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ABSTRACT
Time-dependent configuration interaction with a complex absorbing potential has been used to simulate strong field ionization by intense
laser fields. Because spin–orbit coupling changes the energies of the ground and excited states, it can affect the strong field ionization rate
for molecules containing heavy atoms. Configuration interaction with single excitations (CIS) has been employed for strong field ion-
ization of closed shell systems. Single and double excitation configuration interaction with ionization (CISD-IP) has been used to treat
ionization of degenerate states of cations on an equal footing. The CISD-IP wavefunction consists of ionizing single (one hole) and dou-
ble (two hole/one particle) excitations from the neutral atom. Spin–orbit coupling has been implemented using an effective one electron
spin–orbit coupling operator. The effective nuclear charge in the spin–orbit coupling operator has been optimized for Ar+, Kr+, Xe+, HX+

(X = Cl, Br, and I). Spin–orbit effects on angular dependence of the strong field ionization have been studied for HX and HX+. The effects
of spin–orbit coupling are largest for ionization from the π orbitals of HX+. In a static field, oscillations are seen between the 2Π3/2 and 2Π1/2
states of HX+. For ionization of HX+ by a two cycle circularly polarized pulse, a single peak is seen when the maximum in the carrier envelope
is perpendicular to the molecular axis and two peaks are seen when it is parallel to the axis. This is the result of the greater ionization rate for
the π orbitals than for the σ orbitals.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0034807., s

I. INTRODUCTION

Strong field dynamics plays a central role in attosecond spec-
troscopy, which aims to study real-time electronic dynamics.1 For
molecules containing heavier atoms, relativistic effects can lead to
important effects. For example, the dynamics of coherent super-
positions of spin–orbit states in krypton and deuterium bromide
have been observed experimentally.2,3 The intense fields used in
strong field studies can distort the electron density in a manner
that cannot be treated by perturbation theory. Consequently, strong
field electron dynamics must be simulated by quantum mechani-
cal propagation of the electrons in the presence of the intense laser
field. Theoretical methods for treating strong field electron dynamics
have been reviewed recently.1,4–7 While one and two electron sys-
tems can be treated accurately, systems with many electrons are still
challenging to model. Some of the methods that have been used

to simulate many electron systems include the strong field approx-
imation (SFA), the single active electron (SAE) approximation,
and time-dependent electronic structure methods. Some examples
of time-dependent electronic structure methods for simulations of
strong field ionizations in molecules include the multi-configuration
self-consistent field (MCSCF), configuration interaction, and cou-
pled cluster methods8–34 and real-time integration of density func-
tional theory.35–43 In previous studies, we have used time-dependent
configuration interaction (TDCI) with a complex absorbing poten-
tial to study the angular dependence of strong field ionization of
various molecular systems.14,20,21,26–30,32–34

For molecules containing heavier atoms, relativistic effects can
alter the relative energies of ground and excited electronic states.44,45

However, simulating ionization by propagating relativistic four-
component or two-component wavefunctions can be costly for
molecular systems. Spin–orbit coupling is one of the important
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contributions that can be taken into account by adding a term to
the non-relativistic Schrödinger equation.46 The spin–orbit coupling
operator from the Breit–Pauli Hamiltonian consists of one and two
electron terms. For heavy atoms, the one electron term dominates,
and the expensive two electron terms can be approximated by using
a one electron operator based on a mean field or effective nuclear
charge approach.47

Except for the very heavy elements, spin–orbit contributions
are small compared to other terms in the Schrödinger equation. The
spin–orbit effects are most pronounced for coupling between degen-
erate or closely spaced states with different z-components of the
spin and angular momentum. Consequently, state-averaged MCSCF
and multi-reference configuration interaction (MRCI) calculations
are often used to evaluate spin–orbit coupling.48–55 Coupled clus-
ter methods have been used to include dynamic electron correla-
tion and obtain more accurate spin–orbit coupling constants.56–69

However, the MCSCF, MRCI, and coupled cluster methods are
difficult to extend to the large number of states typically needed
for simulating strong field ionization. We have used configura-
tion interaction with all single excitations (CIS) to generate the
many thousands of states needed for simulating strong field ioniza-
tion.14,20,21,26–30,32–34 Spin–orbit matrix elements for CIS have been
presented in a convenient form by Bellonzi and co-workers.70 CIS
with spin–orbit coupling based on a spin-restricted Hartree–Fock
reference determinant is suitable for simulating ionization of closed
shell systems. For corresponding calculations on open-shell sys-
tems such as radical cations, spin-unrestricted Hartree–Fock would
be most convenient, but this can artificially break the degeneracy
between states that interact by spin–orbit coupling. As an alterna-
tive to state-averaged MCSCF calculations, single and double exci-
tation configuration interaction with ionization (CISD-IP) can be
used to treat open shell systems with degenerate ground states. Gol-
ubeva and co-workers71 have presented the matrix elements for
CISD-IP in a readily programmable form. We have implemented
this approach to model sequential double ionization of neon and
acetylene.34

In the present paper, we combine spin–orbit coupling with
CISD-IP to simulate strong field ionization of open-shell systems
with degenerate ground states. We also implement CIS with spin–
orbit coupling for strong field ionization of closed shell systems. In
Sec. II, we present the matrix elements for spin–orbit coupling for
CIS and CISD-IP in an easy to code form. In Sec. III, we study the
effect of spin–orbit coupling on the ionization rates for hydrogen
halide cations HCl+, HBr+, and HI+.

II. METHODS
The electronic wavefunction is propagated with the time-

dependent Schrödinger equation including the Breit–Pauli spin–
orbit coupling operator,VSOC (atomic units are used throughout this
paper),

i
∂

∂t
Ψel(t) = [Ĥel + V̂SOC

− ˆ⃗μ ⋅ E⃗(t) − i V̂absorb
]Ψel(t), (1)

where Ĥel is the field-free non-relativistic electronic Hamiltonian.
The spin–orbit coupling term is approximated by an effective one
electron spin–orbit coupling operator,46

V̂SOC
= −

α2
0

2 ∑A

Zeff
A

i
(r − rA) ×∇
∣r − rA∣3

. (2)

Suitable values for Zeff have been reported by Koseki, Gordon, and
co-workers48–51 and by Chiodo and Russo.72 The interaction with
the intense electric field is treated in the semiclassical dipole approx-
imation, where ̂⃗μ is the dipole operator and E⃗ is the electric field. Ion-
ization is modeled with a complex absorbing potential (CAP) iVabsorb

as described in earlier papers.14,20,21,26–30,32–34 The time-dependent
wavefunction is expanded in terms of the ground and singly excited
states of the field-free non-relativistic Hamiltonian.

For simulations involving closed shell systems with CIS and
spin–orbit coupling, the wavefunction includes all singlet and triplet
singly excited configurations (all α→ α, β→ β, α→ β, β→ α excited
determinants),

Ψel(t) =∑
I=0

CI(t)∣ΨI⟩

= c0Ψ0 +∑
ia
caiΨ

a
i +∑

īā
cāīΨ

ā
ī +∑

iā
cāiΨ

ā
i +∑

īa
caīΨ

a
ī , (3)

where i, j are occupied αmolecular orbitals and a, b are unoccupied α
molecular orbitals, while ī, j̄ and ā, b̄ are the corresponding βmolecu-
lar orbitals. The matrix elements of the non-relativistic Hamiltonian
for the singly excited configurations are

⟨Ψ0∣Hel∣Ψ0⟩ = EHF , ⟨Ψ0∣Hel∣Ψ
a
i ⟩ = 0,

⟨Ψa
i ∣Hel∣Ψ

b
j ⟩ = (EHF + εa − εi)δijδab − ⟨ ja∣∣ib⟩

(4)

for each of the spin cases in Eq. (3). The double bar integrals are

⟨rs∣∣tu⟩ = ∫ dr1dr2ϕ
∗

r (r1)ϕ∗s (r2)
1
r12
[ϕt(r1)ϕu(r2) − ϕu(r1)ϕt(r2)].

(5)

The molecular orbital matrix elements of the effective one electron
spin–orbit coupling operator are

{VX
pq,VY

pq,VZ
pq} = −

α2
0

2 ∑A

Zeff
A

i
⟨p∣
(r − rA) ×∇
∣r − rA∣3

∣q⟩, (6)

where α0 is the fine structure constant. The z-component of the one
electron spin–orbit coupling matrix elements is non-zero for the αα
and ββ spin cases,

VZ
pq = −

α2
0

2 ∑A

Zeff
A

i
[⟨p∣
(x − xA)
∣r − rA∣3

∂

∂y
∣q⟩ − ⟨p∣

(y − yA)
∣r − rA∣3

∂

∂x
∣q⟩],

VZ
p̄q̄ =

α2
0

2 ∑A

Zeff
A

i
[⟨p̄∣
(x − xA)
∣r − rA∣3

∂

∂y
∣q̄⟩ − ⟨p̄∣

(y − yA)
∣r − rA∣3

∂

∂x
∣q̄⟩].

(7)

The x-component and y-component of the spin–orbit coupling
operators can be combined to form raising and lowering opera-
tors; these matrix elements are non-zero for the αβ and βα spin
cases,
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VX
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Zeff
A

i
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∂
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V+
pq̄ = V

X
pq̄ +

1
i
VY
pq̄, V−p̄q = V

X
p̄q −

1
i
VY
p̄q = V

+∗
qp̄ .

(8)

To simplify the notation, the matrix elements for the z-component
of the one electron spin–orbit operator and for the raising/lowering
operators can be assembled in a single matrix that covers all of the
spin combinations for spin–orbit coupling,

VSOC
pq = V

Z
pq for p ∈ α, q ∈ α

= VZ
p̄q̄ for p ∈ β, q ∈ β

= V+
pq̄ for p ∈ α, q ∈ β

= V−p̄q for p ∈ β, q ∈ α. (9)

The matrix elements for the effective one electron spin–orbit cou-
pling operator for the singly excited configurations are

⟨Ψ0∣VSOC
∣Ψ0⟩ = 0, ⟨Ψ0∣VSOC

∣Ψa
i ⟩ = V

SOC
ia ,

⟨Ψa
i ∣V

SOC
∣Ψb

j ⟩ = V
SOC
ab δij − VSOC

ji δab
(10)

for each of the spin cases in Eq. (3).
Open shell systems such as radical cations can be calculated

with spin-unrestricted molecular orbitals. However, this does not
treat the α and β orbitals equivalently. Alternatively, these sys-
tems can be calculated with the CISD-IP approach of Krylov and
co-workers.71 The time-dependent CISD-IP wavefunction is con-
structed using the molecular orbitals of the closed shell system
and includes singly ionized configurations and singly excited, singly
ionized configurations. As in the CIS case, the wavefunction for
CISD-IP with spin–orbit coupling must include α → β and β → α
excitations in addition to α→ α and β→ β excitations,

Ψ(t) =∑
I=0

CI(t)∣ΨI⟩ =∑
x
cxΨx +∑

x̄
cx̄Ψx̄ +∑

iax
caixΨ

a
ix +∑

iax̄
caix̄Ψ

a
ix̄

+∑
īāx

cāīxΨ
ā
īx +∑

īāx̄
cāīx̄Ψ

ā
īx̄ +∑

iāx
cāixΨ

ā
ix+∑

īax̄
caīx̄Ψ

a
īx̄,

(11)

where x, y are the ionized molecular orbitals (i < x when i and x
are of the same spin). The matrix elements of the non-relativistic
Hamiltonian for the CISD-IP approach are

⟨Ψx∣Hel∣Ψy⟩ = (EHF − εx)δxy, ⟨Ψx∣Hel∣Ψ
b
jy⟩ = ⟨ jy∣∣xb⟩,

(12)
⟨Ψa

ix∣Hel∣Ψ
b
jy⟩ = (EHF + εa − εi − εx)δijδabδxy + ⟨yj∣∣xi⟩δab

− ⟨ya∣∣xb⟩δij − ⟨ ja∣∣ib⟩δxy + ⟨ ja∣∣xb⟩δiy + ⟨ya∣∣ib⟩δxj

for each of the spin cases in Eq. (11). The corresponding matrix
elements for the effective one electron spin–orbit operator are

⟨Ψx∣V̂
SOC
∣Ψy⟩ = −V

SOC
yx , ⟨Ψx∣V̂

SOC
∣Ψb

jy⟩ = V
SOC
jb δxy − VSOC

yb δxj,
(13)

⟨Ψa
ix∣V̂

SOC
∣Ψb

jy⟩ = V
SOC
ab δijδxy − VSOC

ji δabδxy − V
SOC
yx δabδij

+ VSOC
yi δabδxj + VSOC

jx δabδiy − V
SOC
ab δiyδxj.

As described in previous papers,14,20,21,26–30,32–34 the absorbing
potential for the molecule is constructed from spherical potentials
centered on each atom and is equal to the minimum of the values
of the atomic absorbing potentials. The spherical atomic absorbing
potential begins at 3.5 times the van der Waals radius of each ele-
ment (RH = 9.544 bohrs, RCl = 13.052 bohrs, RBr = 13.853 bohrs,
RI = 14.882 bohrs), rises quadratically to 5 hartree at approxi-
mately R + 14 bohrs, and turns over quadratically to 10 hartree at
approximately R + 28 bohrs.

Simulations of strong field ionization were carried out with a
seven cycle linearly polarized 800 nm (ω = 0.057 a.u.) pulse with a
sin2 envelope,

E(t) = Emax sin (ω t/14)2 cos(ωt) for 0 ≤ t ≤ 14π/ω,
E(t) = 0 for t ≥ 14π/ω, (14)

and a two cycle circularly polarized 800 nm pulse in the xz plane with
a sin2 envelope,

Ex(t) = Emax sin (ω t/4)2
[− cos(ω t) cos(γ) − sin(ω t) sin(γ)],

Ez(t) = Emax sin (ω t/4)2
[cos(ω t) sin(γ) − sin(ω t) cos(γ)]

for 0 ≤ t ≤ 4π/ω, Ez(t) = Ex(t) = 0 for t ≥ 4π/ω.

(15)

Here, Emax is the maximum value for the electric field and γ deter-
mines the direction of the field at the maximum of the pulse.
To obtain directional information for ionization, a static field was
used instead of an oscillating field.27,29,30,33 To avoid non-adiabatic
excitations, the electric field is slowly ramped up to a constant value,

E(t) = Emax(1 − (1 − t
tramp
)

4
) for 0 ≤ t ≤ tramp,

E(t) = Emax for t ≥ tramp,
(16)

where tramp = 533 a.u. = 12.9 fs. The various pulse shapes are shown
in Fig. 1.

The exponential of the Hamiltonian is used to propagate the
time-dependent wavefunction. For a linearly polarized pulse, the
Trotter factorization of the exponential is

Ψ(t + Δt) = exp(−i ĤΔt)Ψ(t),

C(t + Δt) = exp(−iHelΔt/2) exp(−VabsorbΔt/2)

×WT exp(i E(t + Δt/2)dΔt)W

× exp(−VabsorbΔt/2) exp(−iHelΔt/2)C(t),

(17)

where WDWT = d are the eigenvalues and eigenvectors of the tran-
sition dipole matrix D in the field direction. The matrices exp(−i
HelΔt/2), exp(−VabsorbΔt/2), W, and d need to be calculated only
once at the beginning of the propagation because they are time
independent. Likewise, the product U = exp(−VabsorbΔt/2) WT is
formed once at the beginning of the propagation. The only time-
dependent factor is exp(i E(t + Δt/2) d Δt); this exponential can be
calculated easily because d is a diagonal matrix. A propagation step
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FIG. 1. (a) Seven cycle linearly polarized 800 nm pulse with a sin2 envelope
[Eq. (14)]; (b) “static” pulse with electric field rising to a constant value [Eq. (16)].

for a linearly polarized pulse involves two full matrix-vector multi-
plies (U andUT) and three diagonal matrix-vector multiplies [exp(−i
HelΔt/2) and exp(i E(t + Δt/2) d Δt)]. Because the propagation
uses the exponential of the Hamiltonian, a fairly large time step of
Δt = 0.05 a.u. (1.2 as) can be used. In similar simulations,27

reducing the time step by a factor of 2 changed the ionization yield
by less than 0.01%.

The corresponding Trotter factorization for a circularly polar-
ized pulse involves two oscillating fields,

C(t + Δt) = exp(−iHelΔt/2) exp(−VabsorbΔt/2)

×WT
2 exp(i E2(t + Δt/2)d2 Δt/2)W2

×WT
1 exp(i E1(t + Δt/2)d1 Δt)W1

×WT
2 exp(i E2(t + Δt/2)d2 Δt/2)W2

× exp(−VabsorbΔt/2) exp(−iHelΔt/2)C(t), (18)

where W1D1W1
T = d1 and W2D2W2

T = d2 are the eigenvalues
and eigenvectors of the transition dipole matrices D1 and D2 in the
two orthogonal field directions. A propagation step for a circularly
polarized pulse involves four full matrix-vector multiplies and five
diagonal matrix-vector multiplies.

The results of the simulations can be analyzed by exam-
ining the one electron density and orbital populations of the
propagated wavefunction, Ψ(t)/|Ψ(t)|, and the absorbed wavefunc-
tion, V̂absorbΨ(t) /∣V̂absorbΨ(t)∣. Additional details can be obtained
by projecting the absorbed wavefunction onto the individual
ionized states, ⟨ΨI

∣V̂absorb
∣Ψ(t)⟩/∣V̂absorbΨ(t)∣. The ionized states,

ΨI
= ∑

x
cIxΨx for CIS and ΨI

= ∑
xy
cIxyΨxy for CISD-IP, are cal-

culated as eigenfunctions of the field-free Hamiltonian plus spin–
orbit coupling, Ĥel + V̂SOC, using the same molecular orbitals as the
CIS and CISD-IP wavefunctions. In terms of the matrix elements
of the absorbing potential, the projections of the CIS and CISD-IP
wavefunctions can be written as

⟨ΨI
∣V̂absorb

∣Ψ(t)⟩ = ∑
xa,jb

cI
∗

x cbj (t)⟨Ψ
a
x∣V̂

absorb
∣Ψb

j ⟩

and

⟨ΨI
∣V̂absorb

∣Ψ(t)⟩ = ∑
xa,jb

cI
I∗

xy c
b
jy(t)⟨Ψ

a
x∣V̂

absorb
∣Ψb

jy⟩.

(19)

TABLE I. Spin–orbit splitting (eV) calculated with CISD-IP.

Calc.a Calc.b Calc.c Expt.d Opt. Zeff e Opt. Zeff f

Ar+ (2P1/2–2P3/2) 0.1637 0.1654 0.177 0.177 16.1283 16.8492
Kr+ (2P1/2–2P3/2) 0.4408 0.6006 0.666 0.666 36.3112 36.2462
Xe+ (2P1/2–2P3/2) 2.4972 1.8597 1.306 1.306 36.0657 36.0317
HCl+ (2Π1/2–2Π3/2) 0.0749 0.0735 0.0804 0.0804 15.2877 15.2499
HBr+ (2Π1/2–2Π3/2) 0.2291 0.2959 0.3289 0.3289 35.3165 35.2944
HI+ (2Π1/2–2Π3/2) 1.0872 0.8195 0.6695 0.6695 37.7047 37.4885

aCISD-IP/aug-cc-pVTZ using Zeff from Ref. 49.
bCISD-IP/aug-cc-pVTZ using Zeff from Ref. 72.
cPresent work with CISD-IP/aug-cc-pVTZ and CISD-IP/aug-cc-pVTZ + ABS using Zeff optimized to reproduce the experimental
values.
dReference 79.
ePresent work for CISD-IP/aug-cc-pVTZ.
fPresent work for CISD-IP/aug-cc-pVTZ + ABS.
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FIG. 2. Angular dependence of the ionization yield in the xz plane for (a) HBr
and (b) HI with spin–orbit coupling (red solid line) and without spin–orbit coupling
(blue dashed line) using a static pulse [Eq. (16)] with Emax = 0.05 a.u. for HBr and
Emax = 0.04 a.u. for HI. The relative ionization yield is plotted radially, and the
angle corresponds to minus the direction of the field (i.e., the direction the electron
is ejected); the orientation of HX is shown on the left (aligned with the z axis,
halogen in the +z direction).

A locally modified version of the Gaussian software package73

was used to calculate the integrals needed for the TDCI simulation.
Bond lengths for HCl, HBr, and HI were 1.3147 Å, 1.4484 Å, and
1.6200 Å. The aug-cc-pVTZ basis set74–76 was used for H, Cl, Br, Ar,
and Kr. Calculations for I and Xe used the all electron aug-cc-pVTZ-
DK3 basis set77 and the aug-cc-pVTZ-PP basis set with a pseudopo-
tential to account for relativistic effects in the core.78 Koseki, Gor-
don, and co-workers49 obtained 1.00, 14.24, 14.9, 24.5, 24.12, 65.72,
and 66.96 for Zeff of H, Cl, Ar, Br, Kr, I, and Xe, respectively. Chiodo
and Russo72 obtained 13.9757, 15.0570, 31.7240, 32.7708, 49.5391,
and 50.5656 for Cl, Ar, Br, Kr, I, and Xe, respectively. In each case,
the four highest occupied orbitals (ns, npx, npy, npz) were included in
the spin–orbit coupling and TDCI calculations. For the simulations
of strong field ionization, these basis sets were augmented with an
additional absorbing basis set (designated ABS) consisting of diffuse
functions placed on each atom (four s functions with exponents of

FIG. 3. Angular dependence of the ionization yield in the xz plane for (a) HCl+, (b)
HBr+, and (c) HI+ with spin–orbit coupling (red solid line for the 2Π3/2 state, green
solid line for the 2Π1/2 state) and without spin–orbit coupling (blue dashed line for
the 2Π state) using a seven cycle linearly polarized 800 nm sin2 pulse [Eq. (14)]
with Emax = 0.150 a.u. for HCl+, Emax = 0.135 a.u. for HBr+, and Emax = 0.090 a.u.
for HI+. The relative ionization yield is plotted radially, and the angle corresponds
to minus the direction of the field (i.e., the direction the electron is ejected); the
orientation of HX is shown on the left (aligned with the z axis, halogen in the +z
direction).

0.0256, 0.0128, 0.0064, and 0.0032; four p functions with exponents
of 0.0256, 0.0128, 0.0064, and 0.0032; five d functions with exponents
of 0.0512, 0.0256, 0.0128, 0.0064, and 0.0032; and two f functions
with exponents of 0.0256 and 0.0128)14,27 for adequate interaction

FIG. 4. Instantaneous ionization rates for strong field ionization starting from the
2Π3/2 state (red) and starting from the 2Π1/2 state (green) as a function of time for
(a) HCl+, (b) HBr+, and (c) HI+ using a static pulse [Eq. (16)] polarized perpendic-
ular to the molecular axis and (d) HI+ using a static pulse averaged over all orien-
tations (Emax = 0.10 a.u. for HCl+, Emax = 0.09 a.u. for HBr+, and Emax = 0.08 a.u.
for HI+).
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with the CAP. The time-dependent wavefunctions included all exci-
tations from the two highest σ orbitals and two highest π orbitals
to all virtual orbitals with orbital energies less than 3 hartree, for a
total of 7960, 8408, and 8408 configurations for HCl+, HBr+, and
HI+, respectively. The TDCI simulations were carried out with an
external Fortran 95 code.

III. RESULTS AND DISCUSSION
The calculated and experimental spin–orbit splittings for noble

gas cations and hydrogen halide cations are summarized in Table I.
The spin–orbit splittings are calculated with the CISD-IP/aug-cc-
pVTZ level of theory using the approximated one electron spin–
orbit coupling operator that depends on effective nuclear charges,
Zeff . Koseki, Gordon, and co-workers49 estimated Zeff from the
MCSCF with the 6-31G(d,p) basis for elements up to Ar and with
the 3-21G(d,p) basis for heavier elements. Chiodo and Russo72 used
RHF and B3LYP calculations with the DZVP basis set to obtain Zeff

for second through fifth row elements. Both show the correct trend,
but calculations using Zeff from the study of Chiodo and Russo are in
much better agreement with the experimental values. For the TDCI
simulations, it is desirable to have values for Zeff that reproduce the

experimental spin–orbit splitting for the systems of interest. In the
absence of experimental data, Zeff could be optimized to reproduce
the results of accurate four-component relativistic calculations. The
optimized Zeff for the all electron aug-cc-pVTZ basis sets are listed
in the second last column of Table I. Adding the absorbing basis
to the aug-cc-pVTZ basis sets changes the optimized Zeff by only
a small amount (last column of Table I). For the lighter elements,
Zeff is close to Z. The larger difference seen for Xe+ and HI+ is
most likely because the Hartree–Fock reference determinant used
for the CISD-IP calculations neglects the relativistic effects for the
core orbitals. These effects can be taken into account with relativis-
tic pseudopotentials. The corresponding values of Zeff for Xe+ and
HI+ are 2409 and 2398 with the aug-cc-pVTZ-PP basis sets that use
pseudopotentials to account for relativistic effects in the core. When
the aug-cc-pVTZ-PP basis set is augmented with the absorbing basis,
the optimized Zeff for Xe+ and HI+ are 2424 and 2416.

The effect of spin–orbit coupling on the angular dependence of
the ionization yield has been examined using the hydrogen halides
and their cations. The ground states of the neutral hydrogen halides
are singlets and are not subject to spin–orbit splitting. However, the
excitation energies and ionization energies are affected by spin–orbit
splitting. As shown in Fig. 2 for HBr and HI, the angular dependence

FIG. 5. Populations of the 2Π3/2 field-
free state (solid) and the 2Π1/2 field-free
state (dashed) as a function of time in the
wavefunctions for strong field ionization
starting from the 2Π3/2 state (red) and
starting from the 2Π1/2 state (green) of
(a) HCl+, (b) HBr+, and (c) HI+ [using a
static pulse, Eq. (14), polarized perpen-
dicular to the molecular axis with Emax

= 0.10 a.u. for HCl+, Emax = 0.09 a.u. for
HBr+, and Emax = 0.08 a.u. for HI+].
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is nearly identical with and without spin–orbit coupling. The rota-
tionally averaged ionization yield for HI is about 2.5% larger with
spin–orbit coupling.

The hydrogen halide radical cations are better probes of the
effect of spin–orbit coupling on strong field ionization. The s2p5

configuration of the valence shell is split into 2Π3/2 and 2Π1/2 states
by spin–orbit coupling. Since HX+ were used to obtain the opti-
mized Zeff , the calculated 2Π3/2 and 2Π1/2 energy differences match
the experimental values in Table I. Figure 3 compares the ionization
rate of the hydrogen halide cations with and without spin–orbit cou-
pling. The simulation of strong field ionization was carried out using
a seven cycle linearly polarized 800 nm pulse with a sin2 envelope.
The rate was obtained by averaging the instantaneous rate over the
central five cycles. As expected, population analysis of the absorbed
wavefunction and projection onto the doubly ionized states confirm
that ionization for polarizations perpendicular to the molecular axis
is mainly from the π orbitals, while ionization for polarizations par-
allel to the molecular axis is dominated by removing an electron
from the σp orbital. The largest effect of spin–orbit coupling is seen
for polarizations perpendicular to the molecular axis. The difference
between the ionization rates for the 2Π3/2 and 2Π1/2 states increases
with the energy splitting between these states. When the field is par-
allel to the molecular axis, there is no difference in the ionization
rates because the 2Π3/2 and 2Π1/2 states have a node along the axis.
The rotationally averaged ionization yields for the 2Π3/2 and 2Π1/2
states of HI+ are about 7% and 16% larger, respectively, than those
without spin–orbit coupling.

More details of the effect of spin–orbit coupling on strong field
ionization can be obtained by examining the rates and populations
of the spin–orbit states as a function of time. A static field perpendic-
ular to the molecular axis shows that the instantaneous rates oscillate
as a function of time (Fig. 4). The oscillations are only slightly dimin-
ished by rotational averaging [Fig. 4(d) for HI+]. The 2Π3/2 and 2Π1/2
states are eigenfunctions of the field-free Hamiltonian but are no
longer eigenstates when the field is turned on. As the field is ramped
up to its final constant value, the initial states evolve into a coher-
ent superposition of the eigenstates in the field. Figure 5 shows the
populations of the field-free 2Π3/2 and 2Π1/2 states when the initial
2Π3/2 and 2Π3/1 wavefunctions are propagated in a field ramped from
zero to a constant value [Eq. (16)]. The frequency of oscillation is
determined by the difference in the energy of the 2Π3/2 and 2Π1/2
states in the field. For HI+ and HBr+, the energy gap in the field
(0.636 eV and 0.337 eV, respectively) is nearly the same as the gap
in the absence of the field (0.6695 eV and 0.3289 eV, respectively).
Because the energy difference for HCl+ is small, the field strength
affects the energy difference more significantly. Consequently, the
oscillation frequency for HCl+ has a greater dependence on the final
field strength (0.112 eV for a field of 0.10 a.u. vs 0.0804 eV for free
field). The energy difference between the 2Π3/2 and 2Π1/2 states also
affects the magnitudes of the oscillations in the populations. The
smaller energy difference in HCl+ leads to greater mixing and larger
amplitudes, whereas the larger energy difference in HI+ leads to less
mixing and smaller amplitudes. The oscillations in the populations
of the 2Π3/2 and 2Π1/2 states shown in Fig. 5 correspond to a time-
dependent coherent superposition of a hole in the p+ and p− orbitals.
This is equivalent to a hole rotating in the xy plane, which results
in an oscillation of the ionization rate in the x direction as seen in
Fig. 4.

For very short circularly polarized pulses, the instantaneous
ionization rate depends on the carrier envelope phase. Figure 6
shows the ionization rate as a function of time for a circularly polar-
ized pulse in the xz plane when the maximum in the electric field
is perpendicular to the molecular axis. Ionization occurs from the
π orbitals near the peak in the electric field. The difference in the
ionization rate for the 2Π3/2 and 2Π1/2 states is greatest at the peak
and, as expected, is larger for HI+ than for HBr+. Figure 7 shows the
ionization rate when the maximum in the field is aligned with the
molecular axis. At the maximum, ionization is predominantly from
the σ orbitals because the π orbitals have a node along the molecular
axis. The rate of ionization for the σ orbitals is lower than that for the
π orbitals. However, a quarter cycle before and after the maximum,

FIG. 6. Ionization rates for a two cycle circularly polarized pulse with a maxi-
mum along the −x axis [Eq. (15), γ = 0]: (a) x-component (red) and z-component
(green), (b) ionization rate for the 2Π3/2 state (red) and 2Π1/2 state (green dashed)
of HBr+ as a function of time for Emax = 0.15 a.u., and (c) ionization rate for the
2Π3/2 state (red) and 2Π1/2 state (green dashed) of HI+ as a function of time for
Emax = 0.11 a.u.
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FIG. 7. Ionization rates for a two cycle circularly polarized pulse with a maximum
along the +z axis [Eq. (15), γ = π/2]: (a) x-component (red) and z-component
(green), (b) ionization rate for the 2Π3/2 state (red) and 2Π1/2 state (green dashed)
of HBr+ as a function of time for Emax = 0.15 a.u., and (c) ionization rate for the
2Π3/2 state (red) and 2Π1/2 state (green dashed) of HI+ as a function of time for
Emax = 0.11 a.u.

the field is aligned with the π orbital and the ionization rate increases
even though the field is a little smaller than that at the maximum in
the carrier envelope. As a result, the ionization rate as a function of
time has a double peaked shape.

IV. SUMMARY
Strong field ionization by intense laser fields has been simu-

lated with time-dependent configuration interaction with a complex
absorbing potential. Spin–orbit coupling has been implemented in
the TDCI Hamiltonian for CIS and CISD-IP wavefunctions using an
effective one electron spin–orbit coupling operator. In the effective

one electron spin–orbit coupling operator, Zeff has been optimized
for Ar+, Kr+, Xe+, HX+ (X = Cl, Br, and I). Spin–orbit effects on
angular dependence of the strong field ionization have been stud-
ied for HX and HX+ with a seven cycle linearly polarized pulse. The
spin–orbit effects on ionization are small for HX since the ground
states are closed shell. The effects are much larger for HX+ because
the spin–orbit coupling splits the ground states of HX+ into 2Π3/2
and 2Π1/2 states. Consequently, the effects of spin–orbit coupling are
largest for π orbitals in directions perpendicular to the molecular
axis of HX+. When a static field is applied by ramping it up from
zero and holding it at a constant value, oscillations are seen between
the 2Π3/2 and 2Π1/2 states of HX+. For ionization of HX+ by a two
cycle circularly polarized pulse, a single peak is seen when the max-
imum in the carrier envelope is perpendicular to the molecular axis
and two peaks are seen when it is parallel to the axis. This can be
attributed to the greater ionization rate for the π orbitals than for the
σ orbitals.

ACKNOWLEDGMENTS
The authors thank the Wayne State University computing grid

for the computational time. This work was supported by a grant
from the National Science Foundation (Grant No. CHE1856437).

The authors declare no competing financial interest.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1M. Nisoli, P. Decleva, F. Calegari, A. Palacios, and F. Martín, “Attosecond
electron dynamics in molecules,” Chem. Rev. 117, 10760 (2017).
2E. Goulielmakis et al., “Real-time observation of valence electron motion,”
Nature 466, 739 (2010).
3Y. Kobayashi, K. F. Chang, S. M. Poullain, V. Scutelnic, T. Zeng, D. M. Neu-
mark, and S. R. Leone, “Coherent electronic-vibrational dynamics in deuterium
bromide probed via attosecond transient-absorption spectroscopy,” Phys. Rev. A
101, 063414 (2020).
4K. L. Ishikawa and T. Sato, “A review on ab initio approaches for multielectron
dynamics,” IEEE J. Sel. Top. Quantum Electron. 21, 8700916 (2015).
5J. J. Goings, P. J. Lestrange, and X. Li, “Real-time time-dependent electronic
structure theory,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8, e1341 (2018).
6A. Palacios and F. Martín, “The quantum chemistry of attosecond molecular
science,” Wiley Interdiscip. Rev.: Comput. Mol. Sci. 10, e1430 (2020).
7P. Saalfrank, F. Bedurke, C. Heide, T. Klamroth, S. Klinkusch, P. Krause, M. Nest,
and J. C. Tremblay, in Advances in Quantum Chemistry, edited by K. Ruud and
E. J. Brändas (Academic Press, 2020), p. 15.
8S. Klinkusch, P. Saalfrank, and T. Klamroth, “Laser-induced electron dynamics
including photoionization: A heuristic model within time-dependent configura-
tion interaction theory,” J. Chem. Phys. 131, 114304 (2009).
9L. Greenman, P. J. Ho, S. Pabst, E. Kamarchik, D. A. Mazziotti, and R. Santra,
“Implementation of the time-dependent configuration-interaction singles method
for atomic strong-field processes,” Phys. Rev. A 82, 023406 (2010).
10M. Nest, T. Klamroth, and P. Saalfrank, “Ab initio electron dynamics with the
multi-configuration time-dependent Hartree-Fock method,” Z. Phys. Chem. 224,
569 (2010).
11C. Huber and T. Klamroth, “Explicitly time-dependent coupled cluster singles
doubles calculations of laser-driven many-electron dynamics,” J. Chem. Phys. 134,
054113 (2011).

J. Chem. Phys. 153, 244109 (2020); doi: 10.1063/5.0034807 153, 244109-8

Published under license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

12J. C. Tremblay, S. Klinkusch, T. Klamroth, and P. Saalfrank, “Dissipative many-
electron dynamics of ionizing systems,” J. Chem. Phys. 134, 044311 (2011).
13T. Sato and K. L. Ishikawa, “Time-dependent complete-active-space self-
consistent-field method for multielectron dynamics in intense laser fields,” Phys.
Rev. A 88, 023402 (2013).
14P. Krause, J. A. Sonk, and H. B. Schlegel, “Strong field ionization rates simu-
lated with time-dependent configuration interaction and an absorbing potential,”
J. Chem. Phys. 140, 174113 (2014).
15S. Bauch, L. K. Sørensen, and L. B. Madsen, “Time-dependent generalized-
active-space configuration-interaction approach to photoionization dynamics of
atoms and molecules,” Phys. Rev. A 90, 062508 (2014).
16A. Karamatskou, S. Pabst, Y.-J. Chen, and R. Santra, “Calculation of pho-
toelectron spectra within the time-dependent configuration-interaction singles
scheme,” Phys. Rev. A 89, 033415 (2014).
17H. Miyagi and L. Bojer Madsen, “Time-dependent restricted-active-space self-
consistent-field singles method for many-electron dynamics,” J. Chem. Phys. 140,
164309 (2014).
18S. Pabst and R. Santra, “Spin-orbit effects in atomic high-harmonic generation,”
J. Phys. B: At., Mol. Opt. Phys. 47, 124026 (2014).
19S. Chattopadhyay, S. Bauch, and L. B. Madsen, “Electron-correlation effects
in enhanced ionization of molecules: A time-dependent generalized-active-space
configuration-interaction study,” Phys. Rev. A 92, 063423 (2015).
20P. Krause and H. B. Schlegel, “Angle-dependent ionization of small molecules
by time-dependent configuration interaction and an absorbing potential,” J. Phys.
Chem. Lett. 6, 2140 (2015).
21P. Krause and H. B. Schlegel, “Angle-dependent ionization of hydrides AHn cal-
culated by time-dependent configuration interaction with an absorbing potential,”
J. Phys. Chem. A 119, 10212 (2015).
22R. Sawada, T. Sato, and K. L. Ishikawa, “Implementation of the multiconfigura-
tion time-dependent Hatree-Fock method for general molecules on a multireso-
lution Cartesian grid,” Phys. Rev. A 93, 023434 (2016).
23D. Toffoli and P. Decleva, “A multichannel least-squares B-spline approach to
molecular photoionization: Theory, implementation, and applications within the
configuration-interaction singles approximation,” J. Chem. Theory Comput. 12,
4996 (2016).
24E. Lotstedt, T. Kato, and K. Yamanouchi, in Progress in Ultrafast Intense Laser
Science XIII, edited by K. Yamanouchi, W. T. Hill, and G. G. Paulus (Springer,
Cham, 2017), p. 15.
25V. P. Majety and A. Scrinzi, “Multielectron effects in strong-field ionization
of CO2: Impact on differential photoelectron spectra,” Phys. Rev. A 96, 053421
(2017).
26A. H. Winney, S. K. Lee, Y. F. Lin, Q. Liao, P. Adhikari, G. Basnayake, H. B.
Schlegel, and W. Li, “Attosecond electron correlation dynamics in double ioniza-
tion of benzene probed with two-electron angular streaking,” Phys. Rev. Lett. 119,
123201 (2017).
27P. Hoerner and H. B. Schlegel, “Angular dependence of strong field ionization
of CH3X (X = F, Cl, Br, or I) using time-dependent configuration interaction with
an absorbing potential,” J. Phys. Chem. A 121, 5940 (2017).
28P. Hoerner and H. B. Schlegel, “Angular dependence of ionization by circularly
polarized light calculated with time-dependent configuration interaction with an
absorbing potential,” J. Phys. Chem. A 121, 1336 (2017).
29P. Hoerner and H. B. Schlegel, “Angular dependence of strong field ioniza-
tion of haloacetylenes HCCX (X = F, Cl, Br, I), using time-dependent config-
uration interaction with an absorbing potential,” J. Phys. Chem. C 122, 13751
(2018).
30A. H. Winney, G. Basnayake, D. A. Debrah, Y. F. Lin, S. K. Lee, P. Hoerner,
Q. Liao, H. B. Schlegel, and W. Li, “Disentangling strong-field multielectron
dynamics with angular streaking,” J. Phys. Chem. Lett. 9, 2539 (2018).
31S. Chattopadhyay and L. B. Madsen, “Electron correlation effects in enhanced
ionization of diatomic molecules in near-infrared fields,” Phys. Rev. A 99, 023424
(2019).
32P. Hoerner, M. K. Lee, and H. B. Schlegel, “Angular dependence of strong field
ionization of N2 by time-dependent configuration interaction using density func-
tional theory and the Tamm-Dancoff approximation,” J. Chem. Phys. 151, 054102
(2019).

33P. Hoerner, W. Li, and H. B. Schlegel, “Angular dependence of strong field
ionization of 2-phenylethyl-N,N-dimethylamine (PENNA) using time-dependent
configuration interaction with an absorbing potential,” J. Phys. Chem. A 124, 4777
(2020).
34M. K. Lee, W. Li, and H. B. Schlegel, “Angular dependence of strong
field sequential double ionization for neon and acetylene simulated with time-
dependent configuration interaction using CIS and CISD-IP,” J. Chem. Phys. 152,
064106 (2020).
35X. Chu and S.-I. Chu, “Time-dependent density-functional theory for molec-
ular processes in strong fields: Study of multiphoton processes and dynamical
response of individual valence electrons of N2 in intense laser fields,” Phys. Rev. A
64, 063404 (2001).
36X. Chu and S.-I. Chu, “Role of the electronic structure and multielectron
responses in ionization mechanisms of diatomic molecules in intense short-pulse
lasers: An all-electron ab initio study,” Phys. Rev. A 70, 061402 (2004).
37X. Chu and M. McIntyre, “Comparison of the strong-field ionization of N2 and
F2: A time-dependent density-functional-theory study,” Phys. Rev. A 83, 013409
(2011).
38E. P. Fowe and A. D. Bandrauk, “Nonlinear time-dependent density functional
theory studies of the ionization of CO2 by ultrashort intense laser pulses(1),” Can.
J. Chem. 87, 1081 (2009).
39K. Lopata and N. Govind, “Modeling fast electron dynamics with real-time
time-dependent density functional theory: Application to small molecules and
chromophores,” J. Chem. Theory Comput. 7, 1344 (2011).
40A. Sissay, P. Abanador, F. Mauger, M. Gaarde, K. J. Schafer, and K. Lopata,
“Angle-dependent strong-field molecular ionization rates with tuned range-
separated time-dependent density functional theory,” J. Chem. Phys. 145, 094105
(2016).
41A. Bruner, S. Hernandez, F. Mauger, P. M. Abanador, D. J. LaMaster, M. B.
Gaarde, K. J. Schafer, and K. Lopata, “Attosecond charge migration with TDDFT:
Accurate dynamics from a well-defined initial state,” J. Phys. Chem. Lett. 8, 3991
(2017).
42P. Sandor et al., “Angle dependence of strong-field single and double ionization
of carbonyl sulfide,” Phys. Rev. A 98, 043425 (2018).
43P. Sandor et al., “Angle-dependent strong-field ionization of halomethanes,”
J. Chem. Phys. 151, 194308 (2019).
44K. G. Dyall and K. Fægri, Introduction to Relativistic Quantum Chemistry
(Oxford University Press, New York, 2007).
45M. Reiher and A. Wolf, Relativistic Quantum Chemistry: The Fundamental
Theory of Molecular Science (Wiley VCH, Weinheim, 2009).
46C. M. Marian, “Spin-orbit coupling and intersystem crossing in molecules,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 187 (2012).
47C. M. Marian, in Reviews in Computational Chemistry, edited by K. B. Lipkowitz
and D. B. Boyd (John Wiley & Sons, Inc., 2001), Vol. 17, p. 99.
48S. Koseki, M. W. Schmidt, and M. S. Gordon, “MCSCF/6-31G(D,P) calculations
of one-electron spin-orbit-coupling constants in diatomic-molecules,” J. Phys.
Chem. 96, 10768 (1992).
49S. Koseki, M. S. Gordon, M. W. Schmidt, and N. Matsunaga, “Main-group
effective nuclear charges for spin-orbit calculations,” J. Phys. Chem. 99, 12764
(1995).
50S. Koseki, M. W. Schmidt, and M. S. Gordon, “Effective nuclear charges for
the first- through third-row transition metal elements in spin-orbit calculations,”
J. Phys. Chem. A 102, 10430 (1998).
51S. Koseki, D. G. Fedorov, M. W. Schmidt, and M. S. Gordon, “Spin-orbit split-
tings in the third-row transition elements: Comparison of effective nuclear charge
and full Breit-Pauli calculations,” J. Phys. Chem. A 105, 8262 (2001).
52A. Berning, M. Schweizer, H.-J. Werner, P. J. Knowles, and P. Palmieri, “Spin-
orbit matrix elements for internally contracted multireference configuration inter-
action wavefunctions,” Mol. Phys. 98, 1823 (2000).
53M. Kleinschmidt, J. Tatchen, and C. M. Marian, “SPOCK.CI: A multireference
spin-orbit configuration interaction method for large molecules,” J. Chem. Phys.
124, 124101 (2006).
54D. Ganyushin and F. Neese, “A fully variational spin-orbit coupled complete
active space self-consistent field approach: Application to electron paramagnetic
resonance g-tensors,” J. Chem. Phys. 138, 104113 (2013).

J. Chem. Phys. 153, 244109 (2020); doi: 10.1063/5.0034807 153, 244109-9

Published under license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

55S. Mai, T. Müller, F. Plasser, P. Marquetand, H. Lischka, and L. González, “Per-
turbational treatment of spin-orbit coupling for generally applicable high-level
multi-reference methods,” J. Chem. Phys. 141, 074105 (2014).
56O. Christiansen, J. Gauss, and B. Schimmelpfennig, “Spin-orbit coupling con-
stants from coupled-cluster response theory,” Phys. Chem. Chem. Phys. 2, 965
(2000).
57K. Klein and J. Gauss, “Perturbative calculation of spin-orbit splittings using the
equation-of-motion ionization-potential coupled-cluster ansatz,” J. Chem. Phys.
129, 194106 (2008).
58F. Wang and J. Gauss, “Analytic second derivatives in closed-shell coupled-
cluster theory with spin-orbit coupling,” J. Chem. Phys. 131, 164113
(2009).
59E. Epifanovsky, K. Klein, S. Stopkowicz, J. Gauss, and A. I. Krylov, “Spin-
orbit couplings within the equation-of-motion coupled-cluster framework: The-
ory, implementation, and benchmark calculations,” J. Chem. Phys. 143, 064102
(2015).
60D. Bokhan, A. Perera, D. N. Trubnikov, and R. J. Bartlett, “Excitation energies
with spin-orbit couplings using equation-of-motion coupled-cluster singles and
doubles eigenvectors,” J. Chem. Phys. 147, 164118 (2017).
61D. Bokhan, D. N. Trubnikov, A. Perera, and R. J. Bartlett, “Spin-orbit split-
ted excited states using explicitly-correlated equation-of-motion coupled-cluster
singles and doubles eigenvectors,” Chem. Phys. Lett. 698, 171 (2018).
62D. Bokhan, D. N. Trubnikov, A. Perera, and R. J. Bartlett, “Spin-orbit split ion-
ized and electron-attached states using explicitly-correlated equation-of-motion
coupled-cluster singles and doubles eigenvectors,” Chem. Phys. Lett. 730, 372
(2019).
63L. Cheng and J. Gauss, “Perturbative treatment of spin-orbit coupling
within spin-free exact two-component theory,” J. Chem. Phys. 141, 164107
(2014).
64L. Cheng, F. Wang, J. F. Stanton, and J. Gauss, “Perturbative treatment of spin-
orbit-coupling within spin-free exact two-component theory using equation-of-
motion coupled-cluster methods,” J. Chem. Phys. 148, 044108 (2018).
65Z. Cao, F. Wang, and M. Yang, “Spin-orbit coupling with approximate
equation-of-motion coupled-cluster method for ionization potential and electron
attachment,” J. Chem. Phys. 145, 154110 (2016).
66Z. Cao, F. Wang, and M. Yang, “Coupled-cluster method for open-shell
heavy-element systems with spin-orbit coupling,” J. Chem. Phys. 146, 134108
(2017).

67Z. Wang, Z. Tu, and F. Wang, “Equation-of-motion coupled-cluster theory for
excitation energies of closed-shell systems with spin-orbit coupling,” J. Chem.
Theory Comput. 10, 5567 (2014).
68Z. Wang, S. Hu, F. Wang, and J. Guo, “Equation-of-motion coupled-cluster
method for doubly ionized states with spin-orbit coupling,” J. Chem. Phys. 142,
144109 (2015).
69Z. Wang and F. Wang, “Equation-of-motion coupled-cluster method for
ionised states with spin-orbit coupling using open-shell reference wavefunction,”
Mol. Phys. 116, 935 (2018).
70N. Bellonzi, G. R. Medders, E. Epifanovsky, and J. E. Subotnik, “Configuration
interaction singles with spin-orbit coupling: Constructing spin-adiabatic states
and their analytical nuclear gradients,” J. Chem. Phys. 150, 014106 (2019).
71A. A. Golubeva, P. A. Pieniazek, and A. I. Krylov, “A new electronic structure
method for doublet states: Configuration interaction in the space of ionized 1h
and 2h1p determinants,” J. Chem. Phys. 130, 124113 (2009).
72S. G. Chiodo and N. Russo, “One-electron spin-orbit contribution by effective
nuclear charges,” J. Comput. Chem. 30, 832 (2009).
73M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria et al., Gaussian 10,
Revision I.09, Gaussian, Inc., Wallingford, CT, 2010.
74T. H. Dunning, “Gaussian-basis sets for use in correlated molecular calcula-
tions. I. The atoms boron through neon and hydrogen,” J. Chem. Phys. 90, 1007
(1989).
75D. E. Woon and T. H. Dunning, Jr., “Gaussian basis sets for use in correlated
molecular calculations. III. The atoms aluminum through argon,” J. Chem. Phys.
98, 1358 (1993).
76K. A. Peterson, B. C. Shepler, D. Figgen, and H. Stoll, “On the spectroscopic and
thermochemical properties of ClO, BrO, IO, and their anions,” J. Phys. Chem. A
110, 13877 (2006).
77D. H. Bross and K. A. Peterson, “Correlation consistent, Douglas-Kroll-Hess
relativistic basis sets for the 5p and 6p elements,” Theor. Chem. Acc. 133, 1434
(2013).
78K. A. Peterson, D. Figgen, E. Goll, H. Stoll, and M. Dolg, “Systematically con-
vergent basis sets with relativistic pseudopotentials. II. Small-core pseudopoten-
tials and correlation consistent basis sets for the post-d group 16–18 elements,”
J. Chem. Phys. 119, 11113 (2003).
79K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV.
Constants of Diatomic Molecules (Van Nostrand Reinhold Company, New York,
1979).

J. Chem. Phys. 153, 244109 (2020); doi: 10.1063/5.0034807 153, 244109-10

Published under license by AIP Publishing


