in the formation of NH(A) from hydrazine. In methylamine the values predicted from type (c) are in close agreement with the observed, whereas those predicted from type (a) are inconsistent with the observed. It is likely that the umbrella inversion motion of $CH_3(X)$ is selectively enhanced in dissociation process 8.

The ajusted E_{av} values for the formation of NH(A) from hydrazine and methylamine are 1.3-1.9 eV. These fairly large available energies suggest that the conformation of the precursor states forming NH(A) is very different from that of the ground state of each parent molecule, and that higher vibrational levels of the precursor state are formed according to the Franck-Condon principle. Thus, these NH(A) formations are probably due to excitation into a pure repuslive precursor state. The rotational energy distribution of the NH(A) state seems to be enhanced when the products depart from each other on a repulsive surface. In the formation of NH(c) from hydrazine, by use of energy disposal of types (a) and (b), E_{av} of 0.4 eV for process (6) is obtained on comparison of the observed T_r of NH(c) with the predicted value. This E_{av} value is considerably lower than that for the formation of NH(A). This, together with the fairly good agreement between the onset and ΔH for NH(c) formation from hydrazine, indicates that NH(c) formation is probably ascribed to excitation into the repulsive wall of a bound precursor state.

Registry No. NH, 13774-92-0; NH2NH2, 302-01-2; CH3NH2, 74-89-5.

Heats of Formation of Fluorine-Substituted Silylenes, Silyl Radicals, and Silanes

H. Bernhard Schlegel[†]

Department of Chemistry, Wayne State University, Detroit, Michigan 48202 (Received: July 20, 1984)

The experimental heats of formation are known quite accurately for SiH₄ and SiF₄ and somewhat less accurately for SiH₂, SiF_2 , and SiH_3 . There is some disagreement over the heat of formation of SiF_3 and similar experiments on SiH_3F , SiH_2F_2 , and SiHF₃ may also be unreliable. The heats of formation of SiHF, SiH₂F, and SiHF₂ have not been determined experimentally. Ab initio molecular orbital calculations have been carried out at the MP4SDQ/6-31G**//HF/6-31G* level and a series of isodesmic reactions has been used in conjunction with the experimental values for SiH₂, SiH₂, SiH₄, and SiF₄ to estimate the following heats of formation (298 K, ideal gas): SiHF, -132 ± 6 ; SiH₂F, -178 ± 6 ; SiHF₂, -586 ± 6 ; SiF₃, -1000 ± 5 ; SiH₃F, -355 ± 2 ; SiH₂F₂, -772 ± 2 ; and SiHF₃, -1201 ± 2 kJ mol⁻¹.

Introduction

The kinetics and reactivity of small silicon-containing molecules are attracting considerable interest. Silicon is not simply a second-row analogue of carbon, and reaction mechanisms can be quite different from the first row.¹ For example, pyrolysis of silanes yields silylenes rather than silyl radicals, whereas photolysis produces silyl radicals.¹ Both silylenes and silyl radicals with various degrees of fluorination are though to be important intermediates in chemical vapor deposition^{2,3} and glow discharge deposition⁴ of amorphous silicon films from SiH₄ and SiF₄, as well as in plasma etching of silicon surfaces⁵ by CF₄, but the mechanisms of these processes are not well understood.

Fundamental to the understanding of the kinetics and mechanisms of reactions involving these silicon compounds is a reliable set of heats of formation. For a few of the stable compounds accurate experimental $\Delta H_{\rm f}^{\circ}$ are available⁶ (SiH₄, ⁷SiF₄⁸), while reasonable values exist for some of the reactive species (SiH2,910 SiF_{2} ,¹¹ SiH_{3} ¹²). There is a bit of controversy over the ΔH°_{f} for SiF₃.^{11,13,14} Farber and Srivastava¹¹ have obtained a value from the high-temperature equilibration of Si and SiF4, but this underestimates the SiH dissociation energy in SiHF₃ which was measured directly by Doncaster and Walsh.¹³ High-temperature equilibration measurements¹⁵ have also been carried out for SiF₄ and H₂, yielding heats of formation for SiH₃F, SiH₂F₂, and SiHF₃. However, these may be subject to similar difficulties, since differences in the $\Delta H_{\rm f}^{\rm o}$ show trends opposite to the first-row analogues.^{16,17} For the remainder (SiHF, SiH₂F, and SiHF₂) no measurements of the heats of formation are available. Thus, there appears to be considerable uncertainty in the heats of formation for at least half of the compounds, particularly for the partially fluorinated structures.

We became aware of this gap in the thermochemistry of small silicon compounds during a quantum chemical study of fluorosilylene insertion reactions.¹⁸ In the present paper, we use ab initio molecular orbital calculations at the MP4/6-31G** level to examine a series of isodesmic reactions and to estimate the heats of formation of fluorine substituted silylenes, silyl radicals, and silanes.

Method

Ab initio molecular orbital calculations were performed with the GAUSSIAN 80 and 82 systems¹⁹ using split-valence²⁰ (3-21G)

- Ed.; Wiley-Interscience: New York, 1981; Vol. 2, pp 335-85.
 (2) Scott, B. A.; Plecenik, R. M.; Simonyi, E. E. Appl. Phys. Lett. 1981, 39, 73. Haller, I. J. Vac. Sci. Technol. 1983, 1, 1376.
- (3) Robertson, R.; Hils, D.; Gallagher, A. Chem. Phys. Lett. 1984, 103, 397.
- (4) Longeway, P. A.; Estes, R. D.; Weakliem, H. A. J. Phys. Chem. 1984, 88, 73.
- (5) Fricke, D. K.; Miller, H.; Opitz, Ch. Chem. Phys. Lett. 1983, 94, 421, and references cited.
- (6) Stull, D. R.; Prophet, H. Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. 1971, No. 37, and supplements.
 (7) Gunn, S. R.; Green, L. H. J. Phys. Chem. 1961, 65, 779.
 (8) Wise, S. S.; Margrave, J. L.; Feder, H. M.; Hubbard, W. N. J. Phys.
- Chem. 1963, 67, 815.
- (9) John, P.; Purnell, J. H. J. Chem. Soc., Faraday Trans. 1 1973, 69, 1455.
 Bowery, M.; Purnell, J. H. Proc. R. Soc. London., Ser. A 1971, 321,
- 341. (10) Bell, T. N.; Perkins, K. A.; Perkins, P. G. J. Chem. Soc., Faraday Trans. 1, 1981, 77, 1779.
- (11) Farber, M.; Srivastava, R. D. J. Chem. Soc., Faraday Trans. 1 1978, 74, 1089.
 - (12) Doncaster, A. M.; Walsh, R. Int. J. Chem. Kinet. 1981, 13, 503.
 (13) Doncaster, A. M.; Walsh, R. Int. J. Chem. Kinet. 1978, 10, 101.
 - (14) Walsh, R. Acc. Chem. Res. 1981, 14, 246.
 - (15) Farber, M.; Srivastava, R. D. Chem. Phys. Lett. 1977, 51, 307.
- (16) Rodgers, A. S.; Chao, J.; Wilhoit, R. C.; Zwolinski, B. J. J. Phys. Chem. Ref. Data 1974, 3, 117.

(17) Benson, S. W. J. Phys. Chem. 1981, 85, 3375.
(18) Sosa, C.; Schlegel, H. B. J. Am. Chem. Soc., in press.
(19) Binkley, J. S.; Whiteside, R. A.; Krishnan, R.; Seeger, R.; DeFrees, D. J.; Schlegel, H. B.; Topiol, S.; Kahn, R. L.; Pople, J. A. QCPE 1980, 13, 400 406.

[†]Fellow of the Alfred P. Sloan Foundation, 1981-3.

⁽¹⁾ Gaspar, P. P. In "Reactive Intermediates", Jones, Jr., M.; Moss, R. A.,

TABLE I: Total Energies^a

	3-21G		6-3	1G*				6-31G**				
	-E(HF)	- <i>E</i> (HF)	-E2	- <i>E</i> 3	-E4SDQ	- <i>E</i> (HF)	-E2	- <i>E</i> 3	-E4SDQ	- <i>E</i> 4T	ZPE	thermal
SiH ₂	288.484 29	289.99978	0.067 28	0.01707	0.004 91	290.00263	0.08075	0.018 20	0.004 64	0.001 09	31.4	7.5
SiHF	386.881 66	388.931 90	0.242 22	0.008 71	0.008 95	388.93341	0.24912	0.009 36	0.008 89	0.005 26	23.5	7.7
SiF_2	485.30063	487.88467	0.418 79	0.000 30	0.01255	487.88467	0.418 79	0.000 30	0.01255	0.009 61	13.8	8.5
SiH ₃	289.080 54	290.60612	0.068 33	0.016 07	0.004 22	290.610 58	0.08766	0.017.82	0.003 80	0.00116	57.5	7.9
SiH ₂ F	387.45897	389.52283	0.238 41	0.008 11	0.007 63	389.52590	0.251 48	0.009 42	0.007 50	0.004 69	48.9	8.1
SiHF ₂	485.84972	488.45082	0.410 30	0.000 36	0.011 03	488.45237	0.41673	0.001 04	0.01101		37.6	9.1
SiF ₃	584.24278	587.38123	0.581 60	-0.006 97	0.01401	587.381 23	0.581 60	-0.006 97	0.01401		24.2	10.7
SiH₄	289.68698	291.22513	0.081 89	0.018 38	0.004 70	291.23084	0.10815	0.021 00	0.004 26	0.001 35	84.7	7.9
SiH ₁ F	388.07406	390.148 40	0.251 30	0.01083	0.007 77	390.15284	0.271 35	0.013 04	0.007 68	0.004 69	75.8	8.2
SiH ₂ F ₂	486.473 24	489.081 81	0.422 88	0.003 57	0.01094	498.537 23	0.436 26	0.00514	0.01099		65.2	9.2
SiHF ₃	584.87584	588.01833	0.594 58	-0.003 17	0.01387	588.01985	0.60115	-0.002 36	0.01393		51.8	10.8
SiF ₄	683.272 08	686.94984	0.76461	-0.00917	0.016 37	686.949 84	0.76461	-0.009 17	0.016 37		36.0	12.7

"Total energies in au; E(MP2) = E(HF) + E2, E(MP3) = E(HF) + E2 + E3. E(MP4SDTQ) = E(HF) + E2 + E3 + E4SDQ + E4T; zero point energies and thermal contributions in kJ mol⁻¹, 1 au = 2625.5 kJ mol⁻¹; total energies for hydrogen atom: E(HF) = -0.49620 at 3-21G and -0.49824 at 6-31G*; total energies for fluorine atom: E(HF) = -98.84501 for 3-21G and E(HF) = -99.36496, E(MP2) = -99.48727, E(MP3) = -99.48727-99.49569, E(MP4SDQ) = -99.49745, E(MP4SDTQ) = -99.49865 for $6-31G^*$.

TABLE II: Molecular Geometries^a

			HF/	HF/	
molecule	symmetry	parameter	3-21G	6-31G*	exptl
SiH,	C _{2n}	R(SiH)	1.530	1.508	1.521
-	20	∠ĤSiH	93.7	93.3	92.1
SiHF	С,	R(SiF)	1.637	1.602	
	-	R(SiH)	1.534	1.516	
		∠HSiF	97.7	97.3	
SiF_2	C_{2v}	R(SiF)	1.625	1.592	1.591
		∠FSiF	96.6	99.9	101.0
SiH ₃	C_{3v}	R(SiH)	1.486	1.476	
		∠HSiH	107.2	108.0	
SiH ₂ F	C_s	R(SiF)	1.640	1.598	
		R(SiH)	1.483	1.476	
		∠HSiF	109.9	108.8	
		∠HSiH	110.7	110.4	
SiHF ₂	C_s	R(SiF)	1.625	1.586	
		R(SiH)	1.480	1.475	
		∠FSiF	104.8	107.1	
		∠HSiF	109.8	108.6	
SiF_3	C_{3v}	R(SiF)	1.610	1.575	1.56
		∠FSiF	112.3	111.2	109.5
SiH_4	T_d	R(SiH)	1.486	1.475	1.481
SiH ₃ F	C_{3v}	R(SiF)	1.635	1.594	1.593
		R(SiH)	1.478	1.470	1.486
		∠HSiF	109.2	108.8	108.4
SiH_2F_2	C_{2v}	R(SiF)	1.619	1.581	1.577
		R(SiH)	1.464	1.461	1.471
		∠FSiF	105.4	107.6	107.9
		∠HSiH	113.2	113.4	112.0
SiHF ₃	C_{3v}	R(SiF)	1.601	1.569	1.562
		R(SiH)	1.445	1.449	1.447
	_	∠HSiF	112.1	110.9	110.6
SiF_4	T_d	R(SiF)	1.584	1.557	1.552

^a Bond lengths in Å, angles in degrees; experimental geometries refer to r_0 structures quoted in the most recent JANAF tables⁶ (SiH₂ from ref 28).

and polarization²¹ (6-31G* and 6-31G**) basis sets. The 6-31G* basis contains a set of six Cartesian d functions on each of the heavy atoms; the 6-31G** basis augments the 6-31G* basis with a set of three p functions on each hydrogen. All equilibrium geometries were fully optimized with analytical gradient methods²² at the HF/3-21G and HF/6-31G* levels. Electron correlation energy was estimated with Møller-Plesset perturbation theory²³

TABLE III: Vibrational Frequencies^a

	-	
molecule	frequencies, cm ⁻¹	ref
SiH,	1107, 2063, 2078, (1005, , 2022)	30
SiHF	920, 965, 2046 (834, 859, 1913)	31
SiF ₂	377, 958, 973 (345, 885, 872)	32
SiH ₃	784, 989', 2275, 2292'	
SiH ₂ F	775, 863, 935, 1005, 2293, 2312	
SiHF ₂	328, 838, 847, 940, 1030, 2296	
SiF ₃	229', 415, 905, 1062' (290', 406, 832, 954')	33
SiH₄	973", 1046', 2286", 2295 (913", 972', 2186", 2189)	34
SiH ₃ F	800', 943, 990', 1132, 2338', 2352 (728', 875, 961', 2209', 2206)	35
SiH_2F_2	341, 782, 805, 934, 996, 1041, 1127, 2429, 2435 (322, 730, 730, 869, 903, 981, 982, 2225, 2246)	36
SiHF ₃	315', 430, 922, 946', 1119', 2556 (305', 425, 844', 859, 999', 2315)	37
SiF	270', 392", 845, 1156" (264', 389", 801, 1030")	38

^aCalculated harmonic frequencies at the HF/3-21G level; experimental anharmonic frequencies in parentheses; doubly degenerate modes indicated with a single prime, triply degenerate with a double prime.

up to fourth order, including all single, double, and quadruple excitations (MP4SDQ, frozen core). For some of the smaller molecules triple substitutions could also be included. Vibrational frequencies and zero point energies were obtained from analytical second derivatives²⁴ calculated at the HF/3-21G level. Thermal contributions include $1/_2 RT$ for each translational and rotational degree of freedom, plus changes in the vibrational energy due to thermal population of the excited vibrational modes.²⁵ The enthalpy difference for a reaction is the energy difference (electronic + zero point + thermal) plus the change in $PV(\Delta PV =$ 0 for isodesmic reactions). Ideal gas entropies were calculated by standard statistical mechanical methods.²⁵

Results and Discussion

Total energies, molecular geometries, and vibrational frequencies are listed in Tables I, II, and III respectively for SiH₂, SiHF, SiF₂, SiH₃, SiH₂F, SiHF₂, SiF₃, SiH₄, SiH₃F, SiH₂F₂, SiHF₃, and SiF₄. Data for some of these compounds have been published previously^{18,26,27} but are collected here for convenience. Table IV and V present Si-F and Si-H dissociation energies; selected isodesmic reactions are given in Table VI. Theoretical estimates and experimental values for the heats of formation are summarized in Table VII.

⁽²⁰⁾ Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 939. Gordon, M. S.; Binkley, J. S.; Pople, J. A.; Pietro, W. J.; Hehre, W. J. J. Am. Chem. Soc. 1982, 104, 2797.
(21) Hariharan, P. C.; Pople, J. A. Theor. Chem. Acta 1973, 28, 213, and references cited. Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.;

Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654, and references cited.

⁽²²⁾ Schlegel, H. B. J. Comput. Chem. 1982, 3, 214.

⁽²³⁾ Krishnan, R.; Pople, J. A. Int. J. Quant. Chem. Quant. Chem. Symp. **1980**, *14*, 91.

⁽²⁴⁾ Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S. Int. J. Quant. Chem. Quant. Chem. Symp. 1979, 13, 225. (25) Lewis, G. N.; Randall, M. "Thermodynamics", revised by Pitzer, K.

S.; Brewer, L.; McGraw-Hill: New York, 1961. McQuarrie, D. A. "Statistical Thermodynamics"; Harper and Row: New York, 1973

⁽²⁶⁾ Colvin, M. E.; Grev, R. S.; Schaefer III, H. F.; Bicerano, J. Chem. Phys. Lett. 1983, 99, 399.

⁽²⁷⁾ Gordon, M. S.; Gano, D. R.; Boatz, J. A. J. Am. Chem. Soc. 1983, 105, 5771.

TABLE IV: Si-H Dissociation Energies^a

level	SiH ₃	SiH ₂ F	SiHF ₂	SiH ₄	SiH ₃ F	SiH ₂ F ₂	SiHF ₃	
HF/3-21G	262.7	213.0	138.9	289.4	312.1	334.3	359.3	·
HF/6-31G*	238.8	243.4	178.3	317.1	334.3	348.5	364.6	
MP2/6-31G*	286.6	233.3	156.0	352.7	368.2	381.5	398.6	
MP3/6-31G*	283.9	231.8	156.2	358.8	375.3	390.0	408.6	
MP4SDQ/6-31G*	282.1	228.3	152.2	360.0	375.6	389.8	408.3	
HF/6-31Ğ*	288.0	247.5	182.4	320.4	337.9	352.4	368.6	
MP2/6-31G**	306.2	253.7	177.0	374.2	390.1	403.7	419.9	
MP3/6-31G**	305.2	253.8	179.0	382.5	399.6	414.5	432.0	
MP4SDQ/6-31G**	303.0	250.2	174.9	383.7	400.1	414.4	431.8	
MP4SDTQ/6-31G**	303.2	248.7		384.2	400.1			
ΔZPE^{b}	-24.3	-23.5	-22.1	-25.3	-25.0	-25.7	-25.7	
theor ^c	278.7	226.7	152.8	358.4	375.1	388.7	406.1	
exptl	260^{d}			372 ^f			418⁄	
	280°						3518	

^a In kJ mol⁻¹. ^bHF/3-21G Δ ZPE's scaled by 0.93. ^cMP4SDQ/6-31G** + Δ ZPE. ^dUsing Δ H_f°(SiH₂) recommended by Bell et al.¹⁰ ^eUsing Δ H_f°(SiH₂) calculated by Pople et al.⁴¹ ^fDoncaster and Walsh.^{2,13} ^eFarber and Srivastava.^{11,15}

TABLE V: Si-F Dissociation Energies ^a

level	SiH ₂ F	SiHF ₂	SiF ₃	SiH ₃ F	SiH_2F_2	SiHF ₃	SiF ₄	
HF/3-21G	340.5	323.1	255.1	389.9	444.4	475.5	483.9	
HF/6-31G*	415.1	404.2	345.5	465.6	509.4	531.8	534.7	
MP2/6-31G*	543.2	524.4	451.8	624.8	672.6	694.5	694.1	
MP3/6-31G*	497.6	480.3	410.7	588.9	638.5	663.1	666.2	
MP4SDQ/6-31G*	500.1	481.2	409.7	593.7	642.6	665.9	667.7	
HF/6-31Ğ**	415.6	404.3	345.5	465.5	509.3	531.7	534.7	
MP2/6-31G**	542.8	523.3	451.8	626.7	673.3	694.8	694.1	
MP3/6-31G**	497.6	479.3	410.7	592.0	639.9	663.7	666.2	
MP4SDQ/6-31G**	500.5	480.2	409.7	597.6	644.5	666.8	667.7	
MP4SDTO/6-31G**	506.8			603.7				
ΔZPE^{b}	-16.3	-13.1	-9.7	-17.0	-15.2	-13.2	-11.0	
theor ^c	484.2	467.1	400.0	580.6	629.3	653.6	656.7	
exptl			484 ^d	643e			686 ^d	
•			570 ^e				600 ^e	

"In kJ mol⁻¹. ^bHF/3-21G Δ ZPE's scaled by 0.93. ^cMP4SDQ/6-31G** + Δ ZPE. ^dDoncaster and Walsh.^{12,13} "Farber and Srivastava.^{11,15}

TABLE VI: Isodesmic Reactions^a

level	$SiHF_3 + SiH_3 \rightarrow SiH_4 + SiF_3$	$^{1}/_{2}SiH_{2} + ^{1}/_{2}SiF_{2} \rightarrow SiH_{2}F$	$^{2}/_{3}SiH_{3} +$ $^{1}/_{3}SiF_{3} \rightarrow$ $SiH_{2}F$	$^{1}/_{3}SiH_{3} + ^{2}/_{3}SiF_{3} \rightarrow SiHF_{2}$	$^{3}/_{4}SiH_{4} +$ $^{1}/_{4}SiF_{4} \rightarrow$ $SiH_{3}F$	$^{1}/_{2}SiH_{4} +$ $^{1}/_{2}SiF_{4} \rightarrow$ $SiH_{2}F_{2}$	$^{1}/_{4}SiH_{4} +$ $^{3}/_{4}SiF_{4} \rightarrow$ $SiHF_{3}$
HF/3-21G	69.9	28.4	23.6	14.8	24.1	16.5	-0.1
HF/6-31G*	47.5	27.1	21.9	14.1	20.8	14.9	0.9
MP2/6-31G*	45.9	29.2	24.5	14.7	24.1	15.9	0.8
MP3/6-31G*	49.8	29.2	25.2	15.6	25.9	18.6	1.5
MP4/6-31G*	48.3	28.6	24.8	14.8	25.5	17.5	0.4
HF/6-31G**	48.2	26.9	21.6	13.9	20.3	14.5	0.6
MP2/6-31G**	45.7	28.6	23.8	14.5	22.8	14.8	-1.1
MP3/6-31G**	49.5	28.3	24.1	15.2	23.9	16.8	0.9
MP4/6-31G**	48.1	27.5	23.4	14.1	22.8	15.0	-0.7
$\Delta Z P E^{b}$	-0.4	0.8	2.3	2.1	3.1	4.6	3.3
thermal	-0.1	-0.3	-0.7	-0.7	-0.9	-1.1	-0.7
theor ^c							
$\Delta H^{\circ}(0 \text{ K})$	47.7 ± 4	28.3 ± 2	25.7 ± 2	16.2 ± 2	23.9 ± 2	19.6 ± 2	2.6 ± 2
$\Delta H^{\circ}(298 K)$	47.6 ± 4	28.0 ± 2	25.0 ± 2	15.5 ± 2	23.0 ± 2	18.5 ± 2	1.9 ± 2
exptl							
Δ <i>Ĥ</i> °(298 K)	41 ± 5^{d} -21 ± 8 ^e				-38 ± 8°	-13 ± 8^{e}	-23 ± 8°

^a In kJ mol⁻¹. ^b HF/3-21G Δ ZPE's scaled by 0.93. ^cMP4SDQ/6-31G** + Δ ZPE + thermal. ^dDoncaster and Walsh.^{12,13} ^e Farber and Srivastava.11,15

Geometry. The HF/6-31G* optimized geometries in Table II are in good agreement with experiment. As already established,20 the HF/3-21G level underestimated Si-F bond lengths. The most clearly discernible trend is a decrease in the Si-F bond length with increasing fluorine substitution ($\Delta R_{\text{SiF}} = \text{ca. 0.1 Å per fluorine}$). A similar trend is seen for the Si-H bonds in the silanes and to a lesser extent in the silyl radicals. Although systematic changes in the bond angles should also be expected (e.g., increasing pyramidality of the radicals with fluorine substitution), no clear trends are found.

relatively uniformly 7.4% higher than the observed, primarily due to the neglect of vibrational anharmonicity and electron correlation. A scale factor of 0.93 has been applied to all zero point energy differences used below to correct for this overestimation. For the first row, HF/3-21G calculations yield frequencies that are 12% too high.²⁹ The apparently better performance for the second row probably can be traced to the overestimation of the SiF bond length at the HF/3-21G level which, in turn, lowers the frequency

⁽²⁸⁾ Dubois, I. Can. J. Phys. 1968, 46, 2485.

Frequencies. The experimental anharmonic vibrational frequencies are compared with the theoretical harmonic frequencies in Table III and in Figure 1. The theoretical frequencies are

⁽²⁹⁾ Pople, J. A.; Schlegel, H. B.; Krishnan, R.; DeFrees, D. J.; Binkley, J. S.; Frisch, M. J.; Whiteside, R. A.; Hout, R. F.; Hehre, W. J. Int. J. Quant. Chem. Quant. Chem. Symp. 1981, 15, 269.

TABLE	VII:	Heats	of	Formation	and	Entropies ⁴
TUDUC	V 11.	IIvaus	υ.	T. OL III WELLOIL	66 I S.U.	Entropics

		calcd		exptl				
molecule	$\Delta H_{\rm f}^{\rm o}(0 \ {\rm K})$	$\Delta H_{\rm f}^{\rm o}(298 \text{ K})$	S(298 K)	$\Delta H_{\rm f}^{\rm o}(0 \ {\rm K})$	$\Delta H_{\rm f}^{\circ}(298 \text{ K})$	S(298 K)	ref	
SiH ₂			207	250 ± 6	248 ± 6		9, 10	
-					268		41	
SiHF	-141 ± 6	-142 ± 6	239	-172 ± 20	-173 ± 20		с	
	-131 ± 6^{b}	-132 ± 6^{b}			-163 ^b		с	
SiF ₂			256	-587 ± 1	-588 ± 1	256	6, 11	
SiH ₃			217	200 ± 6	195 ± 6		12	
SiH ₂ F	-173 ± 6	-178 ± 6	249	-199 ± 20	-203 ± 20		с	
SiHF ₂	-583 ± 6	-586 ± 6	270	-598 ± 20	-602 ± 20		с	
SiF ₃	-989 ± 4	-992 ± 4		-997 ± 5	-1000 ± 5	282	13	
•			282	-1082 ± 8	-1085 ± 8		11	
SiH₄			204	44 ± 2	34 ± 2	205	6	
SiH	-345 ± 2	-355 ± 2	238	-369 ± 20	-378 ± 20	238	6	
•				-408 ± 8	-416 ± 8		15	
SiH ₂ F ₂	-763 ± 2	-772 ± 2	261	-782 ± 20	-791 ± 20	262	6	
				-795 ± 8	-804 ± 8		15	
SiHF ₂	-1193 ± 2	-1201 ± 2	276	-1196 ± 20	-1203 ± 20	277	6	
5				-1217 ± 8	-1226 ± 8		15	
SiF			282	-1609 ± 1	-1615 ± 1	283	6	

^a Heats of formation in kJ mol⁻¹, entropies in J K⁻¹ mol⁻¹. ^b Using $\Delta H_f^{\circ}(SiH_2)$ calculated by Pople et al.⁴¹ ^c Estimated by linear interpolation.

Figure 1. Experimental anharmonic vibrational frequencies vs. calculated harmonic frequencies for SiH₂, SiHF, SiF₂, SiF₃, SiH₄, SiH₃F, SiH₂F₂, SiHF₃, and SiF₄.

and improves the agreement. The calculated SiH stretching frequencies increase more rapidly with fluorine substitution than the observed frequencies. This is because the changes in the SiH bond lengths with fluorine substitution are somewhat too large at the 3-21G level.

Bond Dissociation Energies. The calculated SiH dissociation energies are compared with experiment in Table IV. In general, the basis set and correlation effects are relatively large. Nevertheless, the $D_0(Si-H)$ for SiH₄ is only 14 kJ mol⁻¹ from the experimental value.¹² A similar agreement is found for CH₄ with the same level of calculation.³⁹ For SiHF₃ the calculated value

(30) Milligan, D. E.; Jacox, M. E. J. Chem. Phys. 1970, 52, 2594.

- (31) Ismail, Z. K.; Fredin, L.; Hauge, R. H.; Margrave, J. L. J. Chem. Phys. 1982, 77, 1626.
- (32) Caldow, G. L.; Deely, C. M.; Turner, P. H.; Mills, I. M. Chem. Phys. Lett. 1981, 82, 434.
- (33) Milligan, D. E.; Jacox, M. E.; Guillory, W. A. J. Chem. Phys. 1968, 49, 5330.
- (34) Kattenberg, H. W.; Oskam, A. J. Mol. Spectrosc. 1974, 49, 52.
 (35) Cartwright, G. J.; Hoy, A. R.; Mills, I. M. Mol. Phys. 1971, 20, 541.
 Georghiou, C.; Baker, J. G. J. Mol. Spectrosc. 1976, 63, 391.
- (36) Ebsworth, E. A. V.; Robiette, A. G. Trans. Faraday Soc. 1964, 60, 1507.
- (37) Burger, H.; Biederman, S.; Ruoff, A. Spectrochim. Acta Part A 1974, 30A, 1655; 1971, 27A, 1687.
- (38) Clark, R. J. H.; Rippon, D. M. J. Mol. Spectrosc. 1972, 44, 479.
 (39) Duchovic, R. J.; Hase, W. L.; Schlegel, H. B.; Frisch, M. J.; Raghavachari, K. Chem. Phys. Lett. 1982, 89, 120.

is in agreement with Doncaster and Walsh¹³ (12 kJ mol⁻¹) but not with the $D_0(SiH)$ obtained by using the ΔH_f° of Farber and Srivastava.^{11,15} The SiH dissociation energies for the other silanes vary smoothly between $D_0(SiH_3-H)$ and $D_0(SiF_3-H)$, suggesting that these calculated values are also uniformly 10–15 kJ mol⁻¹ too low.

The calculated SiH dissociation energies in the radicals are not as good as the silanes (errors of -1, (-31), and (-61) kJ mol⁻¹ for SiH₃, SiH₂F, and SiHF₂, respectively, based on the experimental (and theoretical) heats of formation in Table VII). The change in the error is more disconcerting than the magnitude. MCSCF calculations by Schaefer²⁶ have shown that the ground-state wave function contains a large contribution (~0.2) from the low-lying excited singlet configuration. This suggests that triple substitutions may be important for an MP4 calculation based on a single reference determinant. However, at the MP4SDTQ/6-31G** level, the SiH dissociation energies are essentially unchanged.

Table V lists the calculated and experimental SiF dissociation energies. The basis set and correlation effects are larger than for SiH dissociations, as are the absolute errors in the dissociation energies (30 kJ mol⁻¹ for SiF₄). For the silanes, the bond strengths increase with fluorine substitution. This is in contrast to the experimental values based on data by Farber and Srivastava.^{11,15} The calculated SiF dissociation energies in the radicals are affected by the same computational difficulties in the silylenes discussed above.

Isodesmic Reactions. If the reactants and products contain the same numbers of the same types of bonds, the reaction is said to be isodesmic. Errors due to basis set and correlation energy nearly cancel; zero point energy changes and differences in the temperature dependence of the enthalpy are also small. Table VI lists the set of isodesmic reactions that are appropriate for the estimation of the heats of formation for SiH_nF_m.

Bond dissociations are not isodesmic reactions, but differences in dissociations are isodesmic. In particular, consider:

$$D_0(\mathrm{SiF}_3-\mathrm{H}) - D_0(\mathrm{SiH}_3-\mathrm{H}) = \mathrm{SiHF}_3 + \mathrm{SiH}_3 \rightarrow \mathrm{SiF}_3 + \mathrm{SiH}_4$$
(1)

Although the SiH dissociation energies change by 65 kJ mol⁻¹ in going from the HF/6-31G^{*} level to MP4/6-31G^{**}, the differences in D_0 (SiH) vary by only ± 2 kJ mol⁻¹; hence, considerable confidence can be placed in the estimated $\Delta H^{\circ}(298)$ for this reaction. The calculation results (48 kJ mol⁻¹) are in good agreement with Doncaster and Walsh¹² (41 kJ mol⁻¹) but not Farber and Srivastava^{11,15} (-21 kJ mol⁻¹).

The other isodesmic reactions in Table VI correspond to an interpolation between the unsubstituted and the perfluoro compounds.

$$\frac{m}{a}\mathrm{SiH}_a + \frac{n}{a}\mathrm{SiF}_a \to \mathrm{SiH}_m\mathrm{F}_n \qquad m+n=a \qquad (2)$$

Linear interpolation of the ΔH°_{f} amounts to assuming $\Delta H^{\circ} = 0$ for these reactions. The calculations indicate sizeable deviations from linearity in the same direction as the fluoromethanes.^{16,17} The interpolation reactions seem to be even less sensitive to basis set and correlation effects than (1), with the HF/3-21G values being within 1–2 kJ mol⁻¹ of the MP4/6-31G** results. Hence, the estimated $\Delta H^{\circ}(298)$'s should be quite reliable. The calculations for the fluorosilanes disagree in sign and magnitude with Farber and Srivastava (further discussion below).

The heat of reaction for 1/2SiH₂ + 1/2SiF₂ \rightarrow SiHF is ca. 27 kJ mol⁻¹ at the HF level, and ca. 28 kJ mol⁻¹ at the MP2, MP3, and MP4 levels based on a single reference configuration. This is in good agreement with the DZ+P, two-configuration SCF (TCSCF) calculations of Schaefer et al.^{26,40} (25 kJ mol⁻¹). To test the importance of higher excitations, we repeated our MP4 calculations with triple substitutions (MP4SDTQ/6-31G**) and found a change of only 0.3 kJ mol⁻¹. This suggests that basis set effects could be more significant than higher excitations.

Experimental Heats of Reaction. Table VII summarizes the measured ΔH_f° for various fluorine substituted silylenes, silyl radicals, and silanes. The $\Delta H_{\rm f}^{\circ}$ for SiH₄ has been obtained from the decomposition of silane to amorphous silicon and hydrogen;⁷ $\Delta H_{\rm f}^{\circ}$ for SiF₄ has been determined by direct combination of the elements.⁸ Purnell et al.⁹ have studied the kinetics of silane and disilane pyrolysis, obtaining a value for $\Delta H_{f}^{\circ}(SiH_{2})$. Bell, Perkins, and Perkins¹⁰ have reviewed the literature and recommend ΔH_f^{c} = 248 kJ mol⁻¹ for SiH₂. Extensive calculations by Pople et al.⁴¹ indicate $\Delta H_f^{\circ} = 268 \text{ kJ mol}^{-1}$ for SiH₂ and suggest the kinetic data for SiH, insertions be reinterpreted. The high-temperature equilibration of Si and SiF₄ has yielded ΔH_f° for SiF₂.¹¹ Doncaster and Walsh have measured the SiH bond dissociation energy in SiH_4^{12} and $SiHF_3$,¹³ permitting the calculation of the heat of formation of SiH₃ and SiF₃ (given ΔH_f° for SiHF₃). Farber and Srivastava¹¹ have also obtained a value for SiF₃ from SiF₄ + SiF₂ → 2 SiF₃, a side reaction in Si + SiF₄ → 2SiF₂. However, Walsh¹⁴ has questioned this result, since it leads to an unusually low value for $D_0(SiH)$ in SiHF₃. The heats of formation for SiH₃F, SiH₂F₂, and SiHF₃ reported in the JANAF tables⁶ were derived by linear interpolation. For the carbon analogues, 16,17 this leads to errors of 50 kJ mol⁻¹. Farber and Srivastava¹⁵ have obtained $\Delta H_{\rm f}^{\circ}$ for SiH₃F, SiH₂F₂, and SiHF₃ from the reaction of SiF₄ and H₂ at high temperatures. These do show strong deviations from a linear interpolation, but in a sense opposite to the carbon analogues.^{16,17} Thus these values should be used with caution. There are no experimental data for SiHF, SiH₂F, and SiHF₂. Approximate values can be obtained by linear interpolation, keeping in mind that sizeable errors could result.

Theoretical Estimates of ΔH_f° . The calculated ΔH° for reactions in Table VI can be combined with the experimental ΔH_f° in Table VII to estimate the heats of formation of the partially fluorinated compounds. For the silanes, the linear interpolated values quoted in the JANAF tables⁶ are in error by up to 25 kJ mol⁻¹. This discrepancy is less than for the fluorocarbons, indicating that the nonadditive interactions in the fluorosilanes are smaller. The theoretical ΔH_f° for SiH₃F, SiH₃F, SiH₂F₂, and SiHF₃ disagree with the values of Farber and Srivastava¹⁵ by up to 60 kJ mol⁻¹. Since the calculated ΔH° for the isodesmic reactions used to determine these ΔH_f° are constant over two orders of magnitude of change in the complexity of the wave function, the theoretical results are probably more reliable than the ΔH_f° determined by Farber and Srivastava.¹⁵

The measured $D_0(\text{SiF}_3-\text{H})^{13}$ can be combined with the calculated ΔH_f° for SiHF₃ to give $\Delta H_f^{\circ} = -1000 \pm 5 \text{ kJ mol}^{-1}$ for SiF₃. Alternatively, the calculated ΔH° for SiHF₃ + SiH₃ \rightarrow SiF₃ + SiH₄ can be combining with the heats of formation SiH₃, SiH₄, and SiHF₃ to yield $\Delta H_f^{\circ}(\text{SiF}_3) = -992 \pm 4 \text{ kJ mol}^{-1}$, in good agreement with the value based on $D_0(\text{SiF}_3-\text{H})$. Since the isodesmic reactions 2 seem to be less sensitive to the calculational level than reaction 1, $\Delta H_f^{\circ} = -1000 \pm 5 \text{ kJ mol}^{-1}$ is probably a better estimate. This value is used along with the isodesmic reactions in Table VI to obtain ΔH_f° for SiH₂F and SiHF₂. An analogous interpolation for the silylenes yields $\Delta H_f^{\circ}(\text{SiHF}) = -132 \pm 6 \text{ kJ mol}^{-1}$ from the present calculations and $-135 \pm 6 \text{ kJ mol}^{-1}$ from Schaefer's data.²⁶

Entropies. Ideal gas entropies are also listed in Table VII. The present values are based on the theoretical vibrational frequencies and molecular geometries. This gives rise to a ca. $1 \text{ J K}^{-1} \text{ mol}^{-1}$ difference when compared to the ideal gas values calculated in the JANAF tables.⁶

Conclusions

Good agreement with experiment is found for the theoretical optimized geometries and vibrational frequencies of fluorinesubstituted silylenes, silyl radicals, and silanes. The ΔH° for a series of isodesmic reactions have been calculated at levels up to MP4SDQ/6-31G**. Since heats of reaction are not very sensitive to the calculational level, they have been used to estimate the ΔH_{f}° for SiHF, SiH₂F, SiH₂F, SiH₃F, SiH₂F, SiH₂F, and SiHF₃. The results are in agreement with the $D_0(SiH_3-H)$ and $D_0(SiF_3-H)$ measured by Doncaster and Walsh^{12,13} but disagree with the ΔH_{f}° obtained by Farber and Srivastava.^{11,15}

Acknowledgment. This work was supported by a grant from the National Science Foundation and by the donors of the Petroleum Research Fund, administered by the American Chemical Society. We thank the Computer Services Center at Wayne State University for a generous allocation of computer time.

Registry No. SiHF, 50561-30-3; SiH₂F, 68992-43-8; SiHF₂, 23178-61-2; SiF₃, 14835-14-4; SiH₃F, 13537-33-2; SiH₂F₂, 13824-36-7; SiHF₃, 13465-71-9.

⁽⁴⁰⁾ Size consistency corrections are required before the TCSCF + CISD energies in ref 26 can be used in this reaction.

⁽⁴¹⁾ Pople, J. A.; Luke, B. T.; Frisch, M. J.; Binkley, J. S. J. Phys. Chem., in press.