Binary Association Complexes of $\mathrm{LiH}, \mathrm{BeH}_{2}$, and BH_{3}. Relative Isomer Stabilities and Barrier Heights for Their Interconversion: Energy Barriers in the Dimerization Reactions

D. J. DeFrees, ${ }^{\text {1a }}$ Krishnan Raghavachari,*1b H. B. Schlegel,*1c J. A. Pople,*1d and P. v. R. Schleyer*le
Department of Chemistry, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213; Molecular Research Institute, Palo Alto, California 94304; AT\&T Bell Laboratories, Murray Hill, New Jersey 07974; Department of Chemistry, Wayne State University, Detroit, Michigan 48202; and Institut für Organische Chemie, Universität Erlangen-Nürnberg, D-8520 Erlangen, Federal Republic of Germany (Received: November 17, 1986)

Abstract

Ab initio molecular orbital theory has been used to study the six compounds $\mathrm{Li}_{2} \mathrm{H}_{2}, \mathrm{LiBeH}_{3}, \mathrm{LiBH}_{4}, \mathrm{Be}_{2} \mathrm{H}_{4}, \mathrm{BeBH}_{5}$, and $\mathrm{B}_{2} \mathrm{H}_{6}$. Geometry optimizations and vibrational analysis at the HF/6-31G* level indicate $\mathrm{Li}--(\mathrm{H})_{2}-\mathrm{Li}\left(D_{2 h}\right), \mathrm{Li}-(\mathrm{H})_{2}-\mathrm{BeH}$ $\left(C_{2 v}\right), \mathrm{Li}-(\mathrm{H})_{3}-\mathrm{BH}\left(C_{3 v}\right), \mathrm{HBe}-(\mathrm{H})_{2^{-}}-\mathrm{BeH}\left(D_{2 h}\right), \mathrm{HBe}-(\mathrm{H})_{3}-\mathrm{BH}\left(C_{3 v}\right)$, and $\mathrm{H}_{2} \mathrm{~B}-(\mathrm{H})_{2}-\mathrm{BH}_{2}\left(D_{2 h}\right)$ to be the most stable forms. Inclusion of electron correlation corrections at the MP4/6-31G** level does not alter these conclusions. Other isomers were also examined in detail, and it was found that the potential energy surfaces for the species are generally flat. Activation energies for isomer interconversion and hydrogen scrambling reactions are generally less than $10 \mathrm{kcal}_{\mathrm{kcl}}{ }^{-1}$. Examination of the HF/3-21G potential surfaces indicates that there is no activation energy for the dimerization of LiH or BeH_{2}. The same is true for the dimerization of BH_{3} at the correlated MP2/6-31G* level, although a small barrier is found on the $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ surface. Enthalpies of complexation at 298 K from separate $\mathrm{LiH}, \mathrm{BeH}_{2}$, and BH_{3} fragments, $\Delta H^{\circ}{ }_{298}$, computed by using the $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ harmonic frequencies and the MP4/6-31G** electronic energies are as follows: $\mathrm{Li}_{2} \mathrm{H}_{2},-45.9$; $\mathrm{LiBeH}_{3},-43.6$; $\mathrm{LiBH}_{4},-60.1 ; \mathrm{Be}_{2} \mathrm{H}_{4},-30.5 ; \mathrm{BeBH}_{5},-45.7 ; \mathrm{B}_{2} \mathrm{H}_{6},-36.0 \mathrm{kcal} \mathrm{mol}^{-1}$.

Introduction

The electron-deficient hydrides of lithium (LiH), beryllium $\left(\mathrm{BeH}_{2}\right)$, and boron $\left(\mathrm{BH}_{3}\right)$ interact to form six binary association complexes which can contain a number of bridging hydrogen atoms. ${ }^{2.3}$ Diborane, the experimentally well-established BH_{3} dimer, has two such hydrogens. ${ }^{3} \mathrm{LiH},{ }^{2,3} \mathrm{LiBeH}_{3},{ }^{4}$ and $\mathrm{LiBH}_{4}{ }^{2}$ are known as crystalline solids; the atomization energy of the lithium hydride dimer, $(\mathrm{LiH})_{2}$, has been determined experimentally. ${ }^{5}$ Solid BeH_{2} is throught to be a polymer with two bridging hydrogens between each pair of beryllium atoms. ${ }^{2,6}$

In an earlier ab initio molecular orbital study, ${ }^{2}$ the relative energies of structures with various numbers of bridging hydrogens were considered, and it was concluded that the most stable forms were $\mathrm{Li}-(\mathrm{H})_{2}-\mathrm{Li}\left(D_{2 h}\right), \mathrm{Li}--(\mathrm{H})_{2}--\mathrm{BeH}\left(C_{2 v}\right), \mathrm{Li}-(\mathrm{H})_{3}-\mathrm{BH}$ $\left(C_{3 v}\right)$, $\mathrm{HBe}-(\mathrm{H})_{2}-\cdot \mathrm{BeH}\left(D_{2 h}\right)$, $\mathrm{HBe}-(\mathrm{H})_{3}-\mathrm{BH}\left(C_{3 v}\right)$, and $\mathrm{H}_{2} \mathrm{~B}-(\mathrm{H})_{2}-\mathrm{BH}_{2}\left(D_{2 h}\right.$, with bridging and terminal hydrogens in perpendicular planes). Some of these complexes can be considered to be ionic. For example, lithium borohydride can be viewed as a Li^{+}cation attached to the face of a BH_{4}^{-}tetrahedron, $\mathrm{Li}--$ $(\mathrm{H})_{3}-\mathrm{BH}$; structures with edge $\left(\mathrm{Li}-\cdot(\mathrm{H})_{2}--\mathrm{BH}_{2}\right)$ or corner ($\mathrm{Li}--\mathrm{H}--\mathrm{BH}_{3}$) attachments are less stable.

The previous study was carried out entirely at the Hartree-Fock (HF) level. ${ }^{2}$ Geometries were optimized with the minimal STO- $3 \mathrm{G}^{7}$ basis set, and single-point computations were performed using the $6-31 \mathrm{G}^{*}$ basis ${ }^{8}$ (split-valence with polarization functions

[^0]TABLE I: Distances ($\AA \AA$) between Non-Hydrogen Atoms

molecule	point group	STO-3G	3-21G	6-31G*
LiH--LiH	$C_{\text {ev }}$	3.331	3.445	3.436
$\mathrm{Li}-(\mathrm{H})_{2}-\mathrm{Li}$	$D_{2 h}$	2.222	2.364	2.343
$\mathrm{LiH}-\mathrm{BeH}_{2}$	$C_{2 v}$	3.122	3.123	3.104
$\mathrm{Li}-(\mathrm{H})_{2}-\mathrm{BeH}$	C_{20}	2.157	2.284	2.243
$\mathrm{Li}-(\mathrm{H})_{3}-\mathrm{Be}$	$C_{3 v}$	1.842	1.977	1.940
$\mathrm{Li}-(\mathrm{H})_{2}-\mathrm{BH}_{2}$	$C_{2 v}$	2.083	2.193	2.154
$\mathrm{Li}-(\mathrm{H})_{3}-\mathrm{BH}$	C_{30}	1.877	2.013	1.968
$\mathrm{HBeH}-\mathrm{BeH}_{2}$	$C_{2 v}$	3.977	3.774	3.777
$\mathrm{HBe}-(\mathrm{H})_{2}-\mathrm{BeH}$	$D_{2 h}$	1.991	2.050	2.018
$\mathrm{HBe}-(\mathrm{H})_{3}-\mathrm{-Be}$	C_{30}	1.738	1.803	1.774
$\mathrm{HBeH}-\mathrm{BH}_{3}$	$C_{3 i}$	3.821	3.206	3.591
$\mathrm{HBe}-(\mathrm{H})_{2}-\mathrm{BH}_{2}$	$C_{2 v}$	1.876	1.891	1.870
$\mathrm{HBe}--(\mathrm{H})_{3}--\mathrm{BH}$	$C_{3 v}$	1.686	1.732	1.700
$\mathrm{H}_{2} \mathrm{~B}-(\mathrm{H})_{2}-\mathrm{BH}_{2}$	$D_{2 h}$	1.805	1.785	1.778

on non-hydrogen atoms). The results left a number of unanswered questions:

1. Are the results modified if a higher level basis is used for geometry optimization?
2. Does inclusion of polarization functions on hydrogen (p functions) change the relative energies of structures with different numbers of bridging atoms?
3. Do the stationary points found on the potential surface all correspond to local minima (separate isomers) or are some of them saddle points (transition structures connecting distinct isomers or connecting equivalent isomers) leading to scrambling of the bridging and terminal hydrogens?
4. Are the relative isomer energies and binding energies (for dissociation to separate $\mathrm{LiH}, \mathrm{BeH}_{2}$, and BH_{3} fragments) altered significantly if electron correlation is included in the theoretical model?
5. What is the nature of the association reactions; are there activation barriers?

Since only partial answers to some of these questions can be found in the literature, much of which was cited in our previous paper, ${ }^{2}$ or in recent studies (cited below), a comprehensive reexamination of these six compounds at a uniform level of theory

[^1]TABLE II: Optimized Total Energies (hartrees) and Number of Imaginary Frequencies ${ }^{a}$

molecule	point group	STO-3G	3-21G	6-31G*
LiH	$C_{\text {av }}$	-7.863 38 (0)	-7.92984 (0)	-7.98087 (0)
BeH_{2}	$D_{\text {on }}$	-15.56135 (0)	-15.67378(0)	-15.76593 (0)
BH_{3}	$D_{3 h}$	-26.07070 (0)	-26.23730(0)	-26.39001 (0)
$\mathrm{LiH}-\mathrm{LiH}$	$C_{\text {ove }}$	-15.76510 (2)	-15.90219(0)	-16.003 31 (0)
$\mathrm{Li}-(\mathrm{H})_{2}-\mathrm{Li}$	$D_{2 h}$	-15.79681 (0)	-15.93325 (0)	-16.035 59 (0)
$\mathrm{LiH}-\mathrm{BeH}_{2}$	$C_{2 v}$	-23.44246 (2)	-23.63438(2)	-23.77767 (2)
$\mathrm{Li}-(\mathrm{H})_{2}-\mathrm{-BeH}$	C_{20}	-23.48186 (0)	-23.66447(0)	$-23.81100(0)$
$\mathrm{Li}-(\mathrm{H})_{3}-\mathrm{Be}$	$C_{3 v}$	-23.45804 (0)	-23.64145 (0)	-23.78885 (0)
$\mathrm{Li}-(\mathrm{H})_{2}-\mathrm{BH}_{2}$	$C_{2 v}$	-33.99207 (1)	-34.23807 (1)	-34.44192 (1)
$\mathrm{Li}-(\mathrm{H})_{3}-\mathrm{BH}$	C_{30}	-34.002 47 (0)	-34.24384 (0)	-34.44998(0)
$\mathrm{HBeH}-\mathrm{BeH}_{2}$	C_{20}	-31.123 57 (0)	-31.34944 (1)	-31.53314 (1)
$\mathrm{HBe}-$-(H) $2^{-}-\mathrm{BeH}$	$D_{2 h}$	$-31.15400(0)$	-31.37805 (0)	-31.57019 (0)
$\mathrm{HBe}-(\mathrm{H})_{3}-\mathrm{Be}$	$C_{3 v}$	-31.10896(0)	-31.33410(0)	-31.52786(0)
$\mathrm{HBeH}-\mathrm{BH}_{3}$	C_{30}	-41.63303 (2)	-41.91566 (0)	-42.15791 (2)
$\mathrm{HBe}-(\mathrm{H})_{2}-\mathrm{BH}_{2}$	$C_{2 v}$	-41.66759 (0)	-41.94945 (0)	-42.20074 (0)
$\mathrm{HBe}-$-(H) ${ }_{3}-\mathrm{BH}$	$C_{3 v}$	-41.669 87 (0)	-41.94831 (0)	-42.20528 (0)
$\mathrm{H}_{2} \mathrm{~B}-(\mathrm{H})_{2}-\mathrm{BH}_{2}$	$D_{2 h}$	$-52.16610(0)$	-52.49781 (0)	-52.81240(0)

${ }^{a}$ In parentheses following the total energy.
is appropriate. The objective of this paper is to examine these molecules by using newer theoretical methods in an attempt to answer the questions posed above.

Theoretical Methods and Results

The most favorable HF/STO-3G structures, reported previously, ${ }^{2}$ were optimized by gradient minimization ${ }^{9}$ within the indicated symmetry constraints using the split-valence $3-21 \mathrm{G}$ basis ${ }^{10}$ and the polarization $6-31 \mathrm{G}^{*}$ basis set. ${ }^{8}$ Table I gives the distances between non-hydrogen atoms; full structures are published separately. ${ }^{11}$ Addition of p polarization functions to the basis set used for geometry optimization (HF/6-31G** geometries) does not significantly alter the result. For example, the HF/6-31G* geometry for diborane is $r(\mathrm{~B}-\mathrm{B})=1.778 \AA, r\left(\mathrm{~B}-\mathrm{H}_{\mathrm{b}}\right)=1.316$ $\AA, r(\mathrm{~B}-\mathrm{H})=1.185 \AA$, and $\angle(\mathrm{H}-\mathrm{B}-\mathrm{H})=122.1^{\circ}\left(\mathrm{H}_{\mathrm{b}}\right.$ indicates the bridging hydrogen); this is virtually identical with the $\mathrm{HF} /$ $6-31 \mathrm{G}^{* *}$ geometry of $r(\mathrm{~B}-\mathrm{B})=1.778 \AA, r\left(\mathrm{~B}-\mathrm{H}_{\mathrm{b}}\right)=1.317 \AA$, $r(\mathrm{~B}-\mathrm{H})=1.185 \AA$, and $\angle(\mathrm{H}-\mathrm{B}-\mathrm{H})=122.0^{\circ}$. This is consistent with the small effect of p polarization functions on energies (vide infra). The optimized total energies for all the structures are listed in Table II.

At the HF/STO-3G, HF/3-21G, and HF/6-31G* levels, analytical second derivatives of the energy with respect to all nuclear coordinates ${ }^{12}$ were evaluated in order to characterize the stationary points on the potential energy surface. In Table II the number of imaginary frequencies derived from the second-derivative (force constant) matrix is given in parentheses following the energy. Local minima are indicated by a "(0)", saddle points by a "(1)", and double saddles by a "(2)". The HF/6-31G* frequencies and the corresponding zero-point vibrational energy for the most stable isomer of each of the six complexes are presented in Table III.

Using the $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ geometries, single-point calculations were done with the $6-31 \mathrm{G}^{* *}$ basis set which also includes p polarization functions on hydrogen. ${ }^{8}$ (These are denoted by HF/6-31G**// HF/6-31G*; the symbols after // indicate the level used for geometry optimization.) The effects of electron correlation were assessed by Moller-Plesset perturbation theory at second (MP2), third (MP3), and fourth (MP4) orders. ${ }^{13}$ The complete

[^2]TABLE III: Harmonic Vibrational Frequencies (cm^{-1}) and Zero-Point Vibrational Energies (kcal mol ${ }^{-1}$) Evaluated at the HF/6-31G* Level

molecule	point group	harmonic frequencies	ZPE
LiH	$C_{\infty v}$	1416(σ)	2.0
BeH_{2}	D_{∞} h	$761\left(\pi_{u}\right), 2107\left(\sigma_{\mathrm{g}}\right), 2323\left(\sigma_{u}\right)$	8.5
BH_{3}	$D_{3 h}$	$\begin{aligned} & 1225\left(\mathrm{a}_{2}^{\prime \prime}\right), 1305\left(\mathrm{e}^{\prime}\right), 2693\left(\mathrm{a}_{1}{ }^{\prime}\right), \\ & 2813\left(\mathrm{e}^{\prime}\right) \end{aligned}$	17.4
Li--(H) $\mathbf{2}^{-}-\mathrm{Li}$	$D_{2 h}$	$\begin{aligned} & 516\left(\mathrm{a}_{\mathrm{g}}\right), 609\left(\mathrm{~b}_{34}\right), 851\left(\mathrm{~b}_{3 \mathrm{~g}}\right), \\ & 952\left(\mathrm{~b}_{1 \mathrm{u}}\right), 1056\left(\mathrm{~b}_{2 \mathrm{u}}\right), 1164\left(\mathrm{a}_{\mathrm{g}}\right) \end{aligned}$	7.4
$\mathrm{Li}-(\mathrm{H})_{2}-\mathrm{BeH}$	$C_{2 v}$	$\begin{gathered} 346\left(\mathrm{~b}_{1}\right), 589\left(\mathrm{a}_{1}\right), 602\left(\mathrm{~b}_{2}\right), 899\left(\mathrm{~b}_{1}\right), \\ 1137\left(\mathrm{~b}_{2}\right), 1259\left(\mathrm{a}_{1}\right), 1517\left(\mathrm{~b}_{2}\right), \\ 1663\left(\mathrm{a}_{1}\right), 2085\left(\mathrm{a}_{1}\right) \end{gathered}$	14.4
Li--(H) ${ }_{3}-$ - ${ }^{\text {BH}}$	$C_{3 v}$	$\begin{aligned} & 491(\mathrm{e}), 683\left(\mathrm{a}_{1}\right), 1225(\mathrm{e}), 1338\left(\mathrm{a}_{1}\right), \\ & 1365(\mathrm{e}), 2240(\mathrm{e}), 2323\left(\mathrm{a}_{1}\right), \\ & 2703\left(\mathrm{a}_{1}\right) \end{aligned}$	25.3
$\mathrm{HBe}-(\mathrm{H})_{2}-\mathrm{BeH}$	$D_{2 h}$	$\begin{aligned} & 349\left(\mathrm{~b}_{3 u}\right), 558\left(\mathrm{~b}_{2 \mathrm{~L}}\right), 564\left(\mathrm{~b}_{38}\right), \\ & 618\left(\mathrm{~b}_{2 \mathrm{~L}}\right), 724\left(\mathrm{a}_{\mathrm{g}}\right), 989\left(\mathrm{~b}_{3 u}\right), \\ & 1487\left(\mathrm{~b}_{3 \mathrm{~s}}\right), 1561\left(\mathrm{~b}_{1 \mathrm{Lu}}\right), 1628\left(\mathrm{~b}_{2 \mathrm{u}}\right), \\ & 1834\left(\mathrm{a}_{\mathrm{g}}\right), 2197\left(\mathrm{~b}_{1 \mathrm{u}}\right), 2220\left(\mathrm{a}_{\mathrm{g}}\right) \end{aligned}$	21.1
$\mathrm{HBe}-(\mathrm{H})_{3}-\mathrm{BH}$	C_{30}	550(e), 609(e), 936(a_{1}), 1262(e), 1454(e), $1497\left(\mathrm{a}_{1}\right), 2234\left(\mathrm{a}_{1}\right)$, 2324(e), 2371(a_{1}), 2865(a_{1})	31.9
$\mathrm{H}_{2} \mathrm{~B}-(\mathrm{H})_{2}-\mathrm{BH}_{2}$	$D_{2 h}$	$\begin{aligned} & 409\left(\mathrm{~b}_{2 \mathrm{u}}\right), 828\left(\mathrm{a}_{\mathrm{g}}\right), 897\left(\mathrm{a}_{\mathrm{u}}\right), 900\left(\mathrm{~b}_{2 \mathrm{~g}}\right), \\ & 999\left(\mathrm{~b}_{1 \mathrm{~g}}\right), 1071\left(\mathrm{~b}_{1 \mathrm{u}}\right), 1127\left(\mathrm{~b}_{2 \mathrm{u}}\right), \\ & 1194\left(\mathrm{~b}_{3 \mathrm{~g}}\right), 1286\left(\mathrm{~b}_{3 \mathrm{u}}\right), 1303\left(\mathrm{a}_{\mathrm{g}}\right), \\ & 1833\left(\mathrm{~b}_{3 \mathrm{u}}\right), 1932\left(\mathrm{~b}_{2 \mathrm{~g}}\right), 2067\left(\mathrm{~b}_{1 \mathrm{u}}\right), \\ & 2300\left(\mathrm{a}_{\mathrm{g}}\right), 2734\left(\mathrm{~b}_{3 \mathrm{u}}, 2753\left(\mathrm{a}_{\mathrm{g}}\right),\right. \\ & 2828\left(\mathrm{~b}_{1 \mathrm{~g}}\right), 2842\left(\mathrm{~b}_{2 \mathrm{u}}\right) \end{aligned}$	41.9

fourth-order treatment has contributions from single, double, triple, and quadruple substitutions from the reference Hartree-Fock determinent. Only the valence electron correlation was included in these calculations. The resulting total energies are listed in Table IV. The theoretical association energies are shown in Table V .

Internal energies, E, and third law entropies, S, were evaluated with the standard statistical mechanical formulas using the $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ structures and normal-mode vibrational frequencies. ${ }^{14}$ Computation of these thermochemical quantities at standard temperature (298.15 K) and pressure (1 atm) in the harmonic approximation assumed the separability of electronic, vibrational, rotational, and translational degrees of freedom. Quantities relating to the thermochemistry of the dimerization reactions are listed in Table VI.

The geometries of some of the isomers (vide infra) were also optimized at the MP2(Full)/6-31G* level of theory using analytical gradients of the energy with respect to the nuclear coordinates. ${ }^{9,122,15}$ The notation (Full) indicates that the correlation

[^3]TABLE IV: Total Energies (hartrees) Calculated with the 6-31G** Basis Set Using the 6-31G* Geometries

molecule	point group	HF	MP2	MP3	MP4
LiH	$C_{\text {wv }}$	-7.98134	-8.001 59	-8.00618	-8.007 55
BeH_{2}	$D_{\text {e } h}$	-15.76691	-15.81571	-15.82629	-15.82907
BH_{3}	$D_{3 h}$	-26.39287	-26.48615	-26.503 32	-26.50754
LiH--LiH	C_{∞}	-16.003 72	-16.04505	-16.054 24	-16.05683
$\mathrm{Li}-(\mathrm{H})_{2}-\mathrm{LLi}$	$D_{2 h}$	-16.03628	-16.07926	-16.08867	-16.09123
$\mathrm{LiH}--\mathrm{BeH}_{2}$	$C_{2 v}$	-23.77862	-23.853 98	-23.869 43	-23.873 51
$\mathrm{Li}-(\mathrm{H})_{2}-\mathrm{BeH}$	C_{20}	-23.81262	-23.89003	-23.90591	-23.91010
$\mathrm{Li}--(\mathrm{H})_{3}-\mathrm{Be}$	$C_{3 v}$	-23.79009	-23.870 52	-23.88681	-23.89113
$\mathrm{Li}-(\mathrm{H})_{2}--\mathrm{BH}_{2}$	$\mathrm{C}_{2 v}$	-34.44592	-34.58071	-34.60141	-34.60766
$\mathrm{Li}--(\mathrm{H})_{3}--\mathrm{BH}$	C_{30}	-34.45373	-34.59056	-34.61131	-34.61757
$\mathrm{HBeH}--\mathrm{BeH}_{2}$	$C_{2 v}$	-31.53495	-31.63386	-31.65512	-31.66070
$\mathrm{HBe}--(\mathrm{H})_{2}-\mathrm{BeH}$	$D_{2 h}$	-31.57256	-31.68268	-31.70507	-31.71099
$\mathrm{HBe}-(\mathrm{H})_{3}-\mathrm{Be}$	$C_{3 v}$	31.52998	-31.64722	-31.66964	-31.67592
$\mathrm{HBeH}-\mathrm{BH}_{3}$	C_{30}	-42.16158	-42.30611	-42.33384	-42.34093
$\mathrm{HBe}-(\mathrm{H})_{2}-\mathrm{BH}_{2}$	$C_{2 v}$	-42.20570	-42.372 52	-42.39977	-42.40775
$\mathrm{HBe}-(\mathrm{H})_{3}-\mathrm{BH}$	$C_{3 v}$	-42.21009	-42.38143	-42.40823	-42.41630
$\mathrm{H}_{2} \mathrm{~B}-(\mathrm{H})_{2}-\mathrm{BH}_{2}$	$D_{2 h}$	-52.81986	-53.038 34	-53.070 48	-53.08040

TABLE V: Binding Energies (kcal mol ${ }^{-1}$) Relative to $\mathrm{LiH}, \mathrm{BeH}_{2}$, and BH $_{3}$ Fragments ${ }^{a}$ Calculated Using the 6-31G ${ }^{*}$ Geometries

molecule	point group	$\begin{gathered} 6-31 \mathrm{G}^{*} \\ \mathrm{HF} \end{gathered}$	6-31G**			
			HF	MP2	MP3	MP4
LiH--LiH	$C_{\infty v}$	26.1	25.8	26.3	26.3	26.2
$\mathrm{Li}-(\mathrm{H})_{2}-\mathrm{Li}$	$D_{2 h}$	46.3	46.2	47.7	47.9	47.8
$\mathrm{LiH}--\mathrm{BeH}_{2}$	C_{20}	19.4	19.1	23.0	23.2	23.1
$\mathrm{Li}-(\mathrm{H})_{2}-\mathrm{BeH}$	$C_{2 v}$	40.3	40.4	45.6	46.1	46.1
$\mathrm{Li}-(\mathrm{H})_{3}-\mathrm{Be}$	$C_{3 v}$	26.1	26.3	33.4	34.1	34.2
$\mathrm{Li}-(\mathrm{H})_{2}-\mathrm{BH}_{2}$	$C_{2 v}$	44.6	45.0	58.3	57.7	58.1
$\mathrm{Li}-(\mathrm{H})_{3}-\mathrm{BH}$	C_{30}	49.6	49.9	64.5	63.9	64.3
$\mathrm{HBeH}-\mathrm{BeH}_{2}$	$C_{2 v}$	0.8	0.7	1.5	1.6	1.6
$\mathrm{HBe}--(\mathrm{H})_{2}-\mathrm{BeH}$	$D_{2 h}$	24.1	24.3	32.2	32.9	33.2
$\mathrm{HBe}-(\mathrm{H})_{3}-\mathrm{Be}$	$C_{3 v}$	-2.5	-2.4	9.9	10.7	11.2
$\mathrm{HBeH}-\mathrm{BH}_{3}$	C_{30}	1.2	1.1	2.7	2.6	2.7
$\mathrm{HBe}-$ (H$)_{2}--\mathrm{BH}_{2}$	C_{20}	28.1	28.8	44.3	44.0	44.6
$\mathrm{HBe}-(\mathrm{H})_{3}--\mathrm{BH}$	C_{30}	31.0	31.6	49.9	49.3	50.0
$\mathrm{H}_{2} \mathrm{~B}-$-(H) ${ }_{2}-\mathrm{BH}_{2}$	$D_{2 h}$	20.3	21.4	41.4	40.1	41.0

${ }^{a}$ A negative sign indicates that the dimer is higher in energy than the separated monomers.
of all electrons was included in these calculations. The optimizations were followed by evaluation of the corresponding force constant matrices ${ }^{16}$ by finite differencing of the analyical gradients.

Pathways for the dimerization reactions $2 \mathrm{LiH} \rightarrow \mathrm{Li}_{2} \mathrm{H}_{2}, 2 \mathrm{BeH}_{2}$ $\rightarrow \mathrm{Be}_{2} \mathrm{H}_{4}$, and $2 \mathrm{BH}_{3} \rightarrow \mathrm{~B}_{2} \mathrm{H}_{6}$ were examined to determine whether any activation energy is required. The $\mathrm{M}-\mathrm{M}$ distance (M being Li, Be, or B) was chosen as a reaction coordinate, R. For the first two cases, pathways were found on the HF/3-21G potential energy surface which consist of a series of valleys. (Valleys are paths along which the energy is a minimum with respect to any small displacement of the nuclei other than along the reaction coordinate.) Starting geometries corresponded to separated reactants or products, and R was varied incrementally. For each fixed value of R the remaining geometrical parameters were optimized within the chosen symmetry constraint and the second-derivative matrix was computed. If the second-derivative matrix was positive definite in the geometrical space exclusive of R, then the point was established as being on the valley floor and the reaction coordinate was incremented and the process repeated until a negative eigenvalue of the second-derivative matrix was obtained. This indicated that the valley being followed had ended; the precise end point is characterized by a zero eigenvalue. We have found two different modes for the termination of a valley. In the first, shown schematically in Figure 1a, a valley branches into a pair of equivalent valleys of lower symmetry, one of which is then followed. In the second, shown schematically in Figure 1b, the wall along the side of the valley has "eroded" away and the reaction pathway falls down the resulting hillside to a new valley. This

[^4]new valley is then probed in the manner described above. The reaction forming diborane was examined by using a simpler path. At various fixed values of the B-B distance, the $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ structures of $\mathrm{H}_{2} \mathrm{~B}-$ - $\left(\mathrm{H}_{2}\right)--\mathrm{BH}_{2}$ were optimized within $\mathrm{C}_{2 h}$ symmetry. Single-point MP2/6-31G* calculations were then performed to derive the appropriate pathway for dimerization. Detailed discussions of the three dimerization pathways are given in the individual sections.

The limitations of this "distinguished coordinate method" for studying reaction pathways have been pointed out by several authors. ${ }^{17-19}$ The pathway is dependent on the choice of reaction coordinate, it need not include the transition structure, it can be discontinuous, and pathways for the forward and reverse directions of the same reaction can be different. This last phenomenon has been called chemical hysteresis, ${ }^{20}$ and it is an artifact of the distinguished coordinate method. ${ }^{21}$ Indeed, the second mode for the end of a valley, as described above, wherein there is a discontinuity in the pathway, will lead to "chemical hysteresis": there is no path from the lower valley to the upper one whereas the opposite is true. Despite these shortcomings, paths constructed by using the distinguished coordinate method can be informative. In addition, this is, to our knowledge, the first ab initio study where the calculation of the second-derivative matrix has been used to characterize the points along a reaction path.

All computations were performed using an extended version of the GAUSSIAN-80 program system. ${ }^{22}$

Discussion

$\mathrm{Li}_{2} \mathrm{H}_{2}$. Both the head-to-tail linear dimer, $\mathrm{LiH}-\mathrm{LiH}$, and the cyclic $D_{2 h}, \mathrm{Li}-(\mathrm{H})_{2}-\mathrm{Li}$, forms of the lithium hydride dimer are substantially bound relative to two separated monomers, and the cyclic dimer is $21.6 \mathrm{kcal} \mathrm{mol}^{-1}$ lower in energy (MP4/6$31 \mathrm{G}^{* *} / / \mathrm{HF} / 6-31 \mathrm{G}^{*}$). The dimerization energies to $D_{2 h} \mathrm{Li}_{2} \mathrm{H}_{2}$, $46.2 \mathrm{kcal} \mathrm{mol}^{-1}\left(\mathrm{HF} / 6-31 \mathrm{G}^{* *}\right)$ and $47.8 \mathrm{kcal} \mathrm{mol}^{-1}$ (MP4/6$31 \mathrm{G}^{* *}$), are in good accord with those of Ahlrichs. ${ }^{23}$ His computations with a large basis of s and p functions gave a binding energy of $47.3 \mathrm{kcal} \mathrm{mol}^{-1}$ at the Hartree-Fock level and 48.3 kcal mol^{-1} with inclusion of electron correlation via the CEPA method. Ihle and Wu's experimental determination of the atomization

[^5]TABLE VI: Ab Initio Thermochemistry for the Association Reactions ${ }^{a}$

dimer	$\Delta E^{\circ}{ }_{\mathrm{HF}}{ }^{b}$	$\Delta E^{\circ}{ }_{\text {corr }}{ }^{c}$	$\Delta E^{\circ}{ }_{\mathrm{ZP}}{ }^{d}$	$\Delta H^{\circ}{ }_{0}$	$\Delta H^{\circ}{ }_{298}$	$-T \Delta S^{\circ}{ }_{298}$	$\Delta G^{\circ}{ }_{298}$
$\mathrm{Li}-(\mathrm{H})_{2}-\mathrm{Li}$	-46.2	-1.6	+3.4	-44.4	-45.9	+8.9	-37.0
$\mathrm{Li}-(\mathrm{H})_{2}-\mathrm{BeH}$	-40.4	-5.7	+3.9	-42.2	-43.6	+8.3	-35.3
$\mathrm{Li}-(\mathrm{H})_{3}-\mathrm{BH}$	-49.9	-14.4	+5.9	-58.4	-60.1	+9.5	-50.6
$\mathrm{HBe}-(\mathrm{H})_{2}-\mathrm{BeH}$	-24.3	-8.9	+4.1	-29.1	-30.5	+8.6	
$\mathrm{HBe}-(\mathrm{H})_{3}-\mathrm{BH}$	-31.6	-18.4	+6.0	-44.0	-45.7	-21.9	
$\mathrm{H}_{2} \mathrm{~B}-(\mathrm{H})_{2}--\mathrm{BH}_{2}$	-21.4	-19.6	+7.1	-33.9	-36.0	+9.5	-36.2

${ }^{a}$ In kcal mol ${ }^{-1}$. ${ }^{b} 6-31 \mathrm{G}^{* *}$ basis set. See Table V. ${ }^{c} \mathrm{MP} 4 / 6-31 \mathrm{G}^{* *}$ level. See Table V. ${ }^{d}$ Computed from the data in Table III.

Figure 1. Potential surfaces showing two modes for the termination of a valley: (a) The valley branches into a pair of equivalent valleys. (b) The valley runs out onto the side of a hill.
energy of $\mathrm{Li}_{2} \mathrm{H}_{2},{ }^{5} 164 \pm 8 \mathrm{kcal} \mathrm{mol}^{-1}$, combined with the heats of formation at 0 K for Li, H, and LiH^{24} gives a dimerization energy of $52 \pm 8 \mathrm{kcal} \mathrm{mol}^{-1}$ for the lithium hydride dimer. ${ }^{25}$

[^6]

Figure 2. HF/3-21G potential curve for the dimerization of lithium hydride. This curve was constructed by following valleys on the potential surface beginning at $R=5 \AA$.

Second-derivative calculations with all three basis sets confirm that the cyclic dimer is a minimum on the potential energy surface. The linear dimer is not a minimum at the simplest STO-3G level of theory and has a degenerate pair of imaginary frequencies with π symmetry, indicating energy lowering on movement of the hydrogens off the $\mathrm{Li}-\mathrm{Li}$ axis. However, the linear dimer is found to be a minimum at the higher $3-21 \mathrm{G}$ and $6-31 \mathrm{G}^{*}$ levels. The inclusion of electron correlation at the MP2 (Full)/6-31G* level does not change the qualitative result: the second-derivative matrix for the linear dimer has no negative eigenvalues, and $\mathrm{LiH}-\mathrm{LiH}$ is thus a minimum on the potential energy surface.

The HF/3-21G potential energy of two approaching LiH molecules is shown in Figure 2. The dimerization path was generated by following valleys on the surface as the reaction coordinate (the $\mathrm{Li}-\mathrm{Li}$ distance) was decreased from an initial value of $5 \AA$. At longer distances, electrostatic interaction between monomer dipoles dominates and linear forms, $\mathrm{LiH}-\mathrm{LiH}$, are the most stable. As the molecules approach further, the energy decreases until the $C_{\infty 0}$ local minimum at a lithium-lithium distance of $3.445 \AA$ is reached. At lower values of R the energy increases, and by $3.4 \AA$ the $C_{\infty 0}$ valley has branched into a pair of equivalent valleys of C_{s} symmetry. If either of these C_{s} valleys is followed by further reducing R, the energy of the system increases until a saddle point is encountered at a $\mathrm{Li}-\mathrm{Li}$ distance of $3.255 \AA$ (1). The energy of this saddle point is only $0.1 \mathrm{kcal} \mathrm{mol}^{-1}$ above the

[^7]

2

linear minimum despite a large change in geometry. The energies along both C_{s} valleys decrease until $R(\mathrm{Li}-\mathrm{Li})=3.0 \AA$, where they end with a zero frequency (Figure 1b). There is a discontinuity in the curve, and at the bottom of the resultant hillside is a $D_{2 h}$ valley which is followed to the $D_{2 h}$ minimum at $R=2.364 \AA$. At no point along the reaction path is the energy greater than that of two noninteracting monomers. Hence, the dimerization occurs without overall activation. The discontinuity in the curve is an artifact of the use of a reaction coordinate; a different path results if we start at the cyclic minimum and pull the lithiums apart. The $D_{2 h}$ valley is followed until the lithiums are $3.15 \AA$ apart where a branch into two equivalent $C_{2 h}$ valleys is encountered. The $C_{2 h}$ valleys themselves branch at approximately $3.3 \AA$ into the incoming C_{s} valleys. From this point on out, the incoming and outgoing paths are the same.
LiBeH_{3}. Isomers containing one ($\mathrm{LiH}-\mathrm{BeH}_{2}$), two ($\mathrm{Li}-$ -$(\mathrm{H})_{2}-\mathrm{BeH}$), and three ($\mathrm{Li}-(\mathrm{H})_{3}-\mathrm{Be}$) bridging hydrogens corresponding to corner, edge, and face attachments of Li^{+}to planar $\mathrm{BeH}_{3}{ }^{-}$have been compared previously. ${ }^{2,26}$ At each theoretical level employed here (Table V) the dibridged isomer is the most stable, followed by the tribridged and the monobridged forms in that order. With our most sophisticated model (MP4/6$\left.31 \mathrm{G}^{* *} / / \mathrm{HF} / 6-31 \mathrm{G}^{*}\right)$, the corresponding $\mathrm{LiH}+\mathrm{BeH}_{2}$ association energies are $46.1,34.2$, and $23.1 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. Charkin's group studied the same isomers with several basis sets and also at correlated levels. ${ }^{26}$ Their binding energies and geometries are in good accord with our results. In addition, their optimized structures agree well with the $3-21 \mathrm{G}$ geometries.

Whereas the isomers with two and with three bridging hydrogens are found via analytical evaluation of the second-derivative matrix to be minima on the potential energy surface, the singly bridged isomer, $\mathrm{LiH}--\mathrm{BeH}_{2}$, is unstable with respect to both in-plane and out-of-plane motions of the lithium relative to BeH_{3}. Figure 3 shows the $\mathrm{HF} / 3-21 \mathrm{G}$ energy as a function of the Li --$\mathrm{Be}-\mathrm{-H}$ angle for the out-of-plane motion; all three isomers are included on the path which was generated by energy minimization within C_{s} symmetry. Full optimization and a second-derivative calculation give 2 as the HF/3-21G transition structure for the transformation $\mathrm{Li}-\left(\mathrm{H}_{3}\right)-\mathrm{Be} \rightarrow \mathrm{Li}--(\mathrm{H})_{2}-\mathrm{BeH}$. The activation energy for this process is computed to be only $0.2 \mathrm{kcal} \mathrm{mol}^{-1}$ ($\mathrm{HF} / 3-21 \mathrm{G} / / \mathrm{HF} / 3-21 \mathrm{G}$) and $0.04 \mathrm{kcal} \mathrm{mol}^{-1}$ with the $\mathrm{HF} / 6-$ $31 \mathrm{G}^{*} / / \mathrm{HF} / 6-31 \mathrm{G}^{*}$ model. Structure 2 is also the transition structure for scrambling of the terminal and bridging hydrogens in the dibridged isomer, with the tribridged form as a possible intermediate in which all three hydrogens are equivalent. Inclusion of electron correlation effects at the MP2(Full)/6-31G* level changes this picture somewhat as at this level the tribridged isomer itself has a negative eigenvalue of the force constant matrix. This

[^8]
$<\mathrm{Li} \mathrm{Be} \mathrm{H}_{\mathrm{bb}}=39.4^{\circ}$
$<H_{b}$ Be $H_{b}=108.8^{\circ}$
$\underset{\sim}{2}$
indicates that the tribridged isomer itself is the transition structure for hydrogen scrambling and, in fact, may be the only true transition structure on the potential energy surface. The MP4/6-31G**//HF/6-31G* barrier to scrambling is roughly 12 kcal mol^{-1}, the difference in stability of dibridged and tribridged isomers.

Boldyrev, Sukhanov, and Charkin have computed reaction paths leading from LiH and BeH_{2} to each of the three dimer structures. ${ }^{27}$ In each case the dimerization occurs without overall activation.
LiBH_{4}. The $\mathrm{C}_{3 v}$ isomer, $\mathrm{Li}-(\mathrm{H})_{3}-\mathrm{BH}$, with three bridging hydrogens is more stable than the $C_{2 v}$ dibridged isomer, Li--$(\mathrm{H})_{2}-\mathrm{BH}_{2}$, at all levels of theory (Table V). The energy difference is $6.2 \mathrm{kcal} \mathrm{mol}^{-1}$ (MP4/6-31G**//HF/6-31G*). The binding energy of $\mathrm{Li}-(\mathrm{H})_{3}-\mathrm{BH}, 64.3 \mathrm{kcal} \mathrm{mol}^{-1}$, is the largest of the six association complexes which we have studied.

A second-derivative calculation confirms $\mathrm{Li}-(\mathrm{H})_{3}-\mathrm{BH}$ to be a minimum on the potential energy surface and that $\mathrm{Li}-(\mathrm{H})_{2}-\mathrm{BH}_{2}$ is a saddle point characterized by a single imaginary frequency. Examination of the normal coordinate giving rise to the imaginary frequency leads to the conclusion that the $C_{2 v}$ form is the transition structure for interconversion of equivalent $C_{3 v}$ molecules. This hydrogen scrambling reaction can be viewed as the movement of Li^{+}from one face of a $\mathrm{BH}_{4}{ }^{-}$tetrahedron to another equivalent face with the highest energy occuring when the Li^{+}is over an edge of the tetrahedron. The MP4/6-31G** activation energy for this process is only $6.2 \mathrm{kcal} \mathrm{mol}^{-1}$. Boldyrev et al., ${ }^{28}$ using a large s-p basis set, obtained geometries similar to ours at the $3-21 \mathrm{G}$ level. In addition, they computed a number of points on the potential energy surface relevant to the hydrogen scrambling reaction which revealed that edge lithiated borohydride, $\mathrm{Li}-(\mathrm{H})_{2}--\mathrm{BH}_{2}$, is the transition structure. Single-point Hartree-Fock computations carried out with a somewhat larger $\mathrm{s}-\mathrm{p}$ basis, augmented by polarization functions, gave an activation energy of $4.6 \mathrm{kcal} \mathrm{mol}^{-1}$ for the process. Bonaccorsi et al. ${ }^{29}$ examined $\mathrm{LiBH}_{4}, \mathrm{NaBH}_{4}$, LiAlH_{4}, and NaAlH_{4} with STO-3G and double- ζ basis sets. The results they obtained for lithium borohydride agree with those of Boldyrev et al. ${ }^{28}$
$\mathrm{Be}_{2} \mathrm{H}_{4}$. The first of the three isomers of $\mathrm{Be}_{2} \mathrm{H}_{4}$ which we have investigated, $\mathrm{HBeH}--\mathrm{BeH}_{2}$, is a T-shaped molecule, only slightly bound relative to a pair of noninteracting BeH_{2} molecules, whose structure and energy are consistent with a quadrapolar interaction between the monomers. This form is a saddle point on the full

[^9]

Figure 3. HF/3-21G potential curve for the interconversion of LiBeH_{3} isomers. This curve was constructed by performing HF/3-21G geometry optimizations within C_{s} symmetry with α fixed. The tribridged isomer, however, becomes the transition structure for hydrogen scrambling at higher levels of theory (see text).
$\mathrm{Be}_{2} \mathrm{H}_{4}$ potential energy surface as has also been found in previous studies. ${ }^{26 i, 1,30}$ The second isomer, $\mathrm{HBe}-(\mathrm{H})_{2}-\mathrm{BeH}$, is the lowest energy minimum. Our computed structure is in essential agreement with that of Ahlrichs, ${ }^{31}$ who used several large $s-p$ basis sets and the independent electron pair approximation (IEPA) to estimate the correlation energy. His estimate for the BeH_{2} dimerization energy, $31 \mathrm{kcal} \mathrm{mol}^{-1}$, is in good agreement with our value, $33.2 \mathrm{kcal} \mathrm{mol}^{-1}$ (MP4/6-31G**//HF/6-31G*). The large variation of the Hartree-Fock dimerization energy with changes in the basis set reported by Ahlrichs (e.g., 13.4, 9.8, and 21.6 kcal mol^{-1}) is not reflected by our calculations nor of those by Charkin et al. ${ }^{306}$ The third isomer, $\mathrm{HBe}-(\mathrm{H})_{3^{-}}-\mathrm{Be}$, although a potential minimum, is unbound with respect to dissociation into two BeH_{2} monomers at all Hartree-Fock levels. However, the inclusion of correlation results in a stabilization of the dimer relative to the monomers, so that at the MP4/6-31G** level this triply bridged structure is bound by $11.2 \mathrm{kcal} \mathrm{mol}^{-1}$ and is $9.6 \mathrm{kcal} \mathrm{mol}^{-1}$ lower in energy than the singly bridged dimer.

The transition structure for scrambling of the bridge and terminal hydrogens in $\mathrm{HBe}-(\mathrm{H})_{2}-\mathrm{BeH}$ is the singly bridged isomer. The normal coordinate associated with the imaginary frequency (3) can be viewed as a rotation of a $\mathrm{BeH}_{3}{ }^{-}$fragment

$\underset{\sim}{2}$
relative to a fixed BeH^{+}fragment. At the MP4/6-31G** level, the activation energy for hydrogen scrambling is $31.6 \mathrm{kcal} \mathrm{mol}^{-1}$.

The HF/3-21G potential energy of the system as a function of the beryllium-beryllium distance is presented in Figure 4. The

[^10]

Figure 4. HF/3-21G potential curve for the dimerization of beryllium hydride. This curve was constructed by following valleys on the potential surface.
pathway was defined by following valleys on the potential surface as the beryllium-beryllium distance was varied. Unlike the LiH dimerization, the path is continuous with no chemical hysteresis effects. At large monomer-monomer separations the T-shaped structure with a single bridging hydrogen is the most stable. As the beryllium atoms are brought closer together, a valley with C_{2} symmetry is followed until it ends at $R(\mathrm{Be}-\mathrm{Be})=3.84 \AA$. (Compare this with a beryllium-beryllium distance of $3.77 \AA$ at the $C_{2 v}$ minimum.) Here the valley branches into two equivalent valleys of C_{s} symmetry as structures with the bridging hydrogen off the $\mathrm{Be}-\mathrm{Be}$ axis become stable. Starting at the minimum for the dibridged isomer $\mathrm{HBe}--(\mathrm{H})_{2}-\mathrm{BeH}$, and separating the two beryllium atoms, a valley with $D_{2 h}$ symmetry is followed until $R(\mathrm{Be}-\mathrm{Be})=2.36 \AA$ where it splits into two valleys of $C_{2 h}$ symmetry. In this lower symmetry, the bridging hydrogens are not equally shared between the two beryllium atoms: each is associated with a particular Be. The $C_{2 h}$ valley is followed until a Be-Be separation of $3.44 \AA$ at which point it branches into two equivalent valleys of C_{s} symmetry, identical with the incoming C_{s} valleys. There is no activation energy for the overall dimerization reaction at the HF/3-21G level of theory. Comparison of Figure 4 with Figure 2 for the interaction of a pair of lithium hydrides makes the rapid falloff with distance of the interaction of two quadrupoles relative to two dipoles readily apparent.
BeBH_{5}. Three isomers of BeBH_{5}, containing one (HBeH -BH_{3}), two ($\mathrm{HBe}--(\mathrm{H})_{2}--\mathrm{BH}_{2}$), and three ($\mathrm{HBe}-(\mathrm{H})_{3}-\mathrm{BH}$) bridging hydrogens, have been examined. The first is only slightly bound relative to $\mathrm{BeH}_{2}+\mathrm{BH}_{3}$ and has a degenerate pair of imaginary frequencies at the $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ level. The $C_{2 v}$ dibridged and $C_{3 v}$ tribridged structures, both of which are minima on the potential surface at that level, are very close in energy, with the latter form being more stable at every theoretical level in our study except HF/3-21G//HF/3-21G. A similar basis set effect was noted by Kirillov et al. ${ }^{32}$ At our final MP4/6-31G**//HF/6$31 \mathrm{G}^{*}$ theoretical level the $C_{3 v}$ isomer is $5.4 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than the $C_{2 v}$ form. Ahlrichs ${ }^{33}$ found the tribridged structure to be the more stable by $6.8 \mathrm{kcal} \mathrm{mol}^{-1}$ using a large $\mathrm{s}-\mathrm{p}$ Gaussian

[^11]

Figure 5. HF/3-21G potential curve for the interconversion of BeBH_{5} isomers. This curve was constructed by performing HF/3-21G geometry optimizations within C_{2} symmetry with α fixed. The dibridged isomer, however, becomes the transition structure at higher levels of theory (see text).
lobe function basis and the IEPA-PNO method for estimating the correlation energy.

Figure 5 shows the energy along a reaction path connecting the dibridged and tribridged isomers. The HF/6-31 G* path was computed by optimizing the geometry within C_{s} symmetry at various fixed values of the angle α, as shown in the figure. A striking feature of the curve is its flatness, particularly in the region of the $C_{2 v}$ minimum. At this level the saddle point lies just 0.14 kcal mol^{-1} above $\mathrm{HBe}-(\mathrm{H})_{2}--\mathrm{BH}_{2}$ and is the transition structure for a reaction which scrambles four of the five hydrogens as well as interconverting the isomers. (We could not locate a low-energy pathway at the $\mathrm{HF} / 3-21 \mathrm{G}$ level which would bring about scrambling of the fifth hydrogen.) In fact, further optimization and vibrational analysis at the MP2(Full)/6-31G* level for the dibridged structure shows the presence of a negative eigenvalue of the force constant matrix, indicating that this structure is a saddle point rather than a minimum. This agrees with Ahlrichs' conclusion ${ }^{33}$ that the tribridged form is the only minimum.
$B_{2} H_{6}$. Diborane is the only one of the six systems for which there is experimental structural data. Molecules containing one, two, and three bridging hydrogen atoms were studied. All structures with one or three such linkages either dissociated without activation to two BH_{3} monomers or rearranged without activation to the dibridged molecule. The dimerization energy to $\mathrm{H}_{2} \mathrm{~B}$ -$(\mathrm{H})_{2}-\mathrm{BH}_{2}$ computed at the MP4/6-31G**//HF/6-31G* level, $41.0 \mathrm{kcal} \mathrm{mol}^{-1}$, is in good accord with the results of Redman, Purvis, and Bartlett, ${ }^{34}$ who used Møller-Plesset theory to partial sixth order with a basis set somewhat larger than ours, of Taylor and Hall, ${ }^{35}$ who included all valence singles and doubles CI from a generalized molecular orbital wave function, and of Frisch, Krishnan and Pople, ${ }^{36}$ who used fourth-order perturbation theory, MP4/6-31G*. Our ab initio estimate for the enthalpy of dimerization at 298 K of $-36.0 \mathrm{kcal} \mathrm{mol}^{-1}$ (Table VI) is in perfect accord with most of the experimental determinations ${ }^{34}$ which are in the range $-36 \pm 3 \mathrm{kcal} \mathrm{mol}^{-1}$.

Figure 6 shows two potential energy curves for the dimerization of BH_{3} to form $\mathrm{H}_{2} \mathrm{~B}-(\mathrm{H})_{2}--\mathrm{BH}_{2}$. The lower path was generated by optimizing $\mathrm{B}_{2} \mathrm{H}_{6}$ within $C_{2 h}$ symmetry at the $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ level with various fixed $\mathbf{B}-\mathrm{B}$ distances. Single-point calculations along the resultant path at the MP2/6-31G* level of theory gave the upper potential curve. The three Hartree-Fock stationary points

[^12]

Figure 6. Potential curves for the dimerization of boron hydride. The lower curve (O) was constructed by performing $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ geometry optimizations of $\mathrm{B}_{2} \mathrm{H}_{6}$ within $C_{2 h}$ symmetry with $R(\mathrm{~B}-\mathrm{B})$ fixed. The upper curve (\square) was constructed by performing MP2/6-31G* singlepoint calculations using the structures determined along the $C_{2 h} \mathrm{HF} / 6$ $31 G^{*}$ pathway.
are the $D_{2 h}$ minimum at $R(\mathrm{~B}-\mathrm{B})=1.778 \AA$, a shallow minimum at $R(\mathrm{~B}-\mathrm{B})=3.645 \AA$, only $0.1 \mathrm{kcal} \mathrm{mol}^{-1}$ below $2 \mathrm{BH}_{3}$, and the transition structure connecting the two minima at $R(B-B)=2.623$ \AA with an energy $0.5 \mathrm{kcal} \mathrm{mol}^{-1}$ above that of the weakly bound minimum. The HF/STO-3G and HF/3-21G curves are similar. An early study by Dixon et al. ${ }^{37}$ of the $C_{2 h}$ path using the PRDDO method and a minimal basis set SCF + all singles and doubles CI calculation gave qualitatively similar curves. Their SCF-CI transition state lay $2.6 \mathrm{kcal} \mathrm{mol}^{-1}$ above separated BH_{3} molecules at a B-B distance of $3.0 \AA$. The MP2/6-31G*//HF/6-31G* potential energy curve has only one stationary point corresponding to the ground-state diborane. The inclusion of correlation energy thus gave not only a much larger dimerization energy but also a monotonic decrease in energy as the constituent monomers approach each other. An experimental investigation of the kinetics of this reaction resulted in an estimate of $0 \pm 2 \mathrm{kcal} \mathrm{mol}^{-1}$ for the activation energy along with the statement that it is "probably negative". ${ }^{38}$

Conclusions

Ab initio molecular orbital theory at the Hartree-Fock and Moller-Plesset (through complete fourth order) levels was used to investigate the six binary association complexes formed from lithium hydride, beryllium hydride, and boron hydride (borane). In answer to the five questions posed in the introduction, we discovered the following:

1. The $6-31 \mathrm{G}^{*} / / 6-31 \mathrm{G}^{*}$ binding energies compared well with the previously published $6-31 \mathrm{G}^{*} / /$ STO-3G results. ${ }^{2}$ Even in those instances where there is a large structural change in going from the STO-3G to the $6-31 \mathrm{G}^{*}$ basis, the binding energies agree to within a few tenths of a kilocalorie. This is due in part to the flatness of the potential surfaces; large changes in geometry can lead to small changes in energy.
2. The addition of p polarization functions to the hydrogen basis (to form 6-31 $\mathrm{G}^{* *}$) has little effect on either the absolute or relative energies of these complexes. There is no clear trend as a function of the number of bridging hydrogens; however, the change in binding due to the addition of p functions increases
(37) (a) Dixon, D. A.; Pepperberg, I. M.; Lipscomb, W. N. J. Am. Chem. Soc. 1975, 96, 1325. (b) For an MNDO study, see: Ip, W.-K.; Li, W.-K. Croat. Chem. Acta 1984, 57, 1451 .
(38) Mappes, G. W.; Fuidmann, S. A.; Fehlner, T. P. J. Phys. Chem. 1970, 74, 3307.
roughly with the number of electrons.
3. Several of the stationary points were found to be saddle points (one imaginary frequency) or double saddles (two imaginary frequencies). In several instances the nature of the stationary point changed with basis set or with the inclusion of electron correlation, another consequence of the general flatness of these potential surfaces.
4. In all cases the inclusion of electron correlation corrections leads to an increase in the association energies. This effect is small for $\mathrm{Li}-(\mathrm{H})_{2}-$ Li but increases markedly as the number of electrons in the complex increases. The correlation effects are additive to within $\pm 2 \mathrm{kcal} \mathrm{mol}^{-1}$ for the most stable isomers when the following values are used: $\mathrm{Li}, 1 \mathrm{kcal} \mathrm{mol}{ }^{-1} ; \mathrm{Be}, 5 \mathrm{kcal} \mathrm{mol}^{-1} ; \mathrm{B}, 11$ $\mathrm{kcal} \mathrm{mol}^{-1}$. The correlation contribution is greater when the number of bridging hydrogens is greater. Although correlation
does not alter the relative isomers stabilities, it does lead to significant binding in $\mathrm{HBe}-(\mathrm{H})_{3}-\mathrm{Be}$ which is unbound at $\mathrm{HF} / 6$ -31G**//HF/6-31G*.
5. Dimerization reactions of LiH and of BeH_{2} proceed without activation with the HF/3-21G theoretical model. The formation of diborane from $2 \mathrm{BH}_{3}$ also proceeds without activation on the MP2/6-31G* potential energy surface. These results are expected since no bond-breaking or repulsive interactions are involved.

Acknowledgment. This work was supported by the National Science Foundation under Grant CHE 81-01061-01 and by the Fonds der Chemischen Industrie and was facilitated by an Alexander von Humboldt award to John A. Pople.

Registry No. $\mathrm{Li}_{2} \mathrm{H}_{2}, 12435-82-4 ; \mathrm{LiBeH}_{3}, 25282-11-5 ; \mathrm{LiBH}_{4}$, 16949-15-8; $\mathrm{Be}_{2} \mathrm{H}_{4}, 29860-66-0 ; \mathrm{BeBH}_{5}, 39357-33-0 ; \mathrm{B}_{2} \mathrm{H}_{6}$, 19287-45-7.

Test of the Hubbard-Onsager Dielectric Friction Theory of Ion Mobility in Nonaqueous Solvents. 1. Ion-Size Effect

K. Ibuki and M. Nakahara*
Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606, Japan (Received: August 19, 1986; In Final Form: October 15, 1986)

Abstract

The Hubbard-Onsager (HO) dielectric friction theory was tested systematically for mobility of the alkali metal, halide, and tetraalkylammonium ions in four types of polar solvents at $25^{\circ} \mathrm{C}$; the solvents studied were water, alcohols (methanol, ethanol, and 1-propanol), amides (formamide and N-methylformamide), and dipolar aprotic solvents (acetone and acetonitrile). Instead of the conventional Walden product, we used the residual friction coefficient $(\Delta \zeta)$ defined as the total friction coefficient minus the Stokes friction coefficient for slip. The experimental curve of $\Delta \zeta$ vs. ion radius is V -shaped in all solvents. The HO theory is successful in predicting the size dependence of $\Delta \zeta$ for the relatively small ions not only in the aprotic solvents but also in the other hydrogen-bonded solvents. However, the negative values of $\Delta \zeta$ observed for the medium-sized ions in the hydrogen-bonded solvents and the increase in $\Delta \zeta$ with increasing size of the tetraalkylammonium ions are not explained by the continuum theory.

Introduction

For a long time ordinary hydrodynamics has been applied to interpret the dynamic properties of ions in solution. Such a typical example is seen in the study of ion mobility and molecular diffusion where the Stokes-Einstein-Walden (SEW) framework based on the Navier-Stokes (NS) hydrodynamic equation of motion is prevalent. The NS hydrodynamic equation may be applicable to uncharged systems but, in principle, not to ionic systems of our interest. To overcome the fundamental limitations of ordinary hydrodynamics, Hubbard and Onsager ${ }^{1,2}$ (HO) developed the dielectric friction theory and invented the epoch-making electrohydrodynamic equation for migrating ions; HO extended the NS hydrodynamic equation to ionic systems in a self-consistent manner by adapting the Debye dielectric relaxation theory to the flow system involving a charged sphere.

The apparent limitations of the SEW framework is often ascribed to the neglect of the liquid structure of solvent rather than to the neglect of the essential effect of the charge on an ion in the continuum model; the effect of the liquid structure on ion dynamics is to be discussed only after the effect of charge is properly taken into account as in the HO theory. In the treatment of ion dynamics in solution, now is the time to replace the classical SEW framework by a modern one due to the HO dielectric friction theory. For this reason an extensive test of the reliability of the HO theory is necessary. Since the experimental test of the HO theory has been confined to aqueous systems in the previous series

[^13]of papers, ${ }^{3-11} \mathrm{it}$ is extended to nonaqueous systems in the present series. Such a test limited to aqueous systems is insufficient for an understanding of the general feature of the HO theory because of the well-known peculiarities of water. We must test the theory also in nonaqueous systems. The high precision and abundance of measured ionic conductances are of benefit to the stringent test of the general feature of the HO electrohydrodynamic equation of motion which is applicable to ion translation ${ }^{1-11}$ and rotation ${ }^{12,13}$ and electrolyte viscosity. ${ }^{14}$

It has been clearly shown in a previous paper ${ }^{10}$ that the undue transformation of the limiting ionic conductance λ^{0} into the conventional Walden product distorts and obscures the original meaning of λ^{0}. Instead, we have recommended the transformation
(3) Takisawa, N.; Osugi, J.; Nakahara, M. J. Phys. Chem. 1981, 85, 3582.
(4) Nakahara, M.; Török, T.; Takisawa, N.; Osugi, J. J. Chem. Phys. 1982, 76, 5145.
(5) Takisawa, N.; Osugi, J.; Nakahara, M. J. Chem. Phys. 1982, 77, 4717.
(6) (a) Takisawà, N.; Osugi, J.; Nakahara, M. J. Chem. Phys. 1983, 78, 2591. (b) Nakahara, M.; Takisawa, N.; Osugi, J. In High Pressure in Science and Technology, Homan, C.; MacCrown, R. K.; Whalley, E., Eds.; North Holland: New York, 1984; Part II, p 169.
(7) Nakahara, M.; Zenke, M.; Ueno, M.; Shimizu, K. J. Chem. Phys. 1985, 83, 280.
(8) Ibuki, K.; Nakahara, M. J. Chem. Phys. 1986, 84, 2776.
(9) Ibuki, K.; Nakahara, M. J. Chem. Phys. 1986, 84, 6979.
(10) Nakahara, M.; Ibuki, K. J. Phys. Chem. 1986, 90, 3026.
(11) Ibuki, K.; Nakahara, M. J. Phys. Chem. 1986, 90, 6362.
(12) Nakahara, M.; Ibuki, K. J. Chem. Phys. 1986, 85, 4654.
(13) Felderhof, B. U. Mol. Phys. 1983, 48, 1283.
(14) (a) Ibuki, K.; Nakahara, M. J. Chem. Phys. 1986, 85, 7312. (b)

Ibuki, K.; Nakahara, M. J. Chem. Phys., in press.

[^0]: (1) (a) Carnegie-Mellon University and Molecular Research Institute. Current address: Molecular Research Institute. (b) Carnegie-Mellon University and AT\&T Bell Laboratories. Current address: AT\&T Bell Laboratories. (c) Carnegie-Mellon University and Wayne State University. Current address: Wayne State University. (d) Carnegie-Mellon University. (e) Universität Erlangen-Nürnberg.
 (2) Dill, J. D.; Schleyer, P. v. R.; Binkley, J. S.; Pople, J. A. J. Am. Chem. Soc. 1977, 99,6159 and references cited therein.
 (3) (a) Wiberg, E.; Amberger, E. Hydrides of the Elements of Main Groups I-IV; Elsevier: Amsterdam, 1971. (b) Wade, K. Electron Deficient Compounds; Nelson: 1971.
 (4) Ashby, E. C.; Prasad, H. S. Inorg. Chem. 1975, 14, 2869.
 (5) Ihle, H. R.; Wu, C. H. Adv. Mass Spectrom. 1978, 7 A, 636.
 (6) Marynick, D. S. J. Am. Chem. Soc. 1981, 103, 1328 and references cited therein.
 (7) Hehre, W. J.; Stewart, R. F.; Pople, J. A. J. Chem. Phys, 1969, 51, 2657.

[^1]: (8) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.

[^2]: (9) Schlegel, H. B. J. Comput. Chem. 1982, 3, 214.
 (10) Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 939.
 (11) Whiteside, R. A.; Frisch, M. J.; Binkley, J. S.; DeFrees, D. J.; Schlegel, H. B.; Raghavachari, K.; Pople, J. A. Carnegie-Mellon Quantum Chemistry Archive; Carnegie-Mellon University: Pittsburgh, PA, 1982.
 (12) (a) Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S. Int. J. Quantum Chem., Quantum Chem. Symp. 1979, No. 13, 225. (b) Pople, J. A.; Schlegel, H. B.; Krishnan, R.; DeFrees, D. J.; Binkely, J. S.; Frisch, M. J.; Whiteside, R. A.; Hout, R. F.; Hehre, W. J. Int. J. Quantum Chem. 1981, 15, 269.
 (13) (a) Maller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618. (b) Krishnan, R.; Frisch, M. J.; Pople, J. A. J. Chem. Phys. 1980, 72, 4244 and references cited therein.

[^3]: (14) McQuarrie, D. A. Statistical Thermodynamics; Harper and Row: New York, 1973; Chapter 8.

[^4]: (15) DeFrees, D. J.; Levi, B. A.; Pollack, S. K.; Hehre, W. J.; Binkley, J. S.; Pople, J. A. J. Am. Chem. Soc. 1979, IOI, 4085; 1980, 102, 2513.
 (16) Hout, R. F.; Levi, B. A.; Hehre, W. J. J. Comput. Chem. 1982, 3, 234.

[^5]: (17) Williams, I. H.; Maggiora, G. M. J. Mol. Struct. 1982, 89, 369.
 (18) Müller, K. Angew. Chem., Int. Ed. Engl. 1980, 19, 1.
 (19) Halgren, T. A.; Lipscomb, W. N. Chem. Phys. Lett. 1977, 49, 225.
 (20) Dewar, M. J. S.; Kirschner, S. J. Am. Chem. Soc. 1971, 93, 4292.
 (21) Dillon, P. W.; Underwood, G. R. J. Am. Chem. Soc. 1977, 99, 2435.
 (22) Binkley, J. S.; Whiteside, R. A.; Krishnan, R.; Seeger, R.; DeFrees, D. J.; Schlegel, H. B.; Topiol, S.; Kahn, L. R.; Pople, J. A. QCPE 1981, 13, 406.
 (23) (a) Ahlrichs, R. Theor. Chim. Acta 1974, 35, 59. Also see: (b) Kato, H.; Hirao, K.; Akagi, K. Inorg. Chem. 1981, 20, 3659. (c) Charkin, O. P.; Zjubin, A. S.; Gorbick, A. A. Annu. Rep. Mendeleev's Inst. Chem. Tech. 1984, 134, 13. (d) Zjubin, A. S.; Gorbick, A. A.; Charkin, O. P. Zh. Strukt. Khim. 1985, 26, 31. (e) Sukhanov, L. P.; Boldyrev, A. I.; Charkin, O. P. Koord. Khim. 1983, 9, 476.

[^6]: (24) Stull, D. R.; Prophet, H. JANAF Thermochemical Tables, 2nd ed.; U.S. Government Printing Office: Washington, DC, 1971.

[^7]: (25) Note, however, that Ihle and Wu^{5} report an atomization energy for LiH_{2} which appears to be too large. Only a van der Waals complex was found at higher levels of theory. Hobza, P.; Schleyer, P. v. R. Chem. Phys. Lett. 1984, 105, 830. Garcia-Prieto, J.; Feng, W. L.; Novaro, O. Chem. Phys. Lett. 1985, $119,128$.

[^8]: (26) (a) Boldyrev, A. I.; Charkin, O. P.; Rambidi, N. E.; Andeev, V. I. Chem. Phys. Lett. 1976, 44, 20. (b) Zakzhevskii, V. G.; Boldyrev, A. I.; Charkin, O. P.; Bozhenko, K. V.; Klimenko, N. M. Zh. Neorg. Khim. 1979, 24, 1764. (c) Smolyar, A. E.; Zyubin, A. S.; Khaikina, E. A.; Charkin, O. P. Zh. Neorg. Khim. 1980, 25, 307. (d) Sukhanov, L. P.; Boldyrev, A. I.; Charkin, O. P. Koord. Khim. 1981, 6, 803. (e) Zjubin, A. S.; Chaban, G. M.; Gorbik, A. A.; Charkin, O. P. Zh. Strukt. Khim. 1985, 26,12 and ref 23c. (f) Cimiraglia, R.; Persico, M.; Tomasi, J.; Charkin, O. P. J. Comput. Chem. 1984, 5, 263. (g) Sukhanov, L. P.; Boldyrev, A. I. Zh. fiz. Khim. 1984, 58, 654. (h) Boldyrev, A. I.; Sukhanov, L. P.; Charkin, O. P. Koord. Khim. 1982, 8, 430 . (i) Sukhanov, L. P.; Boldyrev, A. I.; Charkin, O. P. Chem. Phys. Lett. 1983, 97, 373. (j) Wurthein, E.-U.; Krogh-Jespersen, M.-B.; Schleyer, P. v. R. Inorg. Chem. 1981, 20, 3663.

[^9]: (27) Boldyrev, A. I.; Sukhanov, L. P.; Charkin, O. P. Chem. Phys. 1980, 51, 205. Also see ref 26.
 (28) (a) Boldyrev, A. I.; Charkin, O. P.; Rambidi, N. E.; Avdeev, V. I. Chem. Phys. Lett. 1976, 44, 20. (b) Charkin, O. P.; Mysaev, D. G.; Klimenko, N. M. Koord. Khim. 1985, 11, 728. (c) Kello, V.; Urban, M.; Boldyrev, A. I. Chem. Phys. Lett. 1984, 106, 455. Also see ref 23a.
 (29) Bonaccorsi, R.; Scrocco, E.; Tomasi, J. Theor. Chim. Acta 1979, 52, 113.

[^10]: (30) (a) Solomnik, V. G.; Sayonova, I. G.; Krasnov, K. S. Theor. Exp. Chem. (Engl. Transl.) 1980, 16, 571. (b) Sukhanov, L. P.; Boldyrev, A. I.; Charkin, O. P. Koord. Khim. 1983, 9, 762.
 (31) Ahlrichs, R. Theor. Chim. Acta 1970, 17, 348.

[^11]: (32) (a) Kirillov, Y. B.; Boldyrev, A. I.; Klimenko, N. M. Russ. J. Coord. Chem. 1980, 6, 742. (b) Kirillov, Y. B.; Klimenko, N. M.; Zakzhevskii, V. G. Zh. Strukt. Khim. 1983, 24, 469.
 (33) Ahlrichs, R. Chem. Phys. Lett. 1973, 19, 174.

[^12]: (34) Redman, L. T.; Purvis, G. D.; Bartlett, R. J. J. Am. Chem. Soc. 1979, 101, 2856.
 (35) Taylor, T. E.; Hall, M. J. Am. Chem. Soc. 1980, 102, 6136.
 (36) (a) Frisch, M. J.; Krishnan, R.; Pople, J. A. Chem. Phys. Lett. 1980, 76, 66. (b) Ortiz, J. V.; Lipscomb, W. N. Chem. Phys. Lett. 1983, 103, 59.

[^13]: (1) Hubbard, J.; Onsager, L. J. Chem. Phys. 1977, 67, 4850.
 (2) Hubbard, J. J. Chem. Phys. 1978, 68, 1649.

