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An analytic function for the ground electronic state CHI s .CH3 + -H potential energy surface is proposed. This model 
makes use of a switching-function formalism and is based on both spectroscopic data and ab initio calculations at the 
MP4/6-3 1G** level. The proposed general symmetric analytic potential is suitable for use in quasiclassical trajectory studies 
of the CH4 s C H 3  + .H reaction. 

I. Introduction 
The construction of polyatomic potential energy surfaces 

presents a formidable challenge to the current state of chemical 
The development of quantitative energy surfaces 

is dependent upon both the availability of accurate experimental 
data and the ability to perform high-level ab  initio calculations. 
In addition, the process is complicated by the lack of a generalized 
method of formulating these surfaces which is applicable to a wide 
range of polyatomic chemical systems. As a result, there are only 
a small number of potential energy surfaces which effectively 
model the dynamical behavior of these complex systems. 

The determination of the potential energy surface for the re- 
action CH4 * .CH3 + .H is particularly important for the res- 
olution of several fundamental questions. While the CH4 - -CH3 
+ .H dissociation probably does not have a saddle point, variational 
activated complex theoryM indicates that the activated complex, 
and hence the bimolecular and unimolecular rate constants, will 
depend upon the shape of the potential energy surface. These rate 
constants have been measured e~pe r imen ta l ly ,~ ,~  but they have 
not been successfully understood in terms of transition-state theory. 
In addition, the vibrational energy levels and anharmonic fre- 
quencies of bound methane are strongly dependent upon the 
potential energy surface. Finally, the shape of the potential energy 
surface will determine whether the classical motion is chaotic or 
q~asiper iodic .~-’~ 

This study was initiated in an attempt to begin the clarification 
of some of these issues. We have reported previ~usly’~ the results 
of ab initio calculations describing the dissociation of a single C-H 
bond in methane. In this work we present an analytic formulation 
of the CHI * -CH3 + -H potential energy surface. 

11. Method 
The ab initio calculations were carried out with the GAUSSIAN 

80 series of programs15 using the 3-21G and 6-31G** bases.16 
Both basis sets are extended bases of the split-valence type. In 
addition, the 6-3 1G** basis includes polarization functions: six 
Cartesian d orbitals on non-hydrogen atoms and three p orbitals 
on the hydrogen atoms. Energies were calculated at  both the 
closed-shell restricted Hartree-Fock (RHF)  and the open-shell 
unrestricted Hartree-Fock (UHF) levels. Correlation effects were 
estimated by means of Mdler-Plesset perturbation theory. The 
perturbation calculations were carried out through complete fourth 
order with the 6-3 1G** basis; Le., the final fourth-order energies 
were computed in the space of single, double, triple, and quadruple 
subsiitutions (MP4) with the perturbation theory applied to all 
the orbitals (valence and core) of the molecule. 

The energy calculations were performed for various geometries 
in order to assess the changes in the molecular potential energy 
due tQ bond stretching and angle deformations. We have reported 
p rev i~us ly ’~  the effects of extending a single C-H bond (sym- 
bolized by C-H*) while simultaneously maintaining the remaining 
C-H bonds at their equilibrium bond length (1.086 A), optimizing 
the pyramidal angle (the angle formed by the C-H* bond and 
the unchanged C-H bonds), and retaining C3, molecular sym- 
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metry. In this work, the effects of angular deformation on the 
potential were investigated by reducing the symmetry of the 
molecule. Figure 1 depicts the angular coordinates used for these 
calculations. The angles J /  and p are dihedral angles, while x and 
y are angles defined by a C-H bond and the former C3 axis. 

Ab initio force constants were computed from the ab  initio 
molecular orbital calculations using an analytical second-derivative 
procedure a t  the Hartree-Fock 1 e ~ e l . l ~  Harmonic vibrational 
frequencies for methane and methyl radical were calculated from 
internal coordinate force constants by using the NCRDWC pro- 
gram.’* Finally, the parameters of the analytic model were fitted 
to the ab  initio data by using a nonlinear least-squares procedure. 

111. Spectroscopic Data 
The vibrational spectrum of methane has been studied exper- 

imentally by a number of  researcher^.'^-^^ We have chosen to 
use the recent work of Gray and RobietteZ4 as a source of ex- 
perimental harmonic frequencies. In their work, Gray and Ro- 
biette made a new determination of the quadratic and cubic 
potential constants of methane by fitting the available experimental 
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TABLE I: Harmonic Frequencies and Force Fields 

Figure 1. Definitions of the angular deformations used in the ab initio 
calculations. x and y are measured from the C3 molecular axis to C-H 
bonds; + and fi  are dihedral angles. 

data. The harmonic frequencies of methane were then calculated 
with this new refinement of the potential constants. 

In terms of a redundant set of internal coordinates (bond lengths 
and bond angles) seven constants are required to define the 
quadratic force field of methane: fi, bond stretch constant;f,,, 
stretch-stretch interaction constant; f,, angle bend constant; fa,, 
bend-bend interaction constant; fa,., bend-bend interaction 
constant; f,, stretch-bend interaction constant; &, stretch-bend 
interaction constant. The interaction force constants contribute 
substantially less to the total potential than does either f r  or fa. 
Consequently, in order to simplify our model of the methane 
quadratic force field, we sought to use the redundancy in the 
coordinates to set one or more interaction forces to zero without 
limiting the force field’s ability to reproduce the experimental 
harmonic frequencies. An analysis in terms of symmetry force 
constants suggested that we assignf,, =fa,, = 0.0. The values 
of the remaining five force constants were then adjusted in the 
NCRDWC program until the calculated harmonic frequencies were 
in good agreement with the experimental harmonic frequencies. 
This process was repeated with f, = f a a  = faa, = 0.0. Table I 
contains a summary of the experimental harmonic frequencies, 
the two sets of calculated (“best fit”) harmonic frequencies, and 
the associated quadratic force fields for methane. 

In contrast to methane, the vibrational spectrum of methyl 
radical has not been subjected to exhaustive experimental analysis. 
The great majority of studies have used matrix isolation or other 
techniques to examine only the out-of-plane bending frequency.3w’ 
Consequently, we chose to define a set of harmonic frequencies 
for the in-plane vibrations of methyl radical by combining the 
experimental quadratic force field of methane with the theoretical 
harmonic frequencies for methane and methyl radical. Using the 
experimental harmonic frequencies of Gray and Robiette and ab 
initio harmonic frequencies calculated with GAUSSIAN 80 a t  the 
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analytic 
potentialb best fitb exptaJ 

frequencies 
w ,  (At l )  
w 2  (A”,) 
w ,  (E’) 
w ,  (E’) 

force constants 
f r  

’ frr 
1, 
f,, 
fkY 
frat 

Methane 

3025.5 3025.7 
1582.7 1583.1 
3156.8 3156.7 
1367.4 1367.2 

d 5.422 
0.0038 
0.5848 
0.0 
0.0 
0.183 

-0.186 
Methyl Radical 

3026.7f 3027.0 

3192Sf 3192.3 
1445.0f 1445.1 

606.5e 

5.382 
0.028 
0.4397 
0.0 
0.0 
0.0 

3023.6 
1583.1 
3158.9 
1367.3 

5.426 
0.0 
0.5848 
0.0 
0.0 
0.183 

-0.186 

3015.0 

3204.5 
1445.2 

5.395 
0.0 
0.4397 
0.0 
0.0 
0.0 

3023 
1595 
3197 
1423 

5.496 

0.5938 
0.0 
0.0 
0.0845 

-0.0234 

-0.0823 

3035 

3208 
1471 

567.3g 

5.462 
0.0090 
0.4543 
0.0 
0.0646 

-0.0630 
Equilibrium bond length 1.0858 A. Equilibrium bond 

length 1.086 A. Spirko and Bunkerz5 in fitting experimental data 
with a nonrigid invertor anharmonic Hamiltonian report Re = 
1.058 A for methyl radical. This value appears to be anomalously 
shorter than other values reported in the recent l i t e r a t ~ r e . ~ ~ - ~ ~  

Gray and Robiette report the following sym- 
metry force constants: F, ,  = 5.435 aJ/A’, FZ2 = 0.584 aJ, FJ3 = 
5.378 aJ/AZ, F,, = 0.221 aJ/A, F,, = 0.548 aJ. e Experimental 
anharmonic frequency ref 30. r‘ In-plane frequencies for CH3 
obtained by scaling ab initio frequencies (HF/6-31G**) by 
0.963 54 for the CH stretching modes and by 0.932 94 for the 
bending modes. Scale factors were obtained by comparing experi- 
mental and theoretical harmonic frequencies for methane. 

Anharmonic frequency calculated with a semiclassical formalism. 
Units: frequencies in cm-’;jr,frr in mdyn/A,f, in mdyn A/rad2. 
fro,  fra’ in mdyn/rad. 

HF/6-3 1G** level, we computed a ratio (EXPERIMENT/GAUSSIAN 
80) for each of the four vibrational frequencies of methane. The 
mean value of the high (3000-3200 cm-I) frequency ratios together 
with the mean value of low (1300-1600 cm-I) frequency ratios 
then constituted two adjustment factors which were applied to 
the a b  initio frequency calculations for methyl radical. The 
resulting values form a reference set of harmonic frequencies for 
the in-plane vibrations of methyl radical and are listed in Table 
I. 

To determine a quadratic force field for the in-plane frequencies 
of methyl radical we assigned f a a  = fi, = f i a t .  = 0.0. Under this 
simplifying assumption the remaining three internal coordinate 
force constants V;,f,,f,) were adjusted in the NCRDWC program 
until the calculated harmonic frequencies showed good agreement 
with the reference set of harmonic frequencies. This process was 
repeated after assigningf, =fa, = f i a  =fie. = 0.0. A summary 
of the two sets of calculated (best fit) harmonic frequencies and 
the associated quadratic force fields is contained in Table I. 

Finally, the out-of-plane bending frequency of methyl radical 
is known to be quite anharmonic. Very recently, Yamada et aL30 
have made detailed measurements of the out-of-plane bending 
frequency in the gas phase using an infrared tunable diode laser. 
This determination, reported in Table I, is in good agreement with 
previous matrix isolation and flash photolysis studies. 

IV. Ab Initio and Numerical Fitting Results 
Methane. A series of calculations was carried out a t  the re- 

stricted Hartree-Fock level with the 3-21G basis and at the re- 

Reference 20. 
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TABLE 11: Methane Energy Calculations' 
Y P $ x MP4/6-31G** fittedb 

109.47 120.0 0.0 0.0 -40.393 863 -40.393 863 
10.0 -40.390 753 -40.390 767 
30.0 -40.366 085 -40.366 271 
50.0 -40.317 221 -40.317 297 

30.0 10.0 -40.390754 -40.390754 
30.0 -40.366 084 -40.366 088 
50.0 -40.317 841 -40.318 886 

60.0 10.0 -40.390 756 -40.390 740 
30.0 -40.366 056 -40.365 741 
50.0 -40.317 770 -40.316 744 

100.0 0.0 0.0 -40.382 845 -40.382 856 
80.0 -40.350 386 -40.350 576 
60.0 -40.297 523 -40.298 990 

90.0 120.0 0.0 0.0 -40.355 831 -40.357607 
99.0 -40.381 744 -40.381 836 

108.47 -40.393 743 -40.393 739 
110.47 -40.393 741 -40.393 738 
119.0 -40.382 113 -40.381 705 
129.0 -40.341 064 -40.340607 
' Energy in hartrees; 1 hartree = 627.51 kcal/mol. Angles in d e  

grees; see Figure 1 for definition of angles. Equilibrium bond 
length = 1.086 A. Calculated with eq 15 by using methane 
equilibrium parameters. 

stricted MP4 level with the 6-31G** basis to investigate the 
angular dependence of the methane potential. In these calcula- 
tions, the four C-H bonds were held fixed a t  their equilibrium 
bond length (1.086 A) while the angular coordinates (defined in 
Figure 1) were varied. The results of the MP4 calculations at  
various angular geometries are summarized in Table 11. 

It  should be noted that the data in Table I1 are divided into 
three subgroups. The first subgroup involves variations in the x 
and I) angles. These angular deformations define the spatial 
orientation of the C-H* bond and, hence, the values of the three 
bond angles formed by the C-H* bond and the CH3 moiety. 
These three angles are identified as 414,  $24, 434 and the angular 
variations are designated "$-type" motions. The second subgroup 
of data was generated by varying the p angle while holding one 
of the three dihedral angles of the CH3 moiety fixed at  its nominal 
value of 120.0O. This process defines the values of the three bond 
angles, B I Z ,  813,823, of the CH3 fragment. These "8-type" motions 
are the precursors of the in-plane angle bending motions of the 
methyl radical. Finally, the third subgroup of data was produced 
by a symmetric umbrella-like motion of the CH3 moiety which 
is defined by the angle y. This angular variation will be known 
as "A-type" motion and it will become the out-of-plane motion 
in methyl radical. 

To begin the construction of an  analytic representation of the 
potential surface, we performed a nonlinear least-squares analysis 
of the various levels of ab initio calculations. This analysis included 
only data for $-type and &type motions and utilized a function 
of the form 

2 3  

r = l  p i  
he C C (e i j  - B O ( W 4  (1) 

where Vo(R) is the energy minimun and do@) and Bo@) are the 
equilibrium values of the di4 and Or, angles for a given C-H* bond 
length. The angle do@) is the optimized pyramidal angle for a 
given extension of the C-H* bond and is trigonometrically related 
to B0(R) by the expression 

eo(R) = COS-] ['/2(3 cosz + o ( ~ )  - 1)1 (2) 

Since methane possesses tetrahedral symmetry at  equilibrium ( R  
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= 1.086 A), we require f, =fe, g,= go, h, = he for the diagonal 
quadratic, cubic, and quartic force constants, respectively. 

This analysis was accomplished in a two-step process. First, 
eq 1 was fitted to the ab  initio data, yielding diagonal quadratic, 
cubic, and quartic force constants. Secondly, in order to ensure 
that the cubic terms of eq 1 behave properly at large angular 
deformations, an augmented data set was constructed by quad- 
ratically extrapolating the a b  initio data to large angular dis- 
placements. These displacements represent very high-energy 
regions of the potential energy surface. Their inclusion only 
ensures that the behavior of the function is qualitatively correct 
a t  large angular deformations and is not intended to represent 
accurately the potential energy surface in these regions. Equation 
1 was then refitted to the enlarged data set by retaining the values 
of the quadratic and quartic force constants from the first step 
and allowing only the cubic force constant to vary in the fitting 
procedure. The results of fitting these diagonal force constants 
are summarized in Table 111 ( R  = 1.086 A). 

We found, however, that the utilization of only the diagonal 
force constants through fourth order was not sufficient to represent 
accurately the methane potential energy surface when large A-type 
deformations were allowed. It  became necessary to include 
nondiagonal cubic terms (in 4,4 and 8,) in the analytic expression. 
For methane there are 50 such nondiagonal cubic terms which 
can be grouped into the five distinct sets of eq 3 based on sym- 

c1 = ("14 - '#'0)2(e23 - + (424  - d'0)2(e13 - OO) + 
(434  - 40)2(812 - + (e12 - 80)2(434 - 40) + (813 - 

8 0 ) 2 ( h 4  - $0) + (O23 - 80)2(414 - a) 
+ (812 - 80)2(823 - OO) + c 2  = (O12 - 80)2(813 - 

(813 - 80)2(812 - + (013 - e0)2(e23 - OO) + (O23 - 80)2(812 - 
+ ( 4 1 4  - d'0)2(812 - + (O23 - 80)2(813 - + 

(414  - d'0)2(013 - + (414  - 40)'(424 - 60) + 
( 6 1 4  - '#'0)2(434 - 40) + (424  - 40)2(812 - OO) + 

(424  - d'0)'(@23 - + ($24 - d'0)'(414 - $0) + ( 4 2 4  - 
d0)2 (434  - 40) + (434  - 40)2(e13 - OO) + (434  - 40)2(823 - 

OO) + ( 4 3 4  - 40)'('$24 - $0) + ( 4 3 4  - 40)'(414 - $0) + 
(812 - 00)2(414 - 40) + (812 - 80)2(d24 - 40) + 

(813 - 80)2f414 - $0) + (O13 - 80)2(434 - $0) + (e23 - 
8 0 ) 2 ( h 4  - $0) + (823 - O0)'(434 - $0) 

c 3  = 
($14 - b0)(e12 - e0)(e13 - 
+ (424  - 40)(012 - e0)(823 - 

+ ($14 - d'0)(424 - 4 0 ) ( 4 3 4  - $0) 

+ ( 4 3 4  - '#'0)(813 - 80)(e23 - OO) 
c 4  = (812 - 80)(813 - eO)(e23 - 60) + 

($14 - d)O)(012 - e0)(424 - $0) + ($14 - 4O)(OI3 - 80)(d'34 - 
$0) + ( 4 2 4  - 40)(823 - 80)(434 - 40) 

c5 = ( 4 1 4  - 40)(@12 - OO)(d'34 - 40) + 
(414  - 40)(813 - e0)('#'24 - $0) + (614  - 40)(823 - 80)(812 - 

+ ( 4 1 4  - 40)(e23 - e0)(e13 - OO) + ( 4 1 4  - 40)(823 - 
80)(424 - $0) + (414  - '#'0)(823 - O0)(434 - $0) + 

( 4 2 4  - 40)(812 - 00)('#'34 - 40) + 
(424  - 40)(e13 - 80)(812 - + 

+ ( 4 2 4  - '#'0)(813 - 80)('#'34 - (424  - 40)(013 - 80)(823 - 
$0) + (434  - 40)(812 - 00)(813 - OO) + 

(434  - d'0)(e12 - 80)(823 - (3) 

metry. An augmented data set (based on all the MP4/6-31G** 
data, Le., &type, 6'-type, and A-type motions) was fitted by in- 
cluding these nondiagonal cubic terms. The diagonal quadratic, 
cubic, and quartic force constants were assigned the values de- 
termined by the initial two-step fit described above. We found 
that only the C4 set of nondiagonal cubic terms, with a force 
constant gn4 = 0.2242 mdyn A/rad3, is required to be nonzero 
to attain an excellent fit to the data. These results are contained 
in Table 111. 

For comparison with the calculated MP4 methane energies, 
Table I1 lists the energies predicted by the complete analytic 
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TABLE 111: Force Constants 
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@ and e Diagonal Force Constants 
R calculation 

1.086 HF/3-21G 
HF/6-32G** 
MP4/6-31G** 
SWITCH 

1.5 HF/3-21G 
HF/6-31G** 
MP4/6-31G** 
SWITCH 

2.0 HF/3-21G 
HF/6-31G** 
MP4/6-31G** 
SWITCH 

2.5a UHFi3-21G 
UHF/6-3 lG* * 
UMP4/6-31G** 
SWITCH 

ooa UHF/3-21G 
UHF/6-31G** 
UMP4/6-3 1G** 
SWITCH 

f@ g@ h@ 
0.7020 -0.1243 0.0030 
0.6507 -0.1068 0.0045 
0.5938 -0.0903 0.0120 
0.5938 -0.0903 0.0120 
0.5892 -0.1057 0.0287 
0.5727 -0.0845 0.0182 
0.4958 - 0.0758 0.0196 
0.5152 - 0.0 7 84 0.0104 
0.4084 -0.0520 0.0240 
0.4027 -0.0469 0.0193 
0.2902 -0.0420 0.0169 
0.2975 -0.0452 0.0060 
0.0490 - 0.0 126 0.001 1 
0.0490 - 0.0121 -0.0015 
0.0560 -0.0105 -0.0022 
0.055 1 -0.0084 0.0011 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 

f i  ge he 
0.7020 
0.6507 
0.5938 
0.5938 
0.6172 
0.5891 
0.5454 
0.5534 
0.5509 
0.5319 
0.4940 
0.5001 
0.5088 

0.4664 

0.4819 
0.4543 
0.4543 

A Diagonal Quadratic and Quartic and Nondiagonal Cubic Force Constants 

-0.1243 
-0.1068 
-0.0903 
-0.0903 
-0.0129 
-0.0846 
-0.1213 
-0.0998 
-0.0954 
-0.1132 
-0.1 21 9 
-0.1124 
-0.1209 

-0.1203 

0.0 
-0.1232 
-0.1232 

0.0030 
0.0045 
0.0120 
0.0120 
0.0954 
0.0258 

- 0.002 1 
0.0056 
0.0323 
0.0040 

-0.0031 
-0.0028 

0.0157 

-0.0082 

-0.0100 
- 0.0 10 1 
-0.0101 

R calculation f A  h A  gn4 

1.086 MP4/6-31G** 0.0 0.0 0.2242 
SWITCH 0.0 0.0 0.2242 

2.0 MP4/6-31G** 0.0261 0.0511 0.0901 
SWITCH 0.0261 0.0511 0.0901 

ma UMP4/6-31G** 0.0436 0.0854 0.0 
SWITCH 0.0436 0.0854 0.0 

a UHF data. R in angstroms;f$,fe,f'A in mdynA/rad2;g@,ge,gn, in mdyn A/rad3; h@, h e ,  h a  in mdyn A/rad4. 

function for each angle deformation. The maximum difference 
between the MP4 values and the predicted values is 1.1 1 kcal/mol 
with a mean for all the data of 0.23 kcal/mol. As a percent of 
the MP4 energy above equilibrium, the mean difference for the 
entire data set is 1.21%. Finally, using the MP4 data, the analytic 
function predicts a quadratic bending force constant of 0.5938 
mdyn A/rad2 (Table 111) which compares very favorably with 
the value of 0.5848 mdyn A/rad2 (Table I) from the harmonic 
quadratic force field which is based on spectroscopic data. 

Methyl Radical. We now turn our attention to methyl radical, 
the other asymptotic limit of the CH4 e .CH3 + .H potential 
surface. Since the C-H* bond has been ruptured, only 0-type 
(in-plane) and A-type (out-of-plane) angular motions remain to 
be investigated. Open-shell unrestricted MP4 calculations using 
the 6-31G** basis were performed for various angle deformations 
of the methyl radical. The resulting MP4 energies are summarized 
in Table IV, where the angular coordinates are those of Figure 
1. Using the nonlinear least-squares procedure, we fitted these 
data with a function of the form 

2 3  3 3 

80(R))3 + he C (0, - j o ( R ) ) 4  +fa 1 A: + ha C A t  (4) 
l=l  J>i  t = l  r= l  

where Vo(R) and 0,(R) are defined as in eq I,&, go, and ho are 
the in-plane diagonal quadratic, cubic, and quartic force constants, 
respectively, fa and ha are the out-of-plane quadratic and quartic 
forc6 constants, and A, = y - 90.0' for f = 1, 2, 3. Note that 
the functional form allows the possibility of an unsymmetric 
out-pf-plane motion even though we have included only symmetric 
out-of-plane bends in this analysis. 
As in the case of methane, a two-step fitting process was utilized. 

First, eq 4 was fitted to the ab  initio data, yielding the diagonal 
quadratic, cubic, quartic, and the out-of-plane quadratic& and 
quartic force constants. After augmenting the data set as described 
above, we refitted eq 4 to the enlarged data set, retaining the values 
of the diagonal quadratic and quartic force constants determined 
in the first step, and allowing only the diagonal cubic and the 

out-of-plane quadratic and quartic force constants to vary in the 
fitting procedure. The values of the force constants determined 
by the fitting are contained in Table I11 ( R  = a). 

The energies predicted by the analytic function for various 
geometries are also included in Table IV for comparison with the 
calculated MP4 energies. The maximum difference between the 
MP4 energies and the predicted values is 0.052 kcal/mol with 
a mean of 0.016 kcal/mol for the entire data set. As a percent 
of the MP4 energy above equilibrium, the mean difference is 
2.49%. There is also good agreement between the in-plane 

uadratic force constant of the analytic function (0.4543 mdyn I/ rad2, Table 111) and the harmonic quadratic force constant 
(0.4397 mdyn A/rad2, Table I) calculated from spectroscopic data. 

As indicated above, the out-of-plane bending motion of the 
methyl radical is very anharmonic. Previous investigators have 
proposed both quartic ( R i v e r o ~ ~ ~ )  and sextic (Yamada et al.) 
polynomials as models of this bending motion. In this study we 
have chosen to represent the out-of-plane frequency by a quartic 
polynomial and we have used a semiclassical procedure to evaluate 
the ability of the analytic methyl potential to reproduce the an- 
harmonic out-of-plane bending frequency. The methyl radical 
was treated as if it were a classical mechanical system oscillating 
symmetrically such that the center of mass remains stationary. 
By applying the quantization formalism first proposed by Einstein42 

(5) 

where the appropriate mass term is given by 
M = 3mHmc/(3mH + mc) (6) 

with mH = mass of 'H, and mc = mass of lZC6, we are able to 
determine the energy levels corresponding to the quantum numbers 
n = 0 and n = 1 and, consequently, the lowest vibrational fre- 
quency of the methyl radical. 

This semiclassical formalism was used to evaluate the out-of- 
plane bending frequency predicted by the sextic polynomial of 
Yamada et al. I t  yielded a value of 606.10 cm-'. However, 

~~ ~ ~ 

(42) A. Einstein, Verh. Dfsch. Phys. Ges., 19, 82 (1917). 
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TABLE IV: Methyl Radical Energy Calculations' 

0.8 - 

0.6 - 
N 
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0.8 7 

A D  
A 

0 

O %  

0 

Y P MP4/6-31G** fittedb 
90.0 120.0 -40.217 592 -40.217 592 

110.0 -40.214 456 -40.214 422 
100.0 -40.205 047 -40.204 965 
90.0 -40.189 432 -40.189 375 
80.0 -40.167 877 -40.167 910 
70.0 -40.140 880 -40.140934 
60.0 -40.108 940 -40.108 912 

70.0 120.0 -40.206 657 -40.206 639 
80.0 -40.216 201 -40.216 198 
89.0 -40.217 584 -40.217 583 
91.0 -40.217 584 -40.217 583 

100.0 -40.216 201 -40.216 198 
109.47 -40.207 532 -40.207 552 

' Energy in hartrees; 1 hartree = 627.51 kcal/mol. Angles in de- 

Calculated with eq 15 by using methyl radical 
grees; see Figure l for definition of angles. Equilibrium bond 
length= 1.086 A.  
equilibrium parameters. 
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Figure 2. Quadratic force constants for the @ angles as a function of the 
C-H* bond length at various levels of calculation: (A) HF/3-21G; (0) 
HF/6-31G**; (0) MP4/6-31G**. 

Chipman4, has corrected an error in the masses used by Yamada 
et al. in their calculations and has offered a revised set of potential 
parameters. With this new set of parameters, the semicIassica1 
calculation predicts a frequency of 608.1 1 cm-'. This value is in 
good agreement with Chipman's own calculation of 606 cm-', 
which is also based on the revised parameters, confirming the 
suitability 6f our semiclassical formalism. 

Using the complete analytic potential for methyl radical pro- 
posed in this work, we have calculated an out-of-plane frequency 
of 567.34 cm-'. This result differs from the experimental value 
of 606.453 cm-' by 39.1 1 cm" or 6.45%. Surrat and GoddardU 
have also calculated this frequency qbtaining a value of 585 cm-' 
by numerically solving for the vibrational wave functions using 
a CI potential curve. The harmoni9 frequency calculated with 
GAUSSIAN 80 using the 6-31G** basis at the Hartree-Fock level 
is 487.37 cm-'. 

C-H Bond Rupture Minimun-Energy Path. We have now 
examined the asymptotic limits of the CH4 e CH, + -H potential 
surface, proposing analytic functions which describe the angular 
deformations of both methane and methyl radical. The remaining 
task is to describe the potential energy surface as a function of 
the C-H* bond length. We have previ~usly '~ reported MP4 
energies along the dissociation path which were calculated by 
optimizing the pyramidal angle a t  each step while maintaining 
C,, molecular symmetry. This path; defined by the optimized 
pyramidal geometry with C,, molecular symmetry, will be des- 
ignated the minimum-energy path (MEP). 

Additional calculations at  the Hartree-Fock level with the 
3-21G basis and at  the MP4 level with the 6-31G** basis have 
been completed in order to explore angular deformations along 

(43) D. M. Chipman, J .  Chem. Phys., in press. 
(44) G. T. Surrat and W. A. Goddard 111, Chem. Phys., 27, 39 (1977). 
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Figure 3. Quadratic force constants for the 0 angles as a function of the 
C-H* bond length at various levels of calculation: (A) HF/3-21G; (0) 
HF/6-31G**; (0) MP4/6-31G**. 
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ANGSTROMS 
Figure 4. Quadratic bending force constant (mdyn A/rad2) for @-type 
motions. Solid curve: spline fit to MP4 6-31G** data. Dashed curves: 

a = 0.75 A (upper). 

the MEP. The behavior of the diagonal quadratic, cubic, and 
quartic force constants was delineated by fitting the ab initio data 
for only $-type and &type motions with eq 1. The results of this 
least-squares analysis are summarized in Table I11 for various 
extensions of the C-H* bond. Selected data from Table I11 are 
portrayed in Figures 2 and 3 and demonstrate the behavior of the 
quadratic force constants as a function of the C-H* bond length. 

I t  is of some interest to contrast the behavior of the quadratic 
force constant for +type motions with the prediction of a bond- 
energy-bond-order (BEBO) analysis. Although the BEBO ap- 
proximation was developed initially to describe the stretching force 
constant, an extension has been postulated by Johnston45 which 
represents the bending force constant by the expression 

BEBO calculations in which a = 0.25 d (lower), a = 0.50 A (middle), 

fa = f2W2 (7) 
where f: is the force constant for angle a at  equilibrium, and n,  
and n2 are the bond orders of the two bonds which define the angle. 
In this study, since only one bond is extended, we set n,  = 1 and 
represent n2 as follows: 

R = Ro - a In n2 (8) 

where Ro is the equilibrium bond length. In his original work 
P a ~ l i n g ~ ~  found a = 0.26 A while more recent s t ~ d i e s ~ ' * ~ ~  in which 
rate constant data were fitted by using eq 8 and treating a as a 
parameter yield values which cluster around 0.50 A. 

(45) H. S. Johnston, "Gas Phase Reaction Rate Theory", Ronald Press, 

(46) L. Pauling, "The Nature of the Chemical Bond", Cornell University 

(47) W. L. Hase, J .  Chem. Phys., 57, 730 (1972); 64, 2442 (1976). 
(48) J. Troe, J .  Phys. Chem., 83, 114 (1979); M. Quack, ibid., 83, 150 

New York, 1966. 

Press, Ithaca, NY, 1960. 

(1979); Chem. Phys., 51, 3 5 3  (1980). 
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Figure 4 depicts four curves which describe the quadratic force 
constant, f,, as a function of the C-H* bond length. One curve 
is a spline fit to the MP4/6-31G** ab  initio data, while the 
remaining three are the results of BEBO calculations in which 
a is assigned the values 0.25,0.50, and 0.75 A, successively. The 
figure clearly shows both a quantitative and a qualitative difference 
between the MP4 curve and the three BEBO curves. These 
observations suggest that a BEBO approximation does not provide 
an adequate description of the quadratic bending force constant 
as a function of bond length. 

In order to determine the behavior of the nondiagonal cubic 
and out-of-plane quadratic and quartic force constants in the 
intermediate region, a set of MP4/6-3 1G** calculations which 
include $-type, &type, and A-type motions was completed at  R 
= 2.0 A. Rather than allow these force constants to vary inde- 
pendently in a least-squares analysis of the data, we chose to 
control their behavior with a single parameter. In this analysis 
the force constants were represented by expressions of the form 

fA(R) = (1 - Z)fACH3 

hA(R) = (1 - Z)hbCH3 

gn4(R) = ZgndCH4 (9) 
where g,4CH4 is the value of the nondiagonal cubic force constant 
in the methane asymptotic limit,fACH3 and hACH3 are the values 
of the out-of-plane force constants in the methyl radical asymptotic 
limit, and Z is the parameter whose value was determined by the 
least-squares analysis. Since g,, = g,, = g,, = g,, = 0.0 in both 
asymptotic limits, we chose to set g,, = g,, = g,, = g,, = 0.0 for 
all extensions of the C-H* bond. The value of Z was determined 
to be 0.4019. The resulting force constants are reported in Table 
111. 

V. Analytic Model Potential 
All the information necessary to formulate a model potential 

energy surface for the CH4 s .CH3 + .H reaction has now been 
assembled. The model potential proposed here initially will be 
mathematically unsymmetric in that the analytic expression is 
written as a function of a single C-H bond. In reality, the four 
C-H bonds of methane are identical and the model potential 
should, more generally, be expressed as a function of all four bonds. 
In this general form, the potential function would be invariant 
(or symmetric) with respect to permutations of the four C-H bond 
lengths. In section VI we will present a symmetric analytic 
potential which is an extension and generalization of this initial 
model. 

Bond stretches will be represented as simple Morse functions: 

(10) 
where Ro is the equilibrium bond length and the p parameter is 
chosen to reproduce the methane spectroscopy. Specifically, p 
= cf,/2De)1/2 wheref, = 5.426 mdyn/A and De = 110.60 kcal/mol 
is the methane well depth calculated at the MP4 level. The use 
of the Morse function is probably the simplest choice for a model 
which possesses realistic properties of bond stretching. The actual 
methane potential for bond extensions probably lies between the 
MP4 calculated potential and the Morse potential. Intermediate 
forms of the bond stretch can be modeled by making the p term 
in the Morse function dependent on the C-H* bond length. 

As noted above, the pyramidal angle is a function of the C-H* 
bond length. We have found that the pyramidal angle is well 
represented by the function 

$@) = + (doCH* - 90.0)[S4(R) - 1.01 (11) 

V(R) = De[ 1 - e-S(R-Rd] 2 

with S,(R), a switching function, given by 

S,(R) = 1.0 - tanh [A,@ - R0)eB,(R-c6)3] (12) 

The parameters in eq 11 and 12 are as follows: 40CH4 = 109.47’, 
A, = 5.2879029 X 10-I A-I, B, = 4.0066377 X 10-1 A-3, C, = 
1.9209937 A, R = C-H* bond length in angstroms, and 40(R) 
is in degrees. While eq 11 can be used in conjunction with eq 
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Figure 5. 6 angle as a function of the C-H* bond length: (0) least- 
squares fit to MP4/6-31G** data; (solid curve) graph of the analytic 
function for $-type angles. 
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Figure 6. 0 angle as a function of the C-H* bond length: (0) values 
calculated from the analytic function for the &type angles; (solid curve) 
graph of the analytic function for 0-type angles. 

2 to determine the optimized values of the 4 and 0 bond angles 
along the MEP, it is computationally advantageous to represent 
the 0 bond angles by a separate function: 

eo(R) = 80CH4 + (8OCH4 - 120.o0)[sB(~)  - 1 . 0 1  

S,(R) = 1.0 - tanh [A@ - RO)eB~(R-C~)3]  
(13) 

(14) 
where gOCH~ = 109.47O, AB = 9.0787142 X 10-1 A-I, Bo = 
3.5488587 X 10-I A-3, CB = 1.8915497 A, R = C-H* bond length 
in angstroms, and Bo(R) is in degrees. In order to ensure geometric 
consistency, the Switching function SB(R) was fitted to a set of 
data derived from eq 11. Equations 11 and 13 are plotted in 
Figures 5 and 6, demonstrating both the variation of dO(R) and 
&(R) as a function of the C-H* bond length, and the ability of 
these analytic functions to represent this angular variation. 

As noted above, while it was necessary to include nondiagonal 
cubic terms in the definition of the CH4 asymptotic limit, only 
one set, C4, contributes significantly to the angular deformation 
potential. We propose the following functional form to represent 
this potential: 

where 
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i =  1 , 2 , 3  

The vectors 7,, F2, and T3 are associated with the bonds, r l ,  r2, and 
r3 of the CH3 moiety. All the remaining symbols in eq 15 have 
been previously defined. The reader will note that withf, = ha 
= 0.0 eq 15 reduces to the asymptotic expression for methane. 
Similarly, withf, = g, = h,  = 0.0 and gn4 = 0.0 eq 15 assumes 
the asymptotic form of the potential for methyl radical. Rather 
thari constructing separate functions to describe each of the nine 
nonzero force constants in eq 15, we chose a conceptually simpler 
route which ensures that the diagonal cubic and quartic forces, 
and the nondiagonal cubic forces remain well-behaved. Gener- 
alizing the scheme used in eq 9, we expressed the force constants 
in the form of eq 16, ~ h e r e f + ~ ~ 4 ,  g,CH4, hdcH4,fsCH4, gSCb, hgCH4, 

f@) = S1(Rlf+CH4 

g @ )  = S1(R)g+CH4 

h,(R) = S , ( R ) / I , ~ ~ ~  

&(R) = (fOCH4 -fsCH3)S2(R) + hCH3 

g b w  = (goCH4 - g s C H 3 ) s m  + geCH3 
h@) = (hgCH4 - hOC”)S,(R) + hgCH3 

h&) = (1 - S,(R))h,CH3 
= ( l  - s3(R))hCH3 

gn4(R) = S3(R)gndCH4 (16) 
and gndCH4 are the values of the respective force constants in the 
methane asymptotic limit; fscH3, gOCH3, hgCH3, fACH3, and hac” are 
the values of the respective force constants in the methyl radical 
asymptotic limit; and Sl (R) ,  S,(R), and S3(R)  are continuous 
functions whose values are 1.0 in the methane limit and 0.0 in 
the methyl radical limit. Hence, only three switching functions, 
Sl (R) ,  S2(R) ,  and S3(R), must be constructed which have the 
correct asymptotic behavior and which are well-behaved along 
the MEP between methane and methyl radical. 

The three functional forms of eq 17 were constructed by a 

Sl (R)  = 1.0 - tanh (a,(R - Ro) (R  - PI)’) 
a1 = 1.5313681 X A-9 

@I = -4.6696246 A 
S,(R) = 1.0 - tanh (a2@ - Ro)(R - @ 2 ) 6 )  

a2 = 1.0147402 X A-’ 
@2 = -1.2362798 X 10’ A 

S3(R)  = 1.0 - tanh (a3(R - R,)(R - @3)2) 

a3 = 1.4191474 X lo-’ A-3 
@3 = -3.0684503 X lo-’ A (17) 

nonlinear least-squares analysis of the MP4/6-3 1G** data along 
the MEP. Figures 7-9 display the graphs of the three analytic 
switching functions and their agreement with the parameters 
derived from the least-squares analysis of the ab  initio data. The 
effectiveness of the switching-function formalism is further dem- 
onstrated by calculating force constants along the MEP. Table 
I11 displays the agreement between the force constants calculated 
by using the analytic switching functions and the values obtained 
by a least-squares analysis of the MP4 data. 

The complete analytic expression for the CH4 F? C H 3  + .H 
potential energy surface can now be written: 

3 

i= 1 
qotal = C D,[1 - e-@(rrRo)]2 + De[l - e-@(R-Ro)]2 + Vangle (18) 

where R is the C-H* bond length and the ri are the three bond 
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Figure 7. Switching function S1(R): (0) least-squares fit to MP4/6- 
31G** data; (solid curve) graph of the analytic switching function. 
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Figure 8. Switching function S,(R): (a) least-squares fit to MP4/6- 
31G** data; (solid curve) graph of the analytic switching function. 
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Figure 9. Switching function S,(R): (e) least-squares fit to MP4/6- 
31G** data; (solid curve) graph of the analytic switching function. 

lengths of the CH, moiety. Using this potential, we are able to 
calculate the stretch-bend interaction force constants for methane 
from the following expressions: 

where f, = f8 is the diagonal quadratic force constant for the 



1346 

equilibrium geometry of methane. Both partial derivatives can 
be computed analytically from eq 11 and 13. Evaluating the 
expression in eq 19 yields the values fR9 = 0.845 mdynfrad and 
f R B  = -0.0823 mdynfrad. 

VI. General Symmetric Analytic Potential 
There are several chemically significant reasons for developing 

a model potential which is a function of all four C H  bonds. In 
methane all the bonds are equivalent. Hence, a potential function 
must reflect this symmetry in order to represent properly the 
unimolecular decomposition of the CH4 molecule. Further, the 
various substituted-methane systems or, more generally, tetra- 
hedral carbon centers are candidates for potentially significant 
studies of molecular reaction dynamics. Such investigations will 
require potential energy surfaces which incorporate the complete 
symmetry of the tetrahedral carbon center. We now propose a 
generalized symmetric analytic potential which describes the 
rupture of one bond of a tetrahedral carbon center. 

The i-th bond is represented by a Morse function of the form 

The Journal of Physical Chemistry, Vol. 88, No. 7, 1984 

V(r,) = D,[ 1 - e-@,(V"o)]2 (20) 
where r: is the equilibrium bond length of the i-th bond. The 
two Morse parameters, Pi and Di, are written as functions of the 
other three bond lengths: 

Pi = Pi0 + (Pi0 - Pi')[Sg(rj) Sg(rk) Sfi(rl) - 11 

Dj = D,O + (Dj" - Dil)[SD(rj)SD(rk) SD(r1) - 11 

(21) 

(22) 
where Pj" and Dj" are the equilibrium values of the parameters 
and Pi' and Dil are their asymptotic values as ri - -. The 
switching functions Sp(rj) and SD(rj) are designed to represent 
the properties of the system of interest, monotonically assuming 
values between 1.0 and 0.0. For our methane potential, = Pi' 
and D: = Dil. 

The equilibrium value of the angle defined by the i-th andj-th 
bonds, 8;, is modeled as a function of the rupturing bond by the 
expression 

eijo = 8,; + (oi; - oijl) [sByri)  ssyr,) - 11 + 
(oil - oit)[S?(rk) S?(rl) - 11 (23) 

where 8; is the equilibrium value of 8, a t  the undistorted tetra- 
hedral center, eijl is the asymptotic value of O i j  as either ri - - 
or r, - a, and is the asymptotic value of O i .  as either rk - 
are chosen to represent the properties of the system of interest, 
monotonically assuming values between 1 .O and 0.0. Specifically, 
for the CH4 + .CH3 + .H reaction, 8,' = 109.47', Oij' = 90.0°, 
e,2 = 120.0' and, using earlier notation, Sol(ri) 9 S9(ri) and S&k) 
E S B ( r ~ )  (see eq 11-14). 

Because the equilibrium value of each bond angle is written 
as a function of all four bond lengths, it can be shown analytically 
that the general symmetric potential exhibits several nonzero 
interaction force constants. In particular, the stretchstretch force 
constants and the stretch-bend force constants for both methane 
and methyl radical are nonzero. Hence, the general symmetric 
potential proposed here includes coupling both between the in- 
dividual stretching degrees of freedom and between the stretching 
and bending degrees of freedom. The values of the interaction 
force constants are listed in Table I. 

In the same spirit, the diagonal quadratic, cubic, and quartic 
force constants for the angle defined by the i-th and j-th bonds 
are described by the functions 

or ri - m ,  Again, the switching functions, So i (ri)  and S?(rk), 

f., = 
?I 

J;i" +J;io[S,'(ri) Sf'(rj) - 11 + u;i"-J;i')[Sf(rk) St(r1) - 11 
(24) 

kijO - gijZ) [S:(rA S,"(~I) - 1 I (25) 
gij = gijO + gijO[S,l(ri) Szl(rj) - 11 + 

hjj = hi; + hj:[shl(rj) Sh'(rj) - 11 + 
(hi: - hit)[Shz(rk) ShZ(rl) - 11 (26) 

Duchovic et al. 

wheref;;, g?, and h,i" are the equilibrium values of the quadratic, 
cubic, and quartic force constants, respectively, andx;, g;, and 
hij2 are the asymptotic values of these constants as rk - m or rl - a. The reader should note thatfjl,  gi), hvl, the asymptotic 
values of the constants as r,  - m or rj - m ,  are identically zero 
since the angle OU is no longer defined when either bond i or bond 
j is ruptured. The functions S](ri), Sk(ri), Shl(rj), Sf(rk), F:(rk), 
and Sh2(rk) must be suitably defined, monotonically taking the 
values between 1.0 and 0.0. For the methane system, S,'(ri) = 
S i ( r i )  = Shl(ri) 3 Sl(r i )  and Sf2(rk) = S,2(rk) = Sh2(rk) = S2(rk), 
where Sl(r i )  and S2(rk) are defined in eq 17. 

The out-of-plane quadratic and quartic force constants are 
represented as 

f A i  = ( l  - SA(ri))SA(rj) SA(rk) SA(R/)fAi' 

hAi  = (1 - SA(rj))SA(rj) SA(rk) SA(rl)hAjl 

(27) 

(28) 
wherefAil and hJ are the asymptotic limits of the quadratic and 
quartic force constants as bond i is broken, and SA(rj) is a suitably 
chosen switching function with values ranging monotonically from 
1.0 to 0.0. Finally, the nondiagonal cubic force constants are 
described by the following functional form: 

4 

j = l  
gni = C (SgYrj) - l)(gn,O - gnA + gniO (29) 

where grip is the equilibrium value of the i-th nondiagonal cubic 
force constant, g,,/ is the asymptotic limit of the i-th constant when 
thej-th bond is broken, and S,"(rj) is a suitably chosen switching 
function whose values range monotonically between 1 .O and 0.0. 

In describing the CH4 + CH3 + .H reaction, we have chosen 
SA(ri) = S l ( r i )  S3(ri) where S3(ri) is defined by eq 17 and g,,; 
= 0.0 for all five nondiagonal cubic force constants. The out- 
of-plane angles, A,, associated with the breaking of the i-th bond 
are defined by the expression 

Aij = c0s-I [fii4,/17jl] - 8: (30) 

where fii is a unit vector normal to the plane defined by the three 
hydrogen atcms of the CH3 moiety, and is defined in eq 23. 
The vector Ni is given by 

(Fk - Fj) x (F/ - Fj)  

l(Fk - Fj) x (F/ - 7,)l f i i  = i = 1, 2, 3, 4 (31) 

The vectors 3, Fk, 7, are those associated with the three unruptured 
bonds of the CH3 fragment. Lastly, the C4 set of nondiagonal 
cubic force constants is written in terms of the symmetric notation: 

c4 = (O12 - 8120)(813 - e13°)(e23 - OZ3') + 
(014 - 8140)(812 - e12°)(e24 - O2?) + (614 - 81?)(813 - 

8130)(834 - + ('%4 - e24°)(823 - O23?(O34 - e34°) (32) 
Using the above definitions we now write a general symmetric 

analytic potential describing the CH4 + C H 3  + -H reaction: 

A A 

i # i  

j # i  

where all the symbols have been previously defined. Equation 
33 is the symmetric analogue of eq 18. It allows one to treat all 
four bonds of a tetrahedral carbon center in a symmetric and 
uniform manner. Table I contains a summary of the frequencies 
calculated with the general symmetric potential and the corre- 
sponding force fields for both methane and methyl radical. 

VII. Summary 
In this work we have presented a model molecular anharmonic 

potential based on a switching-function formalism for the CH4 
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~t .CH3 + .H reactive pathway (MAPS/CH4-I). In constructing 
this model potential we used the available spectroscopic data in 
conjunction with a b  initio calculations to define the asymptotic 
limits of methane and methyl radical. These limits were then 
joined by using a set of switching functions based on a b  initio 
calculations performed along the dissociation path. 

This switching-function formalism confers a great deal of 
flexibility on the analytic model of the potential energy surface. 
One may, for example, use either ab  initio or spectroscopic force 
constants in the two asymptotic limits. Further, as more detailed 
and sophisticated a b  initio information describing the reaction 
pathway becomes available, it can be incorporated into this model 
by refitting the parameters of the switching functions. In effect, 
the construction and modification of a model potential energy 
surface has been divided into two more tractable steps: (1) de- 
termination of each asymptotic limit; (2) connection of these limits 
by physically realistic analytic functions. 

The general symmetric potential proposed in this paper only 
addresses the CHp .CH3 + -H channel. There is another 
allowed reaction channel, namely, CH4 e H2 + CH2('A1). 
However, the available thermochemical data49-51 indicates that 

(49) D. R. Stoll and H. Prophet, eds., "JANAF Thermochemical Tables", 
2nd Ed., National Bureau of Standards, Washington, DC, 1971, Natl. Stand. 
Ref. Data Ser. ( U S . ,  Natl. Bur. Stand.) No. 37. 

(50) S. P. Heneghan, P. A. Kndat, and S. W. Benson, Int. J .  Chem. Kinet., 
13, 677 (1981). 

(51) C. C. Hayden, D. M. Neumark, K. Shobatake, R. K. Sparks, and Y. 
T. Lee, J .  Chem. Phys., 76, 3607 (1982). 

its threshold is approximately 15 kcal/mol higher than that for 
the former channel. Even the symmetry-forbidden reaction CH, 
2 H2 + CH2(3B1) has an endothermicity which is approximately 
7 kcal/mol higher than that for the CH4 ~t .CH3 + .H reaction 
pathway. Triplet methylene undergoes an abstraction reaction 
with H, to form hydrogen atoms and methyl radicals.52 

The model potential proposed here can be used, following 
Miller,53 to find the .CH3 + -H - C H  reaction path. Variational 
criteria can then be applied to locate the critical configuration 
as a function of energy and the activated complex as a function 
of temperature. Finally, this model potential can be used in 
quasiclassical trajectory calculations of the CHI 2 C H 3  + .H 
unimolecular and bimolecular rate constants a t  energies where 
these are the only open reaction channels on the potential energy 
surface. 
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Kinetic Parameters for Hydrogen Bonding to an Anion Radical 

Gerald R. Stevenson,* James B. Sedgwick, and Richard C. Reiter 

Department of Chemistry, Illinois State University, Normal, Illinois 61 761 (Received: February 18, 1983; 
In Final Form: August 1 1 ,  1983) 

Electron spin resonance and relaxation theory have been utilized to measure the rate constant and its temperature dependence 
of hydrogen-bond formation to the p-cyanonitrobenzene anion radical (PCNB-a). The rate constant (k,) for hydrogen-bond 
exchange from the solvent to the unassociated anion radical (PCNB-. + HMPA-H-OEt - PCNB-. --H-OEt + HMPA) 
is (7.0 & 1.0) X lo7 M-' s-l at 25 OC where the solvent is hexamethylphosphoramide (HMPA) and the hydrogen-bond donor 
is ethanol. The negative entropy of activation and entropy of reaction are interpreted in terms of an activated complex that 
consists of an ethanol molecule having a partial hydrogen bond to a solvent and anion radical molecule. This is the first 
report of activation parameters controlling the rate of hydrogen-bond formation to an anionic species. 

In protic solvents, the most important phenomenon incorporated 
into the free energy of solvation of anions is hydrogen bonding. 
However, there are very few reports of thermodynamic parameters 
controlling hydrogen-bond formation to solvated anions due to 
experimental difficulties and complexities that arise from com- 
peting interactions such as ion association and solvent-solvent 
hydrogen-bonding interactions. These problems have been dis- 
cussed by Benoit and co-workers.' For a few systems these 
difficulties have been overcome, and free energies of hydrogen- 
bond formation to ion associated halide ions have been determined 
by using IR spectroscopy.2 For several systems, the presence of 
hydrogen-bonded anions in solution has been noted by their effect 
upon I R  and N M R  s p e ~ t r a . ~ - ~  The difficulties of studying the 

(1) Lam, S. Y.; Louis, C.; Benoit, R. L. J .  Am. Chem. SOC. 1976,98,1156. 
(2) Symons, M. C. R.; Thomas, V. K. J. Chem. Sor., Faraday Trans. 1 

( 3 )  Srauss, I. M.; Symons, M. C. R.; Thompson, V. K. J .  Chem. Soc., 
1981, 77, 1891. 

Faraday Trans. 1 1977, 73,  1253. 
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formation of hydrogen bonds to anions are greatly enhanced when 
one tries to study the kinetics of these processes. Thus, other than 
a single report from our laboratory,6 the literature is devoid of 
reports of the kinetics of hydrogen bonding to anions. Further, 
there are no reports of activation parameters for hydrogen-bond 
formation to anions in solution. Here we wish to report the first 
enthalpy and entropy of activation for hydrogen-bond formation 
to a solvated anion. 

This kinetic study is carried out with an anion system that is 
paramagnetic so that relaxation theory can be applied. The anion 
radical must be generated free from association with the cation 
and must be polarizable enough so that the formation of anion 
radical-proton donor hydrogen bonds will perturb the spin density 
in the anion radical. Also, the interpretation of the data, in this 

(4) Ritzhaupt, G.; Devlin, J. P. J. Phys. Chem. 1977, 81, 67. 
(5) Ryall, R. R.; Strobel, H. A,; Symons, M. C. R. J. Phys. Chem. 1977, 

(6) Stevenson, G. R.; Castillo, C. A. J.  Am.  Chem. SOC. 1976, 98, 7950. 
81, 253. 
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