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Formulas are developed for the first and second derivatives of two electron integrals over
Cartesian Gaussians. Integrals and integral derivatives are evaluated by the Rys polynomial
method. Higher angular momentum functions are not used to calculate the integral derivatives;
instead the integral formulas are differentiated directly to produce compact and efficient
expressions for the integral derivatives. The use of this algorithm in the ab initio molecular orbital
programs GAUSSIAN 80 and GAUSSIAN 82 is discussed. Representative timings for some small
molecules with several basis sets are presented. This method is compared with previously
published algorithms and its computational merits are discussed.

INTRODL_]CﬂON . : E= 2 P by + — 2 o[ BVIAG) + Ve (1)
The importance of analytical calculated energy deriva- pvio
tives is well established.' Analytical gradients or first deriva-
tives have improved the speed of geometry optimizations by __1_ P duv|io)
an order of magnitude. Analytically differentiating the ener- ; “ o 2 MZM #AT T O
gy twice yields vibrational force constants and harmonic fre-
quencies more efficiently than numerical differentiation of IV e , 9S,,
the gradients which, in turn, is much more efficient than + ax Z # " o ? (2)
double numerical differentiation of the energy. Analytical
second derivatives are also very useful in searching for tran- FE _ h,, 1 P uviio)
sition structures. Expressions are available for first and sec- Ix dy Z * x dy E’ #%:d uvio —W
ond derivatives of Hartree-Fock,?” second order Méller— ) )
Plesset perturbation,® multiconfiguration SCF’~'! and con- "V oue Y IS s Oy, Oy
figuration interaction''~'* energies. To a large extent, the dx dy L oxdy & gy ox
efficiency of the energy derivative calculations depends on 1 P, .10 ,uv| Ao) P,
the speed of the two-electron integral derivatives. += z
In a previous paper,'> we outlined an algorithm for first 2 S, Oy y c?x
derivatives of two-electron integrals over s and p type Carte- (3)
sian Gaussians. A,l though very efficient, this m?thOd is d'iﬂi- in terms of the one and two particle density matrices P, and
cult to extend to higher angular momenta and higher deriva- P,..., the overlap and one electron integrals S, and hw ,

tives. Integral evaluation algorithms have recently been
reviewed by Hegarty and van der Velde.'® Compared to con-
ventional methods, the speed of calculating two-electron in-
tegrals involving d and f functions can be improved by a
factor of two or more, if the Rys polynomial method is

two-electron integrals ( uv|Ao), the nuclear—nuclear repul-
sion ¥, and the energy weighted density matrix P,. En-
ergy derivatives for other calculational levels can be found
elsewhere.'">%~!* The integral derivatives can be obtained by
. . . differentiating the integrals analytically; derivatives of the
17-19 »

used. In this paper, we present an efficient algorithm for density matrices and the molecular orbital coefficients must

;:le ﬁrsi and s§c;) nc/i\d?rlvatlves c?{)::artesm.xlll ??lu ssutlzs us1tng be found by a coupled-perturbed Hartree—Fock (CPHF) or
ys polynomials. As far as possible, we will follow the nota- MCSCF (CPMCSCF) procedure.

tion of Refs. 6 and 15. These methods have been implemen-
ted in the GAUSSIAN system®® of ab initio molecular orbital
programs since 1978.

The overlap, one-electron, and two-electron integrals
over the basis functions ¢ are given by

INTEGRAL DERIVATIVE ALGORITHM J~¢ ‘4 d @)
. = v @T,
The Hartree—Fock energy, first derivatives, and second #
derivatives can be expressed as'~’
% Fellow of the Alfred P. Sloan Foundation, 1981-83. h,, = f o i,¢v dr, (5)
Y Waork supported by DOE.
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(uvldo) = f f B2 8.1)-— 221 ,2 dr drs (6)
12

where 4 is the core or one-electron Hamiltonian. The basis
functions are constructed from linear combinations of Gaus-
sian-type primitives

by =D bou No 8> (7)

where £, are the contraction coefficients and ¥, the norma-
lization factors. Each primitive function is written as a po-
lynomial times a spherical Gaussian
Lo Loy la
Ballis vy, @) =x" 2z exp( — alr, ), (8)
where
4 = (le’ lAy: IAz)’ ry=r— A= (xA’yA, ZA);

r is the electron coordinate and A = (4,, 4, 4,) the Gaus-
sian center. The higher Cartesian Gaussians can also be ob-
tained by differentiating a spherical Gaussian

gt a)=M"“M" Mg 01, a) (9)
where
prerio g 9 1?4] MO—1.
2a o4, ’

(10)

If A is a linear function of A4, then the following useful
relation can be obtained from Eq. (10) by induction:

le (.7/1 —1
2a 04,

The general two-electron integral over contracted func-
tions, Eq. (6), can be reduced to a linear combination of two-
electron integrals over Gaussian primitives:

L1y L)
=Hg,,umr,,(1>,a)g,,(lmr,,u),ﬂ)i
¥z

x8:(lc, Tc(2), ¥) 84(lp, ¥p(2), 6) d7, dry. (12)

If the Coulomb operator is expressed as a Gaussian trans-
form

L2 (Tep—urr)d 13
ﬁfo expl — 12 ) du, (13)

47}

M'A =AM 4 2= (11)

the two electron integral can be written as
2 (=,
Lelaltelo) == [ " 1% (apeleul )
Jr Jo
XI;(lAleleley u) I;(lAlelelez u) du
(14)

in terms of three two-dimensional integrals I}, I and I
where

L Uaslpelcxlpy u)

- f f x4 (1) %5 (1) P (2) % p 212

Xexp( — ax (1) — Bxg(1)* — yxc (2 — 8x,(2)
— u*(x, — x,)) dx, dx,, (13)

where x, (1) = x, — A, etc. If a change of variables is made

from u to ¢,
t2=u/(p+ud); =1/1—1%I;
P=(a+ﬂ)(7’+5)/(a+ﬁ+7/+5), (16)

then the two-electron integral has the form

Llgllclp) = 2 \/Z’:Jl I(¢) 1,(¢) L(t) dt
T Jo

1
=J' P,(t) e~ dy, (17)
0

where P, (t)is a L th degree polynomial in ¢ 2,
L=+ g+ [lc| + 1.

Dupuis, Rys, and King'’-'* have developed a numerical qua-
drature to compute this integral exactly, based on Rys poly-

nomials:

L (lclp) = Z P(t,) W, n>L/2
a=1
= 2 Ix(ta)Iy(ta)Iz(ta) W:’ (18)
a=1
where
W* =2Jp/m exp( pPQ*t2) W,. (19)

The appropriate roots and weights of the Rys polynomials
aret, and W, respectively. Thus the problem of calculating
the six-dimensional two-electron integral has been reduced
to the evaluation of three two-dimensional integrals 7, (¢),
1,(t),and I,(t) at n different roots ¢, and taking the weighted
sum. In the original implementation by Dupuis, Rys, and
King, these integrals were also done by numerical quadra-
ture'’; current implementations use more efficient and com-
pact recurrence relations to evaluate the two-dimensional
integrals.'>*® Note also that the exponential term in W *
cancels a corresponding termin I, (¢,) I (¢,) I,(z,) and is not
calculated explicitly.

Derivatives of the two-electron integrals can be written
in terms of derivatives of the basic two-dimensional inte-
grals. Equation (17) is differentiated with respect to the posi-
tion of a Gaussian and the derivative is taken under the inte-
gral. The integrand has the form of an L + 1 degree
polynomial in ¢ > multiplied by the same exponential as in Eq.
(17) and can also be integrated using the Rys quadrature:

ait, lB|l 1,)

X(t)
ff . L)L) 3t

P_,_H(t)e PPQ gy

L, (1)
1 0,

L)L) Wk n'>(L+1)/2

i
iMz S

Similarly, for the second derivatives
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Flldslicly) 2 AL(t,) dL(,)
JdA4.0B, = 94, 9B,
n">(L +2)/2, (21)
Pllsllcly) _ & FLL)
JA,. 3B, &1 0A,.0B,
n">(L +2)/2. (22)
For spherical Gaussians, the two-dimensional integral
is given by
1.(0000¢ )
=n/\tg exp(—pt’PQ’ — «uAB} — »CD%), (23
where f=a+fB, ¢=y+6, «=aPf/r, =Yg,
P =ﬁ7/(ﬁ + ?)’ ABx =Ax —Bx’ CDx = Cx —Dxi PQx

=Px _Qx’ Px =(an +BBX)//"’ and Qx =(7Cx
+ 6D, )/ 4. The first and second derivatives of I, (0000t ) are

Lt,) W3

I(t) () W3

A0 _ (= 2pt%a/p) PQ, — 244B,]
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I (00002 )
0A4,0B,
= [(—2pt?a/p) PQ, — 24AB,]]
X [(—20t*B/A) PQ, + 2:AB, ] — 2pt2ulse + 2u]
X [#/\[ig exp( — pt *PQ2 — «AB% — »CD%)]
= [A(4,)A(B,)+ A,p] 1,(0000¢)
= DDI (0000t ), (25)
where
Aup =0A(A,)/3B, =3A (B,)/A,,.

Note that A (4, ) and A (B, ) are linear functions of the co-
ordinates and that A ,; is independent of the coordinates.

Although the two-dimensional integrals for higher or-
der Cartesian Gaussians are calculated using recurrence re-
lations, they can also be obtained formally by applying the
operators M to I, (0000t ),

L Ly o lodpet) = M M '™ M'e M '™ I_(0000z).

94, (26)
Similarly, derivatives of the two-dimensional integrals for
2 2 2 2
X [7/ g exp(—pt*PQ} — «AB} — +CD})] higher order Cartesian Gaussians can be obtained by apply-
ing the operators M to DI, (0000t ) and DDI, (0000t ), using
= A (4,) 1,(0000¢ ) = DI, (0000¢ ), (24) Eq. (11) for M operating on A.
1
31,‘{,‘1 xf xl xt ~ o~ ~ A BIX O(X)Ot A A A A
{A Bx'Cx*D. )=MleMIBxMIC,‘MID, ( )=M14xMIBxMICxMIDXA(AX)IX(W)Ot)
04, 04,
= A (Ax) Ix(leIBXICxlet) + (IAx/za)AAA Ix(le - 1 IBxlelet)
+ (IBx/w)AAB I-x(lele —1 lCXIDxt) + (ICX/ZV) AAC Ix(IAxlBXICx -1 let)
+ (le/Z(S) AAD Ix (IAx IBxlele —1 t) = DIAx (le IBx ICxlet )’ (27)
FPLLdpdexdpt) a0, St Svien S ipe TLA00008) Ay o~y o) o
XV Ax Bx CxDx7 ) A lax pp e ppiox jpios x =M BxMICxMIDxA
9408, 408, M [A{4,)A(B,)+ A,s] 1.(0000¢)

ZA/\IIAK&[BI&ICX&IDLA(AX)
JdB

TX

aI, (0000t )

+ AABIx (IAxleICxlet )

=A (Ax) DIBx(leIBXICxlet) + AAB Ix(lelelelet)
+ (le/za) AAADIBx(le - 1 leleIDxt) + (le/Zﬂ)AABDIBx(leIBx - 1 lelet)
+ (ICx/zy)AAC DIBx(leIBXICx -1 let) + (le/za) AADDIBX(IAxleICxle -1 t)

= DDIABx‘lele ICx let )

Note that these formulas do not require the two-dimen-
sional integrals for higher order Cartesian Gaussians. Fur-
thermore, they are independent of the actual method used to
compute the original two-dimensional integrals J.

DISCUSSION

The algorithm outlined above has been implemented in
the GAUSSIAN system of programs. For the integral and inte-
gral derivative evaluations, the basis functions are grouped
into shells. A set of Gaussians with the same exponent on the
same center but differing in angular momenta constitute a

primitive shell (ie., 5,p.,p,,p, and/or d ., d,,,d;, dy,
d,., d, ). A shell block refers to the set of two-electron inte-
grals over functions in a particular combination of four
shells. For a given primitive shell block, all of the necessary
two-dimensional integrals 7, first derivatives DI and, when
required, second derivatives DDI, are computed for each of
the roots. The appropriate quantities are then combined and
summed over the n roots to form the desired derivatives. The
shell blocks are classified as either one center, two center,
three center or four center; translational invariance is taken
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TABLE 1. Two electron integral and integral derivative programs used in the GAUSSIAN system.

Basis
Program Program function
name type Algorithm range Comments
L3N integrals axis switching® sp efficient with contracted functions
L34 integrals Rys polynomial® spdf efficient with uncontracted functions
L316 first derivatives this paper spd derivatives written to disk
L702 first derivatives previous paper® sp efficient for s and p functions
L703 first derivatives this paper spd derivatives combined with density matrices
L708 second derivatives this paper spd derivatives combined with density matrices

*Reference 22.
®References 17-19.
°Reference 15.

into account so that only 0, 3, 6, or 9 first derivatives and 0, 6,
21, or 45 second derivatives are calculated. The use of rota-
tional invariance can further diminish the number of integral
derivatives that must be calculated.””' Symmetry also re-
duces the computational effort, since integral derivatives are
calculated only once for an entire set of symmetry equivalent
shell blocks. Additional savings are possible when the inte-
gral derivatives are combined directly with the density ma-
trices; an entire shell block is eliminated if its contribution to
the total derivative is below a threshold.

The two-electron integral and integral derivative codes
used in the current versions of GAUSSIAN 80 and GAUSSIAN
82?° are summarized in Table I. The Rys polynomial method
discussed above is used whenever d- or f-type basis functions
occur in the integrals (program L314) or integral derivatives

TABLE II. Comparison of calculation times (in seconds).

(L703). If only s and p orbitals are involved in a particular
shell block, previously published algorithms for integrals®
(program L311) and integral derivatives'® (L702) are more
efficient. All second derivatives of the two-electron integrals
are calculated with the Rys polynomial method (program
L708).

In frequency calculations, all integral first derivatives
are computed by program L316 and integral second deriva-
tives by program L708. The use of L316 instead of L702 and
L703 (as employed for the gradients) leads to some loss in
efficiency; however, the integral first derivatives are required
in a different form for the CPHF step in the frequency calcu-
lations. Since the frequency calculations are dominated by
the integral second derivative evaluations, this is not a ser-
ious disadvantage (see Table II and discussion below). As

Total times Two electron times®
Energy Integrals 1st derivatives 2nd derivatives
Energy + gradients
Machine Molecule Basis Energy + gradients + frequencies L311 L314 L702 L703 L316 L708
Vax C,H, STO-3G 47 85 582 10 26 114 287
321G 77 124 1041 24 36 132 276
4-31G 89 182 1758 36 73 305 736
6-31G* 274 771 5015 43 153 93 375 827 1736
CH,OH STO-3G 62 126 1035 21 51 220 627
321G 128 208 1570 47 68 238 572
431G 157 321 2875 98 144 554 1507
6-31G* 665 1572 8421 94 360 176 701 1527 3842
Amdahl C,H, STO-3G 5.5 9.7 59.7 1.0 2.5 14.2 254
321G 8.8 14.0 106.4 23 3.5 15.7 25.7
431G 10.4 19.8 176.0 36 7.1 37.2 65.5
6-31G* 38.7 88.2 528.8 47 16.7 8.9 374 104.9 162.0
CH,0H STO-3G 7.3 14.3 110.2 22 5.2 28.9 59.6
321G 14.2 23.0 163.3 4.9 7.0 29.8 55.2
4-31G 18.2 351 308.8 8.1 14.6 72.9 148.5
6-31G* 86.3 189.2 904.9 10.3 394 17.8 82.1 201.7 376.8
Cray C,H, STO-3G 1.51 2.58 21.61 0.27 0.58 293 12.03
321G 3.11 4.60 39.31 1.80 0.74 4.20 12.53
4-31G 3.41 6.08 64.09 1.06 1.83 8.43 30.41
6-31G* 9.40 22.02 176.04 1.40 4.14 2.24 9.05 24.01 72.87
CH,OH STO-3G 1.93 3.53 40.90 0.55 1.11 5.80 28.01
321G 4.60 6.88 58.65 1.48 1.80 6.93 25.94
431G 5.47 9.70 111.18 2.22 3.38 15.36 67.00
6-31G* 23.18 45.59 301.61 2.85 9.51 413 16.95 4094  164.52

*See Table I and the text for descriptions and utilization of the individual integral and integral derivative programs.
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noted by Pulay,’ it is possible to circumvent the storage of
the integral first derivatives by contracting them with the
density matrix elements to form pseudo-Fock operators.
This technique has also been used for some time in one veri-
sion of GAUSSIAN 80.?* The direct approach has the advan-
tage of eliminating a large disk file and reducing the amount
of computation in the CPHF step. However, it becomes un-
wieldly when all 3N-6 (N = number of atoms) pseudo-Fock
operators plus the density matrices do not fit into high speed
memory.

Representative total cpu times for energy, gradient (en-
ergy + first derivative), and frequency (energy + first and
second derivatives) calculations are listed in Table II. In ad-
dition, the timings have been broken down to the individual
programs that deal with the two-electron integrals and inte-
gral derivatives. Two molecules, C,H, and CH;OH, have
been examined at four different basis sets: Minimal (STO-
3G*), extended (3-21G* and 4-31G?9), and polarization (6-
31H*?"), containing 42, 42, 56, and 72 primitive Gaussians
and 14, 26, 26, and 38 contracted basis functions, respective-
ly. Computations were run on three classes of machines: A
minicomputer (VAX 11/780), a mainframe (AMDAHL
470V/8, approximately the same speed as the IBM 3033),
and a supercomputer (CRAY-18). In the CRAY calcula-
tions, scalar versions were used throughout except for the
Hartree-Fock SCF step.

From comparisons of the total times for the energy,
gradients, and frequencies, several trends are clear. Aver-
aged over the two molecules and the three machines, energy

+ gradient calculations require 1.8 (sp only) to 2.3 (spd)
times longer than calculations of the energy alone. Analo-
gously, frequency evaluation takes 8.6 (sp only) and 6.2 (spd)
times longer than the energy + gradients. The 3-21G tim-
ings are noticeably shorter than those for the 4-31G basis set.
For energy + gradients, the 3-21 G times are ~70% of the
4-31G times; at the second derivative level, 3-21G calcula-
tions require only half the time needed for the 4-31G basis
set. To the extent that the 3-21G basis set provides results
comparable to 4-31G, it is clearly more economical to use.
Comparison of the STO-3G, 3-21G, and 4-31G execution
times for L708 (rightmost column in Table II) illustrates the
point that although 3-21G has more basis functions than
STO-3G, the number of primitives is the same and the execu-
tion times in L708 are very similar. The 4-31G times for
L708 are considerably longer because of an increase in the
number of primitives from 42 to 56, even though the number
of contracted functions is the same.

It is instructive to compare the present method with
other algorithms. The HONDO program”® produces integral
derivatives using the fact that the derivative of a Cartesian
Gaussian can be expressed in terms of higher and lower or-
der Gaussians. Calculations of the gradient contributions
arising from a DDDD shell block require the corresponding
FDDD, DFDD, DDFD, DDDF and PDDD, DPDD, DDPD,
DDDPblocks. For the particular case of a fully uncontracted
DDDD shell block, the HONDO algorithm requires
~ 101 000 floating point multiples; the algorithm presented
here requires 98 000 floating multiplies. For second deriva-
tive evaluation, the approach in HONDO may require fewer

Schlegel, Binkiey, and Pople: Derivatives of two-electron integrals

floating point operations than the algorithm outlined in this
paper; however, many more shell blocks must be held in
core, leading to serious data handling problems that can de-
grade the overall efficiency. In a recent paper, Saxe e al.”®
discuss a method of evaluating integral second derivatives
that is similar to the one presented here. They also evaluate
the quantities DDI, but by a completely different and more
complicated method. The present approach requires fewer
floating point operations and is much easier to code for high-
er order Gaussians. However, in both cases, the rate deter-
mining computational step is the formation of the integral
derivatives by combining the two-dimensional integrals and
their derivatives.

SUMMARY

An efficient algorithm has been presented for the analy-
tical computation of first and second derivatives of the two-
electron integrals using the method of Rys polynomials.’”*?
The formulas are compact and can be used for basis func-
tions with arbitrary angular momentum. Furthermore, the
method is independent of the details of evaluation of the two-
dimensional integrals that occur in the Rys polynomial
method. By suitably combining programs incorporating the
method given here with previously published'*?* highly effi-
cient methods for evaluating integrals and their derivatives
over basis functions involving only s and p functions, it is
possible to construct a procedure that calculates gradients in
about } the time that would be required if only the Rys inte-
grals method were used. The present method offers certain
computational advantages over previously published algor-
ithms.
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