly excited configurations are
given by
(Dol V[ ¥5)¥ = (iiab)*

i

= (§llab)® + ¥ [ (pillab) U,; + (ipllab) U,
p

+ (§illpd) Upe + (illap) Ups 1, (16)
where
({llab)y® = ¥ CC,;CiaCop (vl|Aa) . a7
uvio

Substituting Egs. (11)—(17) into Eq. (8) gives
AE /l",UHF

. z[(fjnabr” + 3 [allab) U,
P

ijab

+ (ipllab) U, + (ijllpb) U,, + (ifllap) U,, 155,
+ (fla) T [ (U5 + 8 5° + 54Uy )8y

+5,(U,S, +85° +§a,,U,,j)]]Q—'

ap*’ pj
+ 2AE‘PUHFEZ[ Ukpgp[ + 3';(4]\') + gkp Upl ]gklﬂ_ l'

(18)

This expression can be simplified by noting that only the
symmetric part of the occupied-occupied and virtual-vir-
tual blocks of U are needed. These can be obtained from the
orbital orthogonality condition:

z C;fisuvcvk + C,uiS;fVCvk + Cyisuvcfk
nv

=Up +SF+U,; =0 (19)

or specifically for the a and /8 occupied—occupied and vir-
tual-virtual blocks:

Up + Uu= — S0,

f U, + U, = -85,

(20)
Ui + Uy = — Sz(lf)’ U+ Usp = — Sl()dX)'
After collecting terms in (uv||Ac)?, the U’s and the various
overlap derivatives, the final expression for the computation
of the derivative of AEp ur With single annihilation is
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AE Fuur = Z Tio (ViAo + z Uci{ | (cj||ab)§ib§aj + (l..i"ab)gcbgaj] + ZAEPUHFZ §cjgij']ﬂ'—l

uvio Jjab 7

+ z Udj[ — Z[ (id ||ab)§,~,,§aj + (ij||ab)§ib§ad] + ZAEPUHFZV\gidgij]Q_I
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-3 S&i"[ - % [ llad)$;, S, + (§1ab)S.uS, ] ]ﬂ“
bd ija
+ 2 S;‘:v [ [— C,uinb (ijl|ab)§aj — C;tacvj (ii”ab)gib 1+ ZAEPUHFZ Cyicty'gij]ﬂ_ !, 2n
1234 ijab 7
|
where [(®1|®0)/(Bo|Bo) 1*
Fuv/la = - z CinWCZaCabgibgan_l' (22) = [((blléo)x/<$0|‘q;0>]
jjab
This comg.)le:tes. the derivation of the PUHF. gradif?nts for — (B Do) X [(D,] D) /(Do D021 (24)
single annihilation. As can be seen by comparison with Ref. )
18, the terms are very similar to the MP2 gradients. The numerator on the left-hand side of Eq. (24) can be writ-

ten as
PMP2 gradients

$,) = — Vv, [S? _E)Q]!
For the evaluation of PMP2 derivatives it is necessary to (o) Zm)‘)' VIV, |S % Do) [ (B, — Ep)Q]
obtain derivatives of the term [(P,| D)/ (P,|D,) ] in addi-

tion to the derivatives of Eyyp, and AEpyr. = 2(ij||ab)§',.,,§aj (A )71, (25)
X  _px x _ F & | & yab
Etmp2 = EGmpz + AE pupr (1 f¢i|¢'o)/(¢’o|¢o>) where A, =€, + €, — € — €; and the €' are the orbital
— AEpunr ({9, D) /(Do D)) %, (23) energies. Differentiation of Eq. (25) with respect to X gives
|

(P,|Pp)* = z[(z'f'||ab)""§ib§a,(A;,a,,r' + Y[ (pillab) U, + (ipllab) U, + (ifllpb) U,
P

ijab

+ (§lap) U,5 15580 (Bys) ™" + (ifllab) Y [ (U, S, + S 50 + S, Up)S,

+ 85 (Upp Sy + 557 + 5, Up) 1Ay ™ — (illab)Si, S,y (€5 + € — € — q*)(A,-,uer}n—'

- 2<$O|¢I> E[Ukps'pl +§;<7‘,) +‘-§kp Upl]gkln_l' (26)

The orbital energy derivatives €, can be obtained from the first order Fock matrix, which in turn may be assembled from the
solution of the CPHF equations. In addition to the symmetric part of the occupied—occupied and virtual-virtual blocks of U,,,
[Eq. (20)], a little algebra reveals that the antisymmetric part of the occupied—occupied and virtual-virtual blocks of U
multiplied by orbital energy differences [e.g., (¢, — €,) (U,, — U,,)] are also needed to evaluate Eq. (26). These can also be
obtained from the CPHF equations:

FXC, +F,CX =€S, C, +¢€,S%C,, +¢,5,Cx. (27)
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Note that F X includes the derivative of the density matrix. To transform the CPHF equations to the molecular orbital basis,
Eq. (27) is left multiplied by C,, and Eq. (12) is used to express the orbital coefficient derivatives in terms of the U’s:

F¥ +e€,U, =€, +eqS},;" +€,U,. (28)
Asin Egs. (12) and (17), the superscript (X) is used to denote the integral derivative in the atomic basis transformed by the
unperturbed molecular orbitals. The antisymmetric part of U can be obtained by adding Eq. (28) to itself with the indices p

and ¢ permuted (note that F )’ and S\’ are symmetric)
(eq —ep)(qu - qu)/2=F;,;{) - %(ep + fq)Sz(n)z()
. @9

After Eq. (26) is rewritten in terms of the symmetric and antisymmetric parts of the occupied—occupied and virtual~virtual
blocks of U, the final expression used to compute the derivative of (®,|P,) is

(@807 = 3 Tiuso ullder + 3 Uc,-[z[(cjllabﬁ,-bi,+<fj||ab>sc,,s /g =283 5, ,-,-]n-'
ic Jjab

uvio

+3 Uy | ST 1a0)3,5, + 1656501/ B = 2@ 18T S.,,S.}
Jjd iab

+3 Uka[z[ (kD)5 + wnabﬁi,,ik,-]m.,-,,,,]n—'

ijb

+s U,,,[z[(fj||al>§.~,,§a, + (ijllab)ii,fv,,,]/m,,,,,]n—‘
bl

ija

+ z ""[ - — Y [ (killab)S,S,; + (fjnabﬁkbi,-]/(A.-,-a,,Ak,-,,,»]n—'

Jab

+ S Fi¥ [ — — Y[ (il ||ab)S;,S,; + (ijllab)S, S, ]/(A.-,-,,,,A,.,,,,»]a—'
Jl

iab

z[wucb)sb +(z‘fllab)i..ﬁq-1/(A.~,~,,bA.~,~cb)']n-'

= 3 [ (llad)S, S, + (ilab)S,S,; ]/(A,.,-,,bA,.,.an]n-'

bd [ ija
-3 sgﬂ[é [ (killab)5,S,; + (ifllab)SisSy; ]/ — 2(Do| P Y §,g.§,.j}n—‘
ik Jab J
~ 35 >[% Sl [|ab)5, Sy + (§1lab)S;,5. 1/ — 2(Po| D) T Ei,??y}n-‘
K iab i
ZS‘X’[% b[(U“Cb)S,bSa, + (z]||ab)S,,,S -]/A,-j‘,,,]ﬂ'l
ac i
1 " T T NS T -
=3 5P L S 1153, + Gab5uSy 1B 0
bd ija
+Y S,’fv[ [CuiCos (iilab)S; + CouaC.y (i1ab)S1y 1/ Bgp — 2(®1| B0} 3, C,,,.CVJ.S'U]Q”‘, (30)
nv ifab ij
|
where T=3 W) (W] + [@6) (D
i#0
Tiio =3 CuiCryCaaCopSip Sy (Ayan ) . (31)  or (33)
ijab A
Similar to AE £iyr, the (®,|®,) ¥ term is closely related to ,.;o ) (Wil =T — [@o) (D],
the MP2 gradient. Eq. (32) can be simplified

Finally, it is necessary to evaluate the term {(®,|®,)*.

Analogously to Eq. (15), (®,|P,) may be written (Do| Do) = ({Do|S” I .5%|Po)

(@olBo) = TUDISALN([S2I000%  (32) ~ (IS 100 (@il 7())07*

olPa) = 2 (RIS (Hi[ST| @0} = (Dof34105) — (@870, (9,371,102

With the following definition of the identity operator, (34)
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In the notation of Amos and Synder,® the expectation value of Stis given as
(Bo[5410) = 4o(2) — 4,3 T} + 2[(2 3‘3) - 35,555, ] (35)
if ij ikl

where A4,(2) = [s(s+ 1) + ngl* +n ng, A,(2) =2[s(s +1) +ngl +n, + nz —2 and n,, ng are the number of
alpha and beta electrons, respectively. The derivative of Eq. (33) can now be evaluated using Egs. (11) and (35):

(Bo|Bo) ¥ = ((D]S | D) * —
—24,(2)3 575, +8% 515,384
i ij ki

+ 42 gﬁﬁ<q’o|§2l¢o)ﬂ_2 + 42 TS"Z"
! ij

=Z§ff W;
ij

= SEW, + S USW,+ S USuH,

ijc

This completes the derivation of all of the terms in Eq. (33)
for the evaluation of the PMP2 gradients. In practice, the
terms in Egs. (21), (30), and (36) are combined with the
corresponding terms in the MP2 gradient'® to yield the final
coefficients of the U’s, § ® and F®,

This procedure can be interfaced with any program
which provides a full solution of the CPHF equations, '® as in

111.40 167.92

2(Do|S 2| Do) * (D) S2De)) Q2 —

__ZS(X)SI(]

2(¢0|§2|¢0)X(&)0|&)0)Q_|

-85 55550

§1j<i’o|&>0>9~_l

1

__2_2 (X) S,,

il

(36)

!

the GAUSSIAN series of programs. Alternatively, the more
efficient Z-vector method of Handy and Schaefer'® can be
used (also available in GAUSSIAN 88'°). In this case, all of the
coefficients of the U’s in Egs. (21), (30), and (36) must be
added to the UMP2 Lagrangian before invoking the Z-vec-
tor reformulation. Both approaches for PMP2 gradients
have been implemented in the development version of GAUS

<HOCH 88.27

FIG. 1. Transition structure for (a) H + C,H,-C,H,;, (b) H + C,H,-~C,H,, (c) H + CH,0-CH,0, and (d) H + CH,O-CH,OH, optimized at the

PMP2/6-31G* level with annihilation of the quartet spin contaminant.
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TABLE I. Total energies (E,,) of transition states and activation barriers (kcal/mol) for hydrogen addition

reactions. Geometries optimized at the PMP2/6-31G* level.

H--C,H, H--C,H, H--CH,O CH,0--H

HF/6-31G* —77.304 84 — 78.524 61 — 114.35549 — 114.338 36
MP2/6-31G* — 71.543 19 — 78.764 73 — 114.633 83 — 114.622 25
PMP2/6-31G* — 77.559 46 — 78.775 86 — 114.648 73 — 114.637 83
MP4/6-31G* — 7157727 — 78.801 77 — 114.665 52 — 114.653 08
PMP4/6-31G* — 77.589 67 — 78.810 50 — 114.676 55 — 114.664 80
HF/6-31G* 5.5 29 4.0 14.8
MP2/6-31G* 13.7 11.6 20.2 27.4
PMP2/6-31G* 35 4.6 10.8 17.6
MP4/6-31G* 9.1 10.2 15.5 23.3
PMP4/6-31G* 1.3 4.7 8.6 159

88. Relatively little additional computational work is re- CONCLUSIONS

quired beyond that needed to evaluate unprojected UMP2
gradients.

APPLICATIONS

As an initial demonstration of the PMP2 gradient code,
the following reactions involving the addition of hydrogen to
multiple bonds have been reinvestigated'":*>:

H + C,H,~C,H,,
H + C,H,-C,H,,

H + CH,0-CH,0,

H + CH,0-CH,OH.

Transition state geometries are shown in Fig. 1. Optimiza-
tions were carried out with the 6-31G* basis set®® at the
PMP2 level with annihilation of the quartet spin contami-
nant. The distance between the attacking hydrogen and the
unsaturated species range from 0.006 A longer (H + C,H,)
t00.14 A shorter (H + CH,0—CH,0) than the UHF opti-
mized geometries.' !> Changes in the angle to the attacking
hydrogen are — 4.5°to 2.6°. The other coordinates are typi-
cally within 0.01 A and 1° of the UHF values. Differences
between the present optimization for H + C,H, and a pre-
vious approximate grid search'® are primarily due to the use
of single annihilation in the present work versus multiple
annihilation in the previous study?' and, to a lesser extent,
due to the numerical uncertainty in the grid search.

The computed barrier heights are collected in Table I.
The energies were calculated with the 6-31G* basis set using
the PMP2/6-31G* geometries given in Fig. 1 at the HF,
MP2, MP4SDTQ, PMP2, and PMP4SDTQ levels with
annihilation of all spin contaminants (not just the largest
contaminant ) and without zero point energy. ForH + C,H,
and CH,0, the present results are within 2 kcal/mol of the
barrier heights computed previously at the UHF optimized
geometry.'! The results for H + C,H, are ~ 5 kcal/mol low-
er than previous calculations with the same set; this may be a
reflection of the sensitivity of position of the transition state
to the degree of spin annihilation and the level of correlation
corrections. '*?

Spin contamination can cause significant problems in
calculations using Méller—Plesset perturbation theory
(MPn) based on single spin-unrestricted Hartree-Fock
(UHF) reference determinants. Spin projection can over-
come some of these difficulties, improving the shapes of en-
ergy surfaces and lowering barriers. Depending on the ener-
gy of the higher spin state, contamination of 1%-10% (e.g.,
SH =10 =x)s(s+ 1) +x*(s+ 1)(s+ 2), where x is
the fraction of the next higher spin state contained in the
UHF wave function) can result in errors of 1-10 kcal/mol.
The effects of spin contamination on geometry are less pre-
dictable. Annihilation of the largest spin contaminant may
be adequate if only one bond is broken (and/or one bond
made) durig a reaction; multiple annihilation is necessary if
more than one bond is broken (e.g., symmetric stretch of
H,0). The development of gradients of MP2 energies with
multiple spin annihilation is in progress.
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