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Improved computational efficiency through internal coordinates
and surface interpolation
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Reaction path optimization is being used more frequently as an alternative to the standard practice
of locating a transition state and following the path downhill. The Variational Reaction Coordinate
(VRC) method was proposed as an alternative to chain-of-states methods like nudged elastic band
and string method. The VRC method represents the path using a linear expansion of continuous basis
functions, allowing the path to be optimized variationally by updating the expansion coefficients
to minimize the line integral of the potential energy gradient norm, referred to as the Variational
Reaction Energy (VRE) of the path. When constraints are used to control the spacing of basis
functions and to couple the minimization of the VRE with the optimization of one or more individual
points along the path (representing transition states and intermediates), an approximate path as well
as the converged geometries of transition states and intermediates along the path are determined in
only a few iterations. This algorithmic efficiency comes at a high per-iteration cost due to numerical
integration of the VRE derivatives. In the present work, methods for incorporating redundant internal
coordinates and potential energy surface interpolation into the VRC method are described. With these
methods, the per-iteration cost, in terms of the number of potential energy surface evaluations, of
the VRC method is reduced while the high algorithmic efficiency is maintained. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4948439]

I. INTRODUCTION

In our Paper I,1 a variational approach to approximating
the steepest descent reaction path (SDRP) was discussed as
an alternative to the “chain of states” (CoSs) methods.2–14

The chain of states methods minimize the energies of a series
of discrete structures along the path, subject to fictitious
forces, constraints or reparameterization schemes that ensure
the distribution of structures remains uniform. These path
optimization methods are primarily used to avoid the difficult
problem of determining the transition state geometry, which is
the starting point for more economical and accurate reaction
path following methods15–18 that determine the SDRP by
walking downhill on the potential energy surface. The SDRP
can be viewed as a simple approximation to the path a reaction
follows as it proceeds from reactant to product. The Variational
Reaction Coordinate (VRC) method is an alternative to the
chain of states class of path optimization methods. In the VRC
method, the Variational Reaction Energy (VRE) is functional
which is minimized by the SDRP19,20 and is defined as the
line integral of the potential energy gradient norm

EVRE =

 tP

tR


∂V (x (t))

∂x

T∂V (x (t))
∂x


dx (t)

dt

T dx (t)
dt

dt

=

 tP

tR

|g (x (t))| |τ (t)| dt, (1)

where V is the potential energy, x (t) are the coordinates of
the reaction path expressed as a linear expansion in a basis

of functions parameterized by t; tR = 0 and tP = 1 are the
parameter values corresponding to the reactant and product
structures, respectively. For clarity, g and τ are used as
shorthand for the gradient of the potential, and the tangent
to the path. The path is improved by updating the basis set
linear expansion coefficients (LECs) to minimize the VRE
subject to arc length and coupling constraints. The arc length
constraints impose a relationship between the parameter t
and the arc length of the path in order to improve the
stability of the optimization, whereas the coupling constraints
require the path to pass through structures produced by
the optimization of individual geometries corresponding to
transition states and intermediates along the path. This
combined optimization, the Focused VRC (FVRC) method,
focuses the effort of the path optimization towards the regions
of the potential likely to contain the SDRP method and is able
to determine both a good approximation to the SDRP while
simultaneously optimizing the geometries of any transition
states or intermediate structures along the path with only a
small number of iterations required for convergence. This
algorithmic efficiency comes at the expense of a high per-
iteration cost, due to the necessity of evaluating the VRE
and its derivatives by numerical quadrature methods, and our
previous tests were limited to demonstrations on analytical test
surfaces.1 This paper focuses on the development of additional
methods to improve the applicability of the FVRC method
to the study of chemical reactions, as well as to reduce the
per-iteration cost to something comparable to existing CoS
path optimization approaches.
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The FVRC method is summarized in greater depth in
Section II. The FVRC was developed using a potential
energy surface expressed in Cartesian coordinates. When
studying chemical potential energy surfaces (PESs), internal
coordinates consisting of a redundant combination of bond
stretches, valence angle bends, and dihedral angle torsions
typically provide a much more natural description of the
relative motion of atoms.21 This results in less coupling
between coordinates, and a potential energy surface that
is likely to be more constant in the degrees of freedom
not directly involved with a reaction. Incorporating these
redundant internal coordinates (RIC) into the VRC method
should not only have a positive effect on the efficiency of the
algorithm, but should also improve the accuracy of methods
used to approximate the PES (i.e., through Hessian updating
and interpolation of a finite number of calculations) and help
reduce the per-iteration cost.

One challenge that exists in incorporating RIC into the
VRC method is that there is not a unique and closed expression
for computing the Cartesian embedding of a particular RIC
geometry; RIC displacements must be embedded iteratively
from a nearby Cartesian geometry. This poses a problem
as the Cartesian coordinates are necessary to evaluate the
potential energy surface for a given geometry. For this
reason, the present work is limited to methods which retain a
description of the path in Cartesian coordinates. This avoids
the introduction of any possible error/uncertainty in the path
due to back-transformation procedures, but may also limit the
overall benefit of using RIC as some of the more curvilinear
motions from the bends and torsions cannot be fully utilized.
Methods that express the path in RIC may be investigated
in a future paper. Three approaches to incorporate redundant
internal coordinates into the FVRC method are introduced in
the following sections:

• Expressing the FVRC coupling constraints in terms
of redundant internal coordinate differences in order
to avoid having to deal with a separate rotational
alignment step (Section III).

• Applying the methods developed for the CVRC method
to optimize a least RIC length pathway by minimizing
the arc length expressed in RIC. The resulting path
should be a better initial guess for the VRC method
than a linear Cartesian pathway (Section IV).

• Defining the VRE and its derivatives in terms of an
interpolated RIC PES. (Section V).

II. FVRC METHOD SUMMARY

The VRC method represents the path as a linear expansion
of nbasis basis functions:

xi (t) =
nbasis
µ

Ciµφµ (t) → ∂xi (t)
∂Ciµ

= φµ (t) ,

τi (t) =
nbasis
µ

Ciµ

dφµ (t)
dt

→ ∂τi (t)
∂Ciµ

=
dφµ (t)

dt
,

(2)

where the Roman indices are over the ncart = 3 × natoms

Cartesian coordinates, the Greek indices are over the basis

functions, and the φ are quartic B-Spline functions. For a
given choice of basis, the linear expansion coefficients (LEC,
Ciµ) define the path, and derivatives of the VRE with respect
to a change in the LEC may be defined as

γiµ =

 tP

tR

*
,

|τ |
|g|


a

Hiagaφµ +
|g|
|τ | τi

dφµ

dt
+
-

dt, (3)

ηiµ jν =

 tP

tR

( |τ |
|g|

(
(Tg + HH)i j −


a,b HiagaH jbgb

|g|2
)
φµφν

+


a Hiagaτi
|g| |τ | φµ

dφν
dt
+

τi


a H jaga

|g| |τ |
dφµ

dt
φν

+ |g|
(
δi j

|τ | −
τiτj

|τ |3
)

dφµ

dt
dφν
dt

)
dt, (4)

QVRE (C + ∆C) = E (C) + ∆CTγ (C) + 1
2
∆CTη (C)∆C, (5)

where H is the potential energy Hessian and Tg is the product
of the third derivative of the potential energy with the potential
energy gradient. The Tg term was found to be unnecessary
for good performance when using the focused VRC method,22

so it is not included in the evaluation of η in this work. A
positive definite shift matrix σiµ jν is used to shift η so that it is
positive definite while accounting for some of the curvilinear
relationship between the LEC and the gradient

σiµ jν =

 tP

tR

δi j
dφµ

dt
dφν
dt

dt . (6)

A set of n constraints κα is used to establish a relationship
between the parameter t and the arc length of the path

κα = S(tα−1, tα) − S(tα, tα+1), 1 ≤ α ≤ n, (7)

where S is the arc length between two points along the path.
The tα are evenly spaced to give nbas + 1 segments along the
path, where nbas is the number of basis functions used to
expand each coordinate

S(t1, t2) =
 t2

t1

|τ (t)| dt, (8)

tα =
α

n + 1
, 0 ≤ α ≤ n + 1. (9)

In addition to these arc length constraints, coupling
constraints are used to focus the path optimization into regions
of the potential that are likely to contain transition states and
intermediates. These constraints take the following form:

F (C,θ, text) =
(
θ +

1
2
∆x

)T
∆x, (10)

∆ix (C, text) =


Ciµφµ(text) − xext, i, (11)

where θ are Lagrange multipliers for the constraints, text is
an optimizable parameter corresponding to the location along
the path of a local maximum (transition state) or minimum
(intermediate) in the energy with respect to t, collectively
referred to as the extrema along the path. At the beginning of
each VRC iteration, a geometry optimization step is computed
at the x (text), resulting in xext. Additionally, step size control
for the FVRC method is achieved in a familiar way by limiting
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the size of the geometry optimization step rather than imposing
a maximum step size on the change to the LEC.

During every iteration of the Focused VRC method,
E, γ, and η are computed via numerical integration, the
scaling parameter ξσ is determined by the Rational Function
Optimization (RFO) method,23 the extrema along the current
path are found and the geometry optimization steps are
computed, and the following Lagrangian is minimized:

LFVRC = QVRE (C + ∆C) − 1
2
ξσ∆CTσ∆C

+

α

λακα (C + ∆C) + F (C,θ, text) , (12)

with respect to the change in the LEC (∆C), the Lagrange
multipliers for the constraints on the relative arc lengths
(λα), the location of the extrema along the path (text), and
the Lagrange multipliers for the coupling constraints (θ).
This minimization is performed microiteratively, with the κ
and F recomputed using updated values of C + ∆C, θ and
text. Following the convergence of the microiterations, the
resulting path locally minimizes the approximation QVRE,
while ensuring that κα = 0 for all α and that the path passes
through the points xext at the corresponding values of text.

III. RIC COUPLING CONSTRAINTS
FOR THE FVRC METHOD

The coupling constants as described in Sec. II (Eq. (10))
have the unfortunate drawback that the goal structures xext are
defined in terms of the ncart absolute Cartesian coordinates
of the structure, while the geometry of non-linear molecular
systems is defined by only ncart − 6 internal coordinates. The
6 extra degrees of freedom involve the external translation
and rotation of the entire molecule. The translation degrees
of freedom do not come into play if there is no difference
in the overall translation between the reactant and product
structures since interpolation of the initial path, minimization
of the VRE and the computation of an optimization step will
not introduce any overall translation anywhere along the path.
Overall rotation can only be defined infinitesimally, however,
due to its curvilinear relationship with the geometry. Including
any rotational information in the coupling constraints is
problematic, so to improve the stability of the optimization,
xext has to be rotated during each microiteration in order to
minimize the overall rotation between xext and the current
value of x (text).

Instead of defining the coupling constraints in terms
of Cartesian displacements x, it would be advantageous to
use internal coordinates q, but if the internal coordinate
definition has any redundancies the q, θ second derivative
of the coupling constraints will be overdetermined, resulting
in a singular augmented Hessian. The solution is to define
the derivatives of the coupling constraints only in the locally
non-redundant space defined as the first nact = ncart − 6 left-
singular vectors (Uact) of the Wilson B-Matrix Bai =

∂qa
∂xi

,
computed by singular value decomposition (B = USVT , U
and V are unitary, and S is diagonal). The RIC coupling
constraints take the form

Fq =
(

1
2
∆q + θq

)T
∆q, (13)

∆aqext =

b

[Uact]ab (qb(text) − qext,b) , 1 ≤ a ≤ nact,

(14)

where 2π is added or subtracted to the differences correspond-
ing to dihedral coordinates as necessary to account for
the discontinuity at +/-π. To compute the derivatives of
Eq. (13), the reduced Lagrange multipliers, B-matrix, B-
matrix derivative, and RIC displacements are defined as
follows:

∆qr = UT
act∆qext, θr = UT

actθq, (15)

Br = UT
actB,

∂Br

∂x
= UT

act
∂B
∂x

, (16)

where the r subscript corresponds to the reduced quantity.
This makes the incorrect assumption that Uact is constant with
respect to a change in the Cartesian coordinates, but since the
x-derivative of Uact term will vanish in Br when ∆q is zero,
inclusion of this term should not be necessary for convergence
during the microiterations. The θr , text, and LEC derivatives
of Fq are

∂Fq
∂θa
= ∆aqext, (17)

dFq
dtext

= (∆qr + θr)TBrτext, (18)

∂Fq
∂Ciµ

=

a

(∆qr + θr)a[Br]aiφµ (text) , (19)

d∂Fq
dtext∂θa

=

i

[Br]ai[τext]i, (20)

[Mxx]i j =
∂2Fq
∂xi∂x j

=

b

[Br]bi[Br]b j + (∆qr + θr)b ∂[Br]bi
∂x j

,

(21)

d2Fq
dt2

ext
= τTextMxxτext + (∆qr + θr)TBr

dτext

dtext
, (22)

d∂Fq
dtext∂Ciµ

= [Mxxτext]iφµ (text) +
(∆qr + θr)TBr


i

dφµ (text)
dt

,

(23)

∂2Fq
∂Ciµ∂θa

= [Bai] φµ (text) , (24)

∂2F
∂Ciµ∂Cjν

= [Mxx] φµ (text) φν (text) . (25)

With the derivatives defined in this fashion, Fq can replace
F in the FVRC Lagrangian.

IV. LEAST LENGTH PATH

A. RIC arc length

The arc length formula (Eq. (8)) generalizes the concept
of length to things that are curved in nature, like the length
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traveled by a reaction path in Cartesian coordinates. It can also
be used to compare lengths of curves in curvilinear spaces,
such as the space of redundant internal coordinates. These
spaces are different from rectilinear spaces like Cartesian
coordinates in that they have a variable metric, which
defines the infinitesimal relationship between a change in the
coordinates, and the change in the length traveled. A simple
conceptual example of the role a metric plays in computing
distances is to define two points on a sphere. In this case, a
curvilinear coordinate system used to represent those points
could be a pair of angles (i.e., a spherical coordinate system
with a fixed radius), and the metric would define how to
compute the arc of a circle on the cross section of the sphere
containing two points.

For molecular geometries, the RIC is a curvilinear coor-
dinate set that is a more naturally uncoupled representation of
the relative motions of atoms, and Wilson’s B-Matrix defines
the metric. To determine the RIC length of a path that is
defined in Cartesian coordinates, the following arc length
formula can be used instead:

SRIC(t1, t2) =
 t2

t1


τTGCτdt, (26)

where GC = BTB, B depends on x (t), and τ depends on t.
GC can be thought of as the ncrt × ncrt inner product version
of Wilson’s G-matrix GQ = BBT , which is commonly used
in redundant internal coordinate transformations. Any path
between reactant and product that minimizes SRIC will have

the smallest possible overall change in the redundant internals.
This should provide a more reasonable initial pathway for
optimization than the linear path in Cartesians by eliminating
nonphysical or unrealistic configurations, such as those with
atomic collisions due to very small bonds or angles. With some
slight modifications, the methods developed to minimize the
VRE can also be used to minimize an arc length formula like
SRIC. This will produce a path defined in Cartesian coordinates
that is ready to be optimized by VRC or some other path
optimization method.

The first step in applying the VRC methods to minimizing
SRIC is to compute the derivatives with respect to a change
in the LEC. For notational convenience, let |τG| =


τTGCτ.

The first derivative is given by

∂SRIC

∂Ciµ
=

 tP

tR

(
φµ

∂

∂xi
+

dφµ

dt
∂

∂τi

)
|τG| dt, (27)

∂

∂xi
|τG| =


k,l τk

∂[GC]kl
∂xi

τl

2 |τG| , (28)

∂

∂τi
|τG| =


k τk ([GC]ik)

|τG| , (29)

with the x-derivatives of GC constructed straightforwardly
as

∂Gkl

∂xi
=


a

Bak
∂Bal

∂xi
+
∂Bak

∂xi
Bal . (30)

The second derivatives are derived in a similar fashion

∂2SRIC

∂Ciµ∂Cjν
=

 tP

tR

(
φµφν

∂

∂xi

∂

∂x j
+

dφµ

dt
φν

∂

∂τi

∂

∂x j
+ φµ

dφν
dt

∂

∂xi

∂

∂τj
+

dφµ

dt
dφν
dt

∂

∂τi

∂

∂τj

)
|τG| dt, (31)

∂

∂xi

∂

∂x j
|τG| =


k,l τk

∂2[GC]kl
∂xi∂x j

τl

2 |τG| − ∂ |τG|
∂xi

∂ |τG|
∂x j

1
|τG| , (32)

∂

∂xi

∂

∂τj
|τG| =


k τk

∂[GC]k j

∂xi

2 |τG| − ∂ |τG|
∂xi

∂ |τG|
∂τj

1
|τG| , (33)

∂

∂τi

∂

∂τj
|τG| =

[GC]i j
|τG| −

∂ |τG|
∂τi

∂ |τG|
∂τj

1
|τG| , (34)

∂2Gkl

∂xi∂x j
=


a

2
∂Bak

∂xi

∂Bal

∂x j
+ Bak

∂2Bal

∂xi∂x j
+

∂2Bak

∂xi∂x j
Bal .

(35)

Since GC is defined as a ncart × ncart matrix, no additional
consideration of the possible redundancy in the RIC coordinate
system is necessary beyond the requirement that the B-Matrix
has nact linearly independent rows. However, even when the
RIC is well chosen the matrix GC will be singular due to
the external degrees of freedom, and therefore Eq. (31) will
also be singular. In order to ensure the numerical stability of
the VRC-like optimization, these external degrees of freedom
need to be addressed in some fashion.

B. Handling translation and rotation

The simplest way to account for the external degrees of
freedom in a VRC-like optimization to find the least length
RIC path is to add to GC a pair of orthonormal projectors that
span the translation and rotation spaces

G∗C = GC + PT + PR. (36)

Vectors for the infinitesimal translation (t) and rotation (r)
are constructed with the portion of the vectors corresponding
to the kth atom given by

tl,k = el, (37)
rl,k = xk × el, (38)

where × denotes the 3-dimensional cross product, el is the
lth row of the 3-dimensional identity matrix, and xk are the
3-dimensional Cartesian coordinates for atom k translated
so that the origin is located at the center of molecule
(i.e.,


k xk,l = 0 for each l). These vectors can be arranged as

the 3 × ncart matrices T and Rx, which are used to construct
the orthonormal projectors
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PT =
1

natoms

3
l

tltTl =
TTT

natoms
, (39)

PR = Rx

�
RT

xRx

�−1RT
x = RxA−1RT

x , (40)

note that the matrix A is the 3 × 3 moment of inertia for the
geometry defined by x assuming all atomic weights are equal.
Since ∂PT

∂x = 0 and since PT is contained within the constant
null space of GC, and since x (t) should never contain any
translational motion, it is sufficient to add the following term
to the second derivatives of SRIC to ensure that the modes
corresponding to overall translation are non-singular:

[PT]iµ jν =

 tP

tR

[PT]i j
dφµ

dt
dφν
dt

dt . (41)

The derivatives of Eq. (40) require a bit more work. To
begin, the following equivalency is used:

τTPRτ ≡ zTA−1z, (42)

where z is the 3-dimensional sum of cross products between
the tangent and position of each atom

z =
natoms

k

xk × τk . (43)

The LEC derivatives of τTPRτ can be computed using the x
and τ derivatives of τTPRτ

zTA−1 ∂z
∂x
= zTA−1Rτ, (44)

zTA−1 ∂z
∂τ
= −zTA−1Rx, (45)

zT
∂A−1

∂x
z = zTA−1RzTA−1Rx

, (46)

where Rτ and RzTA−1Rx
are computed in the same way as

Eq. (38), but with x replaced by τ and zTA−1Rx, respectively.
Numerical tests indicated that the contributions from Eqs. (44)
and (45) were typically a few orders of magnitude larger than
those from Eq. (46) and that the second derivatives of A−1

were even smaller. Since these terms appear to be negligible,
A−1 is assumed to be constant to simplify the construction of
the second derivatives of τTPRτ. The second derivatives are
computed as follows:

zTA−1 ∂2z
∂τ∂x

= −zTA−1L, (47)

∂z
∂τ

T

A−1 ∂z
∂x
= −RT

xA−1Rτ, (48)

∂z
∂x

T

A−1 ∂z
∂x
= RT

τ A−1Rτ, (49)

∂z
∂τ

T

A−1 ∂z
∂τ
= RT

xA−1Rx, (50)

where L is a 3 × ncart × ncart tensor that satisfies

zi = xTLiτ, (51)

with each of the natoms 3 × 3 blocks on the diagonal of Li

defined by the appropriate elements of the 3-dimensional
Levi-Civita symbol.

In addition to the LEC derivatives for the SRIC using G∗C,
the following shift matrix is used in the place of the overlap
of the basis set derivatives used in the standard VRC method:

[σS]iµ jν =

 tP

tR

*
,

dφµ

dt
dφν
dt

�
G∗C

�
i j

|τG|
+
-

dt, (52)

where |τG| =

τTGCτ.

C. Improved λσ initialization

In the Constrained VRC (CVRC) and FVRC methods
described in the Paper I,1 ξσ was determined once per macro-
iteration prior to beginning the microiterations by applying the
RFO method to the unconstrained VRE derivatives. While this
approach did result in a working algorithm, ξσ did not display
the correct convergence behavior (i.e., it did not decrease
to zero at convergence) and the resulting over-correction
was suspected to play a role in the slowdown observed in
the method in the final few iterations. Here, an iterative
method to initialize the values of both ξσ and the λ is
described that results in the correct convergence behavior.
This is accomplished by alternately computing ξσ followed
by updating the λ until no further change in the λ is observed.

To begin, the λ are set to zero. Each iteration begins
by computing the first and second derivatives of the SRIC

Lagrangian with ξσ set to 0

∂LS

∂C
=

∂SRIC

∂C
+


α

λκ
α

∂κα
∂C

, (53)

∂2LS

∂C2 =
∂2SRIC+

∂C2 +

α

λκ
α

∂2κα

∂C2 , (54)

and using these derivatives along with σS to compute ξσ.
Then, the following system of equations can be constructed:



X YT

Y 0


*
,

∆C
∆λ

+
-
= *
,

w
v
+
-
, (55)

X =
∂2LS

∂C2 − ξσσS, w =
∂LS

∂C
, (56)

Y =
∂κ

∂C
, v = κ (57)

and the Schur complement of X can be used to solve for ∆λ

∆λ = −
�
YTX−1Y

�−1 �YTX−1w − v
�
, (58)

which is used to update λ. This process repeats until the RMS
of ∆λ is less than 10−6. This method also shows convergent
behavior when additional constraints are added to Y, ∆λ, and
v, so long as v is small. These conditions are always met for
the arc length and rotation constraints as long as the initial path
satisfies those constraints but may not be met by the coupling
constraints in the FVRC method since the initial path will
have a non-zero displacement in the coupling constants.

D. RIC arc length minimization algorithm

For the present algorithm, the redundant internal
coordinate set was constructed by merging the bonding
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skeleton from the reactant and product structures, and then
including the standard set of bond stretches between bonded
atoms, angle bends between pairs of stretch coordinates, and
torsion coordinates between pairs of bends. The methods
described in this section are general for any complete set of
redundant internal coordinates, and it may be the case that
different choices of coordinate set may provide some benefit
for interpolation. The exploration of different coordinate
definitions is a worthwhile area for future study:

1. Input initial (linear Cartesian) path.
2. Compute SRIC, SRIC derivatives, and σS.
3. Initialize ξσ and the λ according to Sec. IV C.
4. Begin microiterations

(a) Compute the constraints κ (C + ∆C) (Eq. (7)) and their
derivatives with respect to a change in the LEC.

(b) Compute the (augmented) ∆C and λ derivatives of the
LS as outlined in Sections II and IV.

(c) Update ∆C and λ using Newton’s method to produce
an augmented displacement.

(d) Check augmented gradient and augmented displace-
ment for convergence of microiterations, end microit-
erations if converged.

(e) goto 4a.
5. Update LEC for path, and recompute SRIC, SRIC derivatives

and σS.
6. Check the predicted change in the SRIC for convergence,

end macroiterations if converged
7. goto 3.

The predicted change in the SRIC was found to be a more
reliable convergence criteria for this algorithm than a more
typical optimization criteria such as the RMS or magnitude of
the SRIC gradient. When a change in the arc length of less than
10−2 Bohr or radians is achieved, the path has been cleaned
up enough to avoid the atom collisions that can be present in
the linear Cartesian path, while also satisfying the constraint
conditions κα = 0 and ρα, i = 0 for all α and all i.

This approach can also be combined with the coupling
constants used in the FVRC method in order to produce an
initial path that minimizes SRIC and also travels through one
or more particular geometries, such as known intermediates
or guess transition state structures. In the case of bi-molecular
reactions, it was previously demonstrated22 that interpolation
of the bond order for bonds being broken or formed is
an effective approach for approximating the structure at the
transition state, and the methods outlined in Section III can be
modified to define the goal geometry only in terms of those
bonds by setting nact = ncts, where ncts is the number of bonds
being broken or formed, and defining the goal geometry only
in terms of those bonds.

V. REDUNDANT INTERNAL COORDINATE
VRC METHOD

A. RIC VRE definition

As mentioned in the introduction, the VRE is the line
integral of the gradient norm (Eq. (1)). Since the gradient
norm has units of energy/displacement, and the tangent norm

has units of displacement/dt, the integral of the gradient norm
times the tangent norm over dt must have units of energy. The
term in the RIC arc length formula (Eq. (26)) has units of RIC
displacement/dt, so it makes sense that an RIC VRE can be
constructed by incorporating a redundant internal coordinate
gradient norm into SRIC

Eq
VRE =

 tP

tR


gTxG−

C
gx


τTG∗

C
τdt, (59)

where G−C indicates the pseudoinverse of the inner-product G-
matrix defined in Section IV, and the modified version of GC

from Section II is only used in the tangent norm expression.
The derivatives of G−C are defined straightforwardly as

∂
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where the derivative of the pseudoinverse is given by24
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. (61)

In order to avoid having to compute the pseudoinverse of
B and its derivative at every evaluation of the RIC VRE, an
alternative formulation of Eq. (59) can be used instead

Eq
VRE =

 tP

tR


gTqgq


τTGCτdt . (62)

This expression is equivalent to (59), but assuming that some
form of surface fitting or interpolation is used to compute gq

directly as a function of t, the cost of computing G−C during
the integration of Eq. (62) and its derivatives may be avoided
by using the chain rule, ∂

∂xi
=


a Bai

∂
∂qa

. The derivatives of
the RIC VRE may be computed in a similar fashion to the
derivatives of SRIC, using Eqs. (28), (29), and (32)-(34) along
with the first and second x-derivatives of the RIC gradient
norm
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, (63)
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(64)

B. Approximating the RIC PES

In order for the RIC VRE definition in Eq. (62) to be
useful, a method for approximating the RIC PES as a function
of t is necessary. This can be accomplished efficiently by
curve fitting, treating each unique element of the gradient
and Hessian as a 1-dimensional function of t, and then
approximating that function with a method for interpolating a
curve based upon a limited number of known points. One such
interpolation method is involves using polyharmonic splines.25
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Polyharmonic splines are often used to approximate functions
of more than one variable. They have some features that make
them attractive to use here, including efficient evaluation of
the fit spline, strict interpolation of data points (i.e., the fit
curve is guaranteed to evaluate to the exact data at the known
points), and a smooth and well behaved interpolation between
points. A polyharmonic spline function f (t) is evaluated as

f (t) = u1 + u2t +

i=1

wiφr (|t − ci |) , (65)

where φr is a radial basis function, the c are the values
of t where the data are known (also called the centers of
the interpolation), and the w and u are expansion weights
determined by solving the following system of equations:



A VT

V 0





w
u


=



f
0


, (66)

Ai j = φr

��
ci − cj

��
, (67)

V1i = 1, (68)
V2i = ci, (69)

f i = f (ci) , (70)

where the f are the different functions being interpolated
(e.g., the energy, gradient, and Hessian). In the present work,
the following radial function is used:

φr (c) = c3 ln cc. (71)

Generally speaking, more complex target functions
require more centers to achieve the same degree of accuracy.
For this reason, only the energy, gradient, and Hessian terms
will be fit, rather than fitting some of the intermediate
terms like Hqgq or HqHq. Additionally, when transforming
the internal coordinate Hessian, additional terms that are
normally neglected in geometry optimization must also be
included. Normally, only the first term in Eq. (61) is used,
which is sufficient to accurately transform the Hessian in
the nact × nact space. The final two terms are necessary to
accurately transform the part of the Hessian contained in the
nact × nred space, where nred = nRIC − nact is the number of
redundant coordinates. The transformed internal coordinate
Hessian expression becomes
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, (72)

where subscripts x and q are used to differentiate between
the Cartesian and RIC gradients, and the plus sign in the first
term is necessary to cancel out the double-counting of the
nact × nact part in the derivative of the pseudoinverse terms.

In the algorithm outlined in Section V D, the energy, the
nRIC elements of the RIC gradient, and the 1

2 nRIC × (nRIC + 1)
unique elements of the RIC Hessian are fit as functions
of t using polyharmonic splines at the start of each
macroiteration. The PES data used in the fit are evaluated
at the reactant, product, and an additional number of
geometries that are equally spaced along the current path.

The spline approximations are used to compute the VRE
and VRE derivatives. Since the energy and gradient are
fit independently of one another, the text are optimized to
satisfy gTqBτ = 0, where g is the approximated gradient,
as appropriate. Then, prior to verifying the extrema and
computing the displacements for the coupling constants, the
PES is evaluated at the text to ensure that the gradient and
Hessian are both accurate enough to reliably converge to the
intermediates and transition states.

C. Coupled partitioned RFO

In the initial Focused VRC method, optimization of the
geometry at the extrema was carried out by a standard Newton
step (∆x = −H−1g) if the Hessian at the extrema had the correct
number of negative eigenvalues (one for transition state, zero
for minima), and the length of the computed optimization
step was less than a maximum allowed step size. Otherwise,
a projected, downhill step was computed as follows:

P∥
τ =

ττT

τTτ
, P⊥τ = I − P∥

τ, (73)

∆x = −ascl

(
P⊥τ HP⊥τ − ξrfoI + P∥

τ

)−1
P⊥τ g, (74)

where ξrfo is the RFO correction to find a minimum, and
ascl ≤ 1 is a scale factor that reduces ∆x to the maximum
allowed step size. Once ∆x is computed by either methods,
an updated geometry xext = x (text) + ∆x is computed, the
energy and gradient are computed at xext and a line search
is performed to find the approximate minimum between the
two points. This process was successful because gTτ was
very small in magnitude at the text as they were determined
using the data computed during the numerical integration of
the VRE and its derivatives. If the text are determined using
the approximated gradient g (t) as in Section V B, it is very
likely that gTqBτ , gTqBτ, and gTqBτ will be non-negligible
and Eq. (74) will need to be modified to account for this
change when computing a step towards a transition state.

A common method used to compute the optimization step
when seeking a transition state is the partitioned RFO (pRFO)
method. In this method, the eigenspace of the Hessian is
divided into the transition vector (TV), and the minimization
space, and separate RFO corrections are computed for each

∆x = ∆xTV + ∆xmin = −
gTVvTV

(λTV − ξRFOmax)

−
n−1
i

givi

(λi − ξRFOmin) , (75)

where ξRFOmax is the RFO correction that maximizes the
energy along the transition vector, while ξRFOmin is the RFO
correction that minimizes the energy in the remaining n − 1
eigenvectors orthogonal to the transition vector. Since this
approach operates in the eigenspace of the Hessian, the TV
and minimization spaces are orthogonal, and there is no
interaction between the spaces that needs to be accounted for.
In the case of the focused VRC method, it would be ideal to
use the tangent to the path as an approximation to the TV, and
compute a step that maximizes the energy along the current
path while minimizing energy in the space orthogonal to the
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current path. Since there is no guarantee that the tangent to
the path will be an eigenvector of the Hessian, there will be an
interaction that must be accounted for. This is done by using
a coupled partitioned RFO method (cpRFO).

Similarly to the pRFO approach, a maximizing step and
an RFO correction are computed after projection onto the
tangent

∆xτ = −
gTττ

(τTHτ − ξRFOτ) , (76)

where ξRFO is the positive eigenvalue of the augmented
Hessian Haug,τ

Haug,τ =



τTHτ gTτ
gTτ 0


. (77)

The minimization portion of the step is then computed using
a shifted version of the Schur complement to the tangent

gcmp = P⊥τ (g +H∆xτ) , (78)

Hcmp = P⊥τ

(
H − HττTH

(τTHτ − ξRFOτ)
)

P⊥τ + P∥
τ, (79)

∆xmin = −
�
Hcmp − ξRFOminI

�−1gcmp, (80)

where ξRFOmin is the most negative eigenvalue of the
augmented Hessian

Haug,min =



Hcmp gTcmp

gcmp 0


(81)

and the final step is the combination of the maximization and
minimization steps, scaled such that a maximum step size is
not exceeded

∆x = ascl (∆xτ + ∆xmin) . (82)

The coupling between the two spaces is accounted for by
the additional terms in both the Schur complement gradient
and Schur complement Hessian. The additional term in the
Schur complement gradient adds the expected change in
the gradient resulting from a step to the maximum along
the current path, while the additional projector in the Schur
complement Hessian is positive (as the denominator will
always be negative), and functions as a penalty towards
motion in the coupling between the TV and the minimization
space. As this coupling goes to zero, the second term drops
out, and the cpRFO method reproduces the standard pRFO
result.

The methods described in this section are used to
compute displacements in RIC, using the RIC tangent
τq = Bτx, and all of the standard methods for handling single
geometry optimizations using redundant internal coordinates
including projection into the locally non-redundant space and
iterative embedding of the computed displacement back into
Cartesians. Additionally, a standard RFO step was found to
be better when searching for a minimum when the incorrect
number of eigenvalues were computed in the Hessian, and a
standard Newton step scaled back to a maximum step size
was used rather than the RFO method whenever the Hessian
had the correct number of negative eigenvalues.

D. RIC-FVRC algorithm

Like with the standard FVRC method outlined in Pa-
per I,1 the RIC-FVRC method is considered converged when
the gradient at the intermediates and transition states is
sufficiently small.

1. Input initial path (converged RIC-CTS path).
2. Evaluate the PES to fit the polyharmonic splines.
3. Locate, optimize, and verify the text corresponding to

transition states and intermediates, and compute the qext

goal geometries.
4. Compute VRE, VRE derivatives, VRE error ϵE, and σS.
5. Set ξσ and λ according to Sec. IV C, and set ∆C, θ, and

µϵ to 0.
6. Begin microiterations

(a) Compute the constraints κ (C + ∆C) and their
derivatives with respect to a change in the LEC.

(b) Update the Ur and ∆qr for all of the extrema.
(c) Compute ϵE (C + ∆C) and turn on optimization of µϵ

if ϵ < 0 and |∆qr | ≈ 0.
(d) Construct derivatives of the FVRC Lagrangian and

Update ∆C, λ, θ, te, and µϵ.
(e) Check augmented gradient and augmented displace-

ment for convergence of microiterations, end
microiterations if converged.

(f) goto 6a.

7. Check the gradient at the qext for convergence, and end
macroiterations if converged.

8. Update LEC for path, refit splines and compute the VRE,
VRE derivatives and ϵE.

9. Locate, optimize, and verify the text, and compute the qext

goal geometries
10. goto 4.

VI. RESULTS AND DISCUSSION

The methods in this study were implemented in
Mathematica,26 using energies, gradients, and Hessians
computed with the Gaussian 09 electronic structure program.27

While a more rigorous benchmarking and comparison to
existing chain of states methods is planned for a future
publication, a proof of concept is provided using eight
example reactions (see Figure 1 for a scheme of the reactions;
geometries for the reactants and products are included in the
supplementary material32). For each reaction, the least length
RIC and RIC-CTS paths were computed, aside from the
bispidine reaction which does not involve the breaking and
forming of bonds and only the RIC path was computed.
Figure 2 shows the geometry for the maximum energy
structure along the Cartesian interpolation, the least length
RIC path, the RIC-CTS path, and the final converged TS for
the ene and cope reactions. The Cartesian path was usually
significantly worse than either of the other interpolations,
mostly due to an unrealistic shortening of bonds not involved
with the reaction, and an unrealistic lengthening of the bonds
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FIG. 1. Reactant, TS, and product structures for test reactions. For the bispidine reaction, the intermediate structure is shown instead of a transition state.

FIG. 2. Comparison of the maximum energy structures along the path for
the ene (left) and cope (right) reactions. From top to bottom, Cartesian
interpolation (XLST), least length RIC path, RIC-CTS path, final converged
path. Distances are in Angstroms.

that are breaking or forming. The least length RIC path
cleans up the former but not the latter, while the RIC-CTS
path typically gives reasonable lengths for the breaking
and forming bonds as well. The coordinates that differ the
most between the RIC-CTS maximum and the converged
transition state includes the bends and torsions involving
the breaking/forming bonds, as well as any intramolecular
distances which tend to be underestimated in the RIC-CTS
structure.

Figure 3 compares the energy profiles for the different
approximate pathways for a selection of the reactions and the
final converged results from the RIC-FVRC method. In the
HF + Ethylene reaction, even the Cartesian approximation is
reasonably good and neither the RIC nor the RIC-CTS path
offers an improvement. For the remaining reactions, however,
the Cartesian interpolation results in an energy profile that is
significantly worse than the other options. For the cope and
ene reactions, the RIC-CTS path is also an improvement over
the RIC. The maximum energy is slightly higher for the cope
RIC-CTS path due to the CTS approach underestimating the
lengths of the bonds breaking/forming at the TS, but both the
structure and the energy profile more closely resemble those
of the final path than the RIC path. The RIC path for the
bispidine reaction does not involve an intermediate structure
as the final path does, but it is nonetheless a clear improvement
over the Cartesian path.

To demonstrate the effectiveness of the RIC-FVRC
method, three optimizations were carried out for each of
these reactions using 9 basis functions per coordinate, with
the PES sampled at 4, 9, or 19 equally spaced points along
the path. For the first three reactions, the PES was defined at
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FIG. 3. Comparison of energy profiles for the Cartesian (XLST), least length RIC (RIC), RIC-CTS, and final converged path. (a) HF + Ethylene, (b) ene, (c)
cope, (d) bispidine. The plot for bispidine is zoomed in to show the fine structure of the RIC and final paths, the maximum along the XLST path is approximately
0.5 hartree.

the B3LYP28–31/6-31G(d,p) level of theory, while the 5 larger
reactions used the HF/3-21G level of theory. A convergence
criterion of 10−4 hartree/bohr was used for the RMS gradient
at the qext, with an additional requirement that no false maxima
were observed along the current path. The gradient at qext rather
than geometry prior to the computation of the optimization
step (q (text)) was used as the latter is not guaranteed to
converge due to the error in the interpolation of the gradient.
All of the optimizations began with the RIC-CTS path aside
from the bispidine optimization, which began with the RIC
path. In each case, a maximum step size at intermediates
and transition states of 0.5 bohr/rad was allowed. The total
number of iterations required for convergence are recorded

in Table I. Also shown in the table are the total number of
PES evaluations (energy, gradient, and Hessian) required for
convergence, which is equal to

ntot = 2 + nint × nvrc + nfound + nused, (83)

where the first 2 are the evaluation of the Hessian at the
reactant and product, which may be reused throughout the
optimization, nint is the number of sampling points used during
the interpolation, nvrc is the number of VRC iterations required
to converge, nfound are the number of TS/Intermediates located
along the path, while nused is the number of TS/Intermediates
that were included in the VRC microiterations. Most of
the optimizations were able to successfully converge even

TABLE I. Number of iterations and PES evaluations required to converge.

VRC iterations next nkeep Total PES evalsa

# of interpolation points: 4 9 19 4 9 19 4 9 19 4 9 19

SiH2 + H2 2 2 2 2 2 2 2 2 2 14 24 44
HF + Ethylene 8 6 5 14 8 5 8 6 5 66 70 117
Allene Oxide . . . 4 4 . . . 4 4 . . . 4 4 . . . 46 86
Sulfolene 6 6 6 6 6 6 6 6 6 38 68 128

Ethylene + Propene (Ene) 4 6 4 4 6 4 4 6 4 26 68 86
1,5-hexene (Cope) 4 4 4 4 4 4 4 4 4 26 46 86
Bispidine isomerization . . . 7 7 . . . 17 17 . . . 17 17 . . . 99 169
Glucose isomerization 5 6 6 5 8 8 5 6 6 32 70 130

aEach PES evaluation consists of an energy, gradient, and Hessian calculation. The total number of PES evaluations is 2 (for
reactant and product) + (# of interpolation points) × (VRC iterations) + number of extrema found (next) + number of extrema
included in the microiterations (nkeep).
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when as few as 4 interpolation points were used, and
even when the 4 or 9 interpolation point optimizations
required more iterations to converge, the total number of
Hessian evaluations was generally much smaller than the 19
interpolation point optimization. It is likely that the density
of evaluations is less important than the accuracy of the
interpolated gradient curves, as the problem encountered with
the failed optimizations had to do with the incorrect placement
of the transition state structures, resulting in optimization steps
that included too much motion along the current path. These
steps failed to systematically improve the transition state, or
caused significant instability in the microiterations. In the
case of the ene reaction, the 9 sampling point optimization
took more iterations to converge than the 4 sampling point
optimization for a similar reason. The polyharmonic splines
used to fit the sample points are also well suited to fit data with
non-uniform sampling, and it is expected that the development
of a non-uniform sampling process that chooses sample points
based upon the curvature in the path or the predicted location
of the transition state could improve the quality of the fit and
stability of the VRC optimization while keeping the number
of PES evaluations per iteration low.

Figure 4 compares the energy profile, represented by
a polyharmonic spline fit to 19 sampling points along the
path, for each the final converged paths against the number
of sampling points used in the interpolation during the
optimization. In each case, it is clear that the same transition
state was found and that for the most part, the pathways
from the 9 and 19 interpolation point optimizations were
very similar when the same number of VRC optimizations

were required for convergence. While the 4 interpolation
point optimizations that converged did successfully locate the
correct transition state, the final pathway typically contained
more error, and in the case of the HF + Ethylene reaction
actually smoothed over some false maxima near the reactant
and product. Depending on the needs of the user carrying out
the VRC optimization, this error may be considered negligible,
but visual inspection of an animation of the resulting path
and/or a VRC optimization step carried out using a larger
number of interpolation points should be considered if the
pathway is to be used for anything more than a verification
that the TS connects the reactant and product.

For both the reactant and product of the cope and the
reactant of the glucose isomerization reactions, the minima
used for the VRC optimization had backbones with more
of a compact shape which results in the reacting groups
being near to one another. In each case, there was also a
lower energy extended isomer that would have to undergo a
significant torsional change to line up the reacting groups.
VRC optimizations were also carried out using the extended
minima instead. The initial cartesian interpolation resulted in
very poor quality TS estimates with high energies, and the
RIC optimization began with gradients that were an order
of magnitude or two larger than for the other reactions,
and took significantly more macroiterations to converge than
for the other reactions. The resulting RIC pathways had
very long arc lengths due to the considerable amount of
rearrangement required to represent the backbone torsion in
the Cartesian representation, and the VRC optimizations did
not fully converge even when a large number of interpolation

FIG. 4. Comparison of the converged pathways found using different numbers of interpolation points along the path. (a) HF+ethane, (b) ene, (c) cope, (d)
bispidine.
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points was used. Even though tight convergence was not
possible, the VRC optimizations did quickly locate the
compact intermediate. This suggests that the results of the
RIC optimization may be helpful in determining whether or
not the reactant and product are likely separated by a single
transition state, and if they are not, a coarse VRC optimization
may be used to locate an intermediate that is more suitable
than the current reactant or product for optimization.

VII. SUMMARY

The RIC-FVRC method is able to produce an approximate
SDRP along with the fully converged geometries of any
intermediates and transition states along the path in a small
number of iterations. By approximating the PES derivatives
using curve fitting techniques, this algorithmic efficiency is
maintained while the per-iteration cost is reduced to something
more comparable with existing chain of states methods.
Inclusion of Hessian updating to avoid the computation of
analytical Hessians should be investigated in the future, but it is
expected to be non-trivial due to the role Hessian information
plays in computing the VRE gradient and identifying false
minima/maxima. Additionally, the development of adaptive
and/or systematic approaches to fitting the PES curves could
improve the accuracy of those curves while using as few
evaluations of the chemical PES as possible per iteration.
Once improvements such as these are included in the present
methodology, the efficiency and reliability of the VRC method
should compare very favorably to existing published reaction
path optimization methods.
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