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an approximate Hessian stored and updated using the gra-
dient information computed at each step of the optimiza-
tion. Methods also exist that avoid the storage and update 
of the Hessian matrix, such as the conjugate gradient [4] 
and limited memory quasi-Newton [5] optimizers. These 
approaches typically require more gradient evaluations 
to achieve convergence when compared with full storage 
quasi-Newton methods and are frequently used to opti-
mize very large molecules where the memory costs associ-
ated with storing the Hessian are prohibitive. For a recent 
benchmark of these such methods, see Ref. [6].

For quasi-Newton optimizations, approximate, positive 
definite Hessian matrices [7] are typically used to avoid the 
cost of computing the full Hessian exactly. These approxi-
mate Hessians are then updated by the method of Broyden, 
Fletcher, Goldfarb and Shanno (BFGS [8–11]) when seek-
ing a minimum structure, and either the Powell’s sym-
metric Broyden (PSB [12]) or the symmetric rank 1 (SR1 
[13]) updates, or some combination of the two [14], is used 
when attempting to locate a transition state. Additionally, 
sequence acceleration methods such as line searches and 
direct inversion of the iterative subspace (GDIIS [15]) are 
also used to reduce the number of potential energy surface 
(PES) calculations necessary to converge to the desired 
minimum or transition-state structure.

Since geometry optimization using quasi-Newton meth-
ods is a relatively mature field, improvements are likely to be 
modest. Nevertheless, it is worthwhile to explore the effects 
of various modifications to existing optimization algorithms. 
Described below are three refinements that may offer addi-
tional benefits over existing methodologies for locating mini-
mum energy structures using quasi-Newton optimizers.

•	 Flowchart update—This approach seeks to improve Hes-
sian updating by using different update methods only 

Abstract  The optimization of equilibrium geometries is 
a key first step in most investigations that utilize quantum 
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1  Introduction

Geometry optimization is an important tool in the compu-
tational chemistry toolbox and has become ubiquitous in 
modern studies of chemical properties and reactions. There 
are a wide variety of different algorithms that exist for 
optimization (see Ref. [1] for a recent review of methods), 
with the most common utilizing a combination of quasi-
Newton steps in redundant internal coordinates [2, 3], with 
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when they are expected to be well behaved, and falling 
back to more reliable but less ideal updates when neces-
sary. Additionally, a new modification to the PSB method 
is used by using scaled displacements to compute the 
update.

•	 Scaled RFO method—This approach seeks to improve 
the use of the rational function optimization method for 
controlling step size and direction by modifying the shift 
matrix to better represent the expected relative stiffness 
of the bond stretches versus the other coordinates.

•	 Quasi-rotation method—This is an alternative approach 
to handling the redundancy in an internal coordinate sys-
tem. Rather than store the approximate Hessian in the full 
redundant space, a quasi-rotation matrix is used to rotate 
the approximate Hessian from the non-redundant space at 
one point, to the non-redundant space at another. In addi-
tion to reducing the memory requirements for storing the 
Hessian for large systems, this could also lead to a more 
consistent approximation to the Hessian even when the 
non-redundant space changes over the course of the opti-
mization and may help improve Hessian updating since 
the change in the gradient can be expressed entirely in the 
non-redundant space at one set of coordinates.

In the appendix, we summarize the procedures that have 
become standard over the past few decades for the optimi-
zation of molecular geometries using the quasi-Newton 
method. In Sects.  2–4, we present some new contributions 
to improve the stability and efficiency of such optimizations. 
The standard method will serve as the benchmark for eval-
uating the performance of each of the modifications to the 
standard optimization method.

To test the performance of the geometry optimiza-
tion methods, we have compiled a new set of 20 mol with 
between 10 and 50 heavy atoms (Fig.  1). This test set is 
more representative of molecules typically being optimized 
using ab initio and DFT methods on modern architectures 
than the older test sets that were developed according to the 
computer time available in previous decades [16, 17].

2 � Flowchart update

2.1 � Motivation

Three of the most commonly used Hessian update formu-
lae are the BFGS, SR1 and PSB updates. They use the dis-
placement (s = �q), change in gradient (y = �gq), and 
quadratic error (z = y−Hs) to correct the approximation 
to the Hessian according to data computed at two separate 
geometries.

(1)
�HBFGS =

yyT

yT s
−

sHHsT

sHs

It is fairly well understood that the BFGS (Eq. 1) and SR1 
(Eq. 2) updates can become numerically unstable when yT s 
and zT s are small, respectively. The PSB update (Eq. 3), on 
the other hand, is always numerically stable since the only 
quantity in the denominator (sT s) is always nonzero for a 
finite step, but may have undesirable properties when the 
quadratic error is large. After observing that, in general, the 
SR1 update produced the most reasonable results when zT s 
is less than 0, the following flowchart method was developed.

2.2 � Method

2.2.1 � Flowchart method

1.	 If z
T s

|z||s|
< −0.1, use the SR1 update.

2.	 If y
T s

|y||s|
> 0.1, use the BFGS update.

3.	 Otherwise, use PSB method.
This has the benefit of attempting to use the SR1 and 

BFGS methods, which are often far superior to the PSB 
method for minimization, as much as possible, but relying 
on the numerical stability of PSB when necessary.

2.2.2 � SSB method

All Hessian update methods are based upon computing a 
correction to the Hessian which satisfies the secant equation

Whenever the dimensionality of the PES is greater than 1, 
this equation is under-determined for the correction (�H ) 
and the imposition of different constraints, such as the 
requirement that the correction be symmetric, and that it 
has a minimum size according to some metric, leads to the 
different update formula. Since all update methods satisfy 
Eq.  4, the difference in performance between the meth-
ods must depend on how they treat the remaining space. 
For SR1 and BFGS, the numerator is constructed from the 
outer products of vectors that resemble gradient change 
terms (y, Hs or z), while the numerator for the PSB for-
mula is constructed from outer products of displacements 
or displacements and gradient change terms. Similarly, the 
denominators in the SR1/BFGS updates are scalar products 
of the displacement and a gradient change terms, while 
the denominators in the PSB update are scalar products of 
the displacement alone. If these features play a role in the 

(2)�HSR1 =
zzT

zT s

(3)�HPSB =
szT + zsT

sT s
− sTz

ssT

(
sT s

)2

(4)(H+�H)s = y
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improved behavior observed with the SR1/BFGS updates, 
then perhaps the PSB update can be modified to produce 
more reasonable updates as well.

A more general symmetric rank 2 update can be con-
structed using any vector v as follows

This update is valid for any choice of v that has a nonzero 
overlap with s, with v = s giving the PSB update, and v = z 
giving the SR1 update. Greenstadt [18] observed that the 
choice of v = Ms, where M is a positive definite weight-
ing matrix, minimizes the magnitude of update matrix rela-
tive to M. By letting M be the approximate Hessian that is 

(5)�HSR2 =
vzT + zvT

vT s
− sTz

vvT

(
vT s

)2

used to initialize a quasi-Newton optimization, we obtain 
a sensible v that has characteristics of y, the change in the 
gradient, while also having a nonzero overlap with s, the 
displacement. This modified Greenstadt formula will be 
refered to as the scaled symmetric Broyden (SSB) update 
and is also tested in the flowchart method.

3 � Scaled RFO method

3.1 � Motivation

The shifted (quasi-)Newton methods control the direction 
and magnitude of a (quasi-)Newton step by a shift of the 
Hessian eigenvalues.
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where ξ is computed in such a way that the shifted quan-
tity Hr + ξI has the correct number of negative eigenvalues 
(zero for minima, one for transition states) for the struc-
ture being optimized, and the subscript r indicates that the 
quantities are projected into the reduced, non-redundant 
space (see “Projection into non-redundant space” section in 
the Appendix for further details). The RFO method com-
putes this shift factor as the negative of an eigenvalue (i.e., 

(6)�qr = −(Hr + ξI)−1gr
ξRFO = −�aug) of the Hessian augmented with the gradient 
(A more detailed discussion of the RFO method may be 
found in “RFO” section in Appendix.)

When the shift factor is large enough to dominate the Hes-
sian, the result is a scaled steepest descent (or shallow-
est ascent, depending on the sign of the shift factor) step. 
This tends to be a poor step on a chemical PES, since the 

(7)Haug =

[
Hr gr
gTr 0

]
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vibrational modes in a molecule tend to be a combination 
of both soft angular/torsional and stiff bond stretch coordi-
nates, which can lead to oscillations and poor convergence 
behavior. Standard methods to compute the shift factor 
often result in a shift that is small enough that the Hessian 
remains dominant, and the vibrational modes are scaled 
appropriately to avoid the oscillatory behavior. Considera-
tion of better ways to account for the stiffness of the vibra-
tional modes when computing the direction and magnitude 
of the shifted (quasi-)Newton step has resulted in the scaled 
RFO method.

3.2 � Method

While the RFO method is normally derived with a gen-
eral matrix S (see “RFO” section in the  Appendix), it 
is usually implemented with S = I. In the scaled RFO 
method, S is a positive definite matrix that is chosen to 
better account for the difference in stiffness between 
the coordinates. Additionally, for behavior similar to the 
RFO method, S should be normalized so that the mag-
nitude of S is comparable to the magnitude of the iden-
tity matrix. This ensures that the only function of the S 
matrix is to change the contribution from each coordi-
nate in the shifted matrix relative to one another without 
increasing or decreasing the magnitude of the shift itself. 
These requirements are met by using an approximate, 
positive definite Hessian H̃ used to initialize the Hessian 
in a quasi-Newton optimization, projected into the active 
space at the current geometry (H̃r = UactH̃UT

act), with the 
normalization factor computed using the inverse of the 
determinant.

Löwdin orthogonalization [19] can be used to scale the 
Hessian, gradient and computed step, allowing for the 
computation of the shift parameter in the standard way.

4 � Quasi‑rotation internal coordinate propagation

4.1 � Motivation

Regardless of the coordinate system chosen, the number of 
internal degrees of freedom defining a molecular geometry 
is fixed at nact = ncrt − 6 for nonlinear molecules. When-
ever more than nact primitive coordinates are used to define 
the molecular geometry, a local basis of nact linear combi-
nations of the primitive coordinates completely defines the 

(8)S =
H̃r

|H̃r |1/nact

(9)
�qSRFO = S−1/2

(
S−1/2HrS

−1/2

−�RFOI)
−1S−1/2gr

allowed internal motions of the molecule, and the remain-
ing coordinates orthogonal to that basis are redundant. This 
basis is considered local because it depends on the corre-
sponding geometry, in the case of Cartesian coordinates, 
the rotational orientation defines the direction of the overall 
infinitesimal rotations, while with redundant internal coor-
dinates, the local basis is given by the left singular vectors 
of the B-matrix (see “Transformation of gradient/Hessian” 
section in the Appendix), which is a function of the Carte-
sian coordinates.

A method for transforming the derivatives in the local 
basis for one geometry into the local basis for another 
geometry is outlined below. This reduces the amount of 
space required to store approximate Hessian information 
down to the amount required for a symmetric nact matrix 
and may help keep approximate Hessian information rel-
evant over longer optimizations when the local space 
changes dramatically. The transformation is constructed 
by projecting the B-matrix of a previous geometry into 
the local basis at the current geometry, and the result-
ing nact × nact matrix will have an unsigned determinant 
of approximately, but not less than, 1. For this reason, the 
transformation is referred to as a quasi-rotation coordinate 
propagation method.

4.2 � Method

Instead of updating the Hessian in the full redundant space 
and then projecting into the non-redundant space at every 
step of the optimization, the Hessian may be stored and 
updated in only the active space. To account for the changes 
in the active space from one point to the next point, a quasi-
rotation scheme is used. If Bold and Bnew are the B-matrix 
computed at the previous and current point, respectively, 
while Uold

act  and Unew
act  are the active space at the previous and 

current point, the quasi-rotation matrix that transforms a 
matrix or vector from the active space at the previous point 
to the active space at the current point is given by

The rotated Hessian at the new point may be computed as 
follows

This Hessian may then be updated by using modified �q 
and �g vectors

(10)Mrot = Uold
actB

old
(
Unew
act B

old
)−1

(11)Hrot
act =

(
Mrot

)T
Hold

actM
rot

(12)�qprj =Unew
act

(
qnew − qold

)

(13)�grot =gnewr −
(
Mrot

)T
goldr
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The projected displacement will not be 100  % accurate, 
as some of the displacement may exist in the redundant 
space at the new point. However, this amount is typically 
small relative to the magnitude of the displacement vector, 
and the BFGS and SR1 updates only modify space that is 
nonzero in �g and H�q.

5 � Results and discussion

The performance of the modified algorithms are compared 
to the standard algorithm outlined in the appendix: optimi-
zation in redundant internal coordinates using the BFGS 
formula to update the Hessian and RFO to compute the 
step. An adaptive trust region is also used to control the 
maximum step size, with the RFO step scaled back when-
ever the computed step would exceed the trust region. Six 
modified algorithms were constructed by replacing one 
component of the standard algorithm:

•	 Cartesian—Optimize using Cartesian coordinates rather 
than redundant internal coordinates

•	 QN—Use a quasi-Newton step (i.e., Eq.  27 with 
�m = 0 ) rather than the RFO step

•	 FlowPSB—Replace BFGS updating with the flowchart 
update, using the PSB update as the fallback option

•	 FlowSSB—Replace BFGS updating with the flowchart 
update, using the SSB update as the fallback option

•	 SRFO—Compute the step using the scaled RFO 
approach rather than the standard RFO step

•	 RotCrd—Store only the non-redundant nact × nact 
Hessian, using the quasi-rotation matrix to propagate 
the Hessian and gradient at the previous point prior to 
applying the update

In each case, the initial Hessian was estimated as a diag-
onal matrix in redundant internal coordinates, and the ini-
tial trust region was set to 0.5 bohr or radian. No ceiling on 
the maximum step size was found to be necessary, as steps 
longer than approximately 1 bohr were uncommon, particu-
larly when RFO was employed, and so the trust region was 
limited in practice to a maximum of 2 bohr. For the Car-
tesian optimization, the initial Hessian was transformed to 
Cartesian coordinates using the B-matrix, H̃cart = BH̃intB

T,  
and the reduced space at each step is defined as the 
3ncart − 6 vectors orthogonal to the translation and rotation 
vectors defined in Eqs. 16 and 17. For the QN algorithm, 
if the Hessian is found to have a negative eigenvalue fol-
lowing the update, the optimization is terminated since the 
Hessian is not shifted prior to computing the step.

These algorithms were implemented in a Mathematica 
[20] program, using Gaussian 09 [21] to evaluate the poten-
tial energy surface. Table 1 shows the number of iterations, 

consisting of an energy and gradient calculation, that each 
method required to achieve the convergence criteria listed 
in Sect. 1 for the examples in the test set shown in Fig. 1 
(initial coordinates of the structures are provided in the 
supporting information). So that the different algorithms 
could be surveyed quickly, Hartree–Fock with the 3–21 G 
basis set was used to compute the energies for most cases. 
The behavior for B3LYP [22–25] with a 6–31 G(d,p) basis 
set should be similar, with the latter used in the EASC and 
vitamin C optimizations. For comparison, the total number 
of iterations required to converge all of the structures in the 
test set is listed in Table 1 for each algorithm that success-
fully optimized the complete test set. Additionally, since 
the QN method fails to converge on five of the structures, 
the total number of iterations required to converge only the 
remaining 15 structures is also listed.

Immediately apparent from the table is that optimiza-
tion in redundant internal coordinates is vastly superior to 
optimization in Cartesian coordinates. Simple quasi-New-
ton steps perform slightly better, in general, than the steps 
shifted by the RFO method; however, the RFO method ben-
efits from greater stability due to the ability to produce a 
good optimization step even when the Hessian has negative 
eigenvalues. It is common in optimization programs using 
the quasi-Newton method to employ additional fail-safes, 
such as restarting the optimization with a new approximate 
Hessian or rejecting updates that result in an indefinite Hes-
sian, but the performance and merits of these approaches 
were not studied in the present work. The SRFO method 
offers a level of efficiency that is closer to the unshifted 
quasi-Newton method, while still providing the reliability of 
the RFO method.

For the new methods introduced in this paper, the Rot-
Crd method was the only one that required more iterations 
(701) than the standard method (689) to optimize the test 
set. In general, the unsigned determinant of the quasi-rota-
tion matrix was <1.05 even for large steps; however, when 
the BFGS update produced an indefinite Hessian, the sub-
sequent step not only tended to increase the energy, but the 
resulting quasi-rotation matrix had a determinant much 
larger than previous or subsequent steps, in some cases 
being as large as 1.2. Since corresponding poor updates 
were observed in the standard algorithm, it suggests that 
changes to the local basis may play some role in these poor 
updates, and that a large determinant of the quasi-rotation 
matrix may have some use in rejecting what is likely to be 
a poor step prior to evaluating the energy/gradient. Addi-
tionally, the results here indicate that the RotCrd method 
adequately handles changes in the active coordinates dur-
ing the course of the optimization, suggesting that it may 
be worthwhile to use this approach in future investigations 
of new strategies that involve the evolution of the redundant 
internal coordinate set during the optimization.
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Both of the flowchart methods (FlowPSB and FlowSSB) 
and the SRFO method required fewer iterations to opti-
mize all of the structures in the test set than the standard 
method. Only 8 of the 20 optimizations needed to fall back 
to the symmetric Broyden update in the flowchart method, 
so the differences in performance between the FlowPSB 
and FlowSSB methods are limited to the differences in 
those 8 structures with neither approach doing consistently 
better than the other. Even when the symmetric Broyden 
update was needed, it was only used once or twice during 
the course of the optimization, and so the BFGS and SR1 
updates were well suited to these problems. It is possible 
that greater differences between the BFGS and the flow-
chart updates would be observed when the surface is less 
regular than ab initio or DFT surfaces (for example, using 
semi-empirical energies, or solvation models), and future 
investigation is warranted.

The SRFO method had the best overall performance of 
the seven methods in Table 1, requiring 45 fewer iterations 

to converge the test set than the standard approach. The 
SRFO method was also the only new method that con-
verged to different structures in six of the cases. When 
the initial structure is high in energy and far from a mini-
mum, there may be multiple minimum energy wells that 
are accessible, each containing a different stable con-
former. Since the SRFO effectively emphasizes changes 
to dihedral and valence angles early in the optimization, 
it is reasonable to expect that it will occasionally find 
a different minimum than the standard RFO approach, 
even when using the same initial Hessian and same Hes-
sian update formula. For the molecules where the SRFO 
method had the largest improvement over the standard 
method (Azadirachtin, Bisphenol A, EASC and Inosine), 
the SRFO and Standard methods converged to the same 
structure. Likewise, the only case where the SRFO method 
needed a significant number of additional iterations to con-
verge (Ochratoxin A), the SRFO method produced a lower 
energy structure.

Table 1   Number of iterations 
required to converge to a 
minimum structure

a The optimization converged to a higher energy structure than the standard method
b The optimization converged to a lower energy structure than the standard method
c The updated Hessian had a negative eigenvalue, and so the quasi-Newton optimizer was terminated prior 
to convergence
d The symmetric Broyden update was never used in the FlowPSB optimization, so the optimization behav-
ior of the FlowSSB method is identical
e Comparison of only the 15 structures which successfully converged using the QN algorithm

Cartesian QN Standard FlowPSB FlowSSB SRFO RotCrd

Artemisinin 80 25 24 21 21 24 25

Aspartame 98
a 26 30 30 30

d 28
a 27

Avobenzone 193 18
a 43 41 42 43 47

Azadirachtin 216
a 57 77 73 74 65 72

Bisphenola A 94 Fail
c 31 32 31 21 30

Cetirizine 157
a

31
a 35 37 40 30 39

Codeine 70 30
b 18 18 18

d
18

b 19

Diisobutylphthalate 150
a

Fail
c 27 27 27

d 28
a 29

Estradiol 55 25 21 21 21
d 19 21

EASC 123 28 40 27 25 24 31

Inosine 96
a

Fail
c 41 46 42 34 41

Maltose 168
a 36 35 36 37 36 37

Mg porphyrin 49 16 14 24 24
d 16 14

Ochratoxin A 174
b Fail

c 31 31 31
d

43
b 31

Penicillin V 183
b

35
b 31 32 32

d 30
a 32

Raffinose 223
b 50

a 53 55 55
d

54
b 55

Sphingomyelin 429
a

Fail
c 56 48 48

d 51 67

Tamoxifen 238 24 35 35 35
d 35 36

Vitamin C 48 18 18 18 18
d 18 17

Zn EDTA 58 27 29 29 29
d 27 31

Subtotal
e 1959 446 503 497 501 467 503

Total 2902 – 689 681 680 644 701
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6 � Summary

The present paper discusses various components of opti-
mization methods, including coordinate systems, transfor-
mations, control of the step size and direction, and Hessian 
updating and provides a diverse set of 20 medium size mol-
ecules for testing optimization methods. The best current 
geometry optimization methods typically use redundant 
internal coordinates, BFGS updating of the Hessian, RFO 
and trust region updating for step size control. A number 
of new refinements have been proposed and tested: updat-
ing that switches between SR1, BFGS and PSB or SSB to 
obtain the most reliable update (FlowPSB and FlowSSB), 
scaled RFO (SRFO) that varies control of the step size 
and direction depending on the softness or stiffness of the 
modes, and quasi-rotation propagation of the internal coor-
dinates (RotCrd). The latter is an initial approach to work-
ing in only the active space of the redundant internal coor-
dinates which necessarily changes during the course of the 
optimization. The results for optimization of the molecules 
in the test set clearly show that redundant internal coor-
dinates are superior to Cartesian coordinates. RFO is bet-
ter than quasi-Newton since it can reach a minimum even 
when the Hessian has negative eigenvalues. The FlowPSB 
and FlowSSB methods are comparable to the standard 
BFGS updating in most cases. The SRFO approach takes 
about 7 % fewer steps for optimization of the test set.

Acknowledgments  This work was supported by a Grant from the 
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Appendix: Standard method

Described below is an optimization algorithm composed 
of standard methods and is comparable to the ones used in 
various electron structure packages. This algorithm is used 
as a reference for comparing and evaluating the modifica-
tions described in the text. The core of the algorithm is the 
quasi-Newton method applied to the gradient of the poten-
tial energy, and the additional components include the 
choice of coordinates to optimize, how the Hessian (the 
matrix of second derivatives of the PES) is computed or 
approximated, and how the Newton method is modified in 
order to control step size and direction. While there are a 
variety of different approaches that have been used in the 
past, a very common combination of methods includes the 
use of a redundant set of internal coordinates comprised 
of bond stretches, bends and torsions, approximation of 
the full Hessian matrix along with the use of updating 
schemes to improve the approximation over the course 

of the optimization and the rational functional optimiza-
tion and trust region schemes to control the step size and 
direction.

Geometry extrapolation methods, such as line searches 
and DIIS, are commonly used with an aim to improve the 
efficiency of an optimization. In practice, they can also have 
a significant influence on the stability of an optimization as 
well. Likewise, Hessian updating methods that consider the 
change in the gradient at the current geometry relative to 
many previous optimization steps are employed for similar 
reasons. The performance of these methods depends heav-
ily on the choice of parameters, such as how many previous 
points should be considered in the DIIS extrapolation or the 
Hessian update step. In order to better evaluate the merits 
of the methods described in this paper on their own terms, 
no extrapolation methods were employed, and the Hessian 
was updated using only the information at the current point 
and the most recent point.

Coordinate transformation/projection

Coordinate definitions

The standard redundant internal coordinate (RIC) system 
includes bond stretches between all bonded atoms, angles 
between pairs of bonds that share an atom and the dihedral 
angles between the planes defined by any two angles that 
share a common bond. Typically, whether or not a pair of 
atoms is bonded can be determined automatically by com-
paring the distance between the atoms to a standard bond 
length; however, for the present work, the connectivity was 
explicitly provided for all examples in order to ensure that 
the intended coordinate system is used and the behavior of 
the resulting optimizations does not depend on any arbi-
trary numerical thresholds for bondedness.

Two additional coordinate definitions that are frequently 
used in adjunct to the standard stretch, bend and torsion 
coordinates are out-of-plane bends and linear angle bends. 
Out-of-plane bends describe how an atom moves relative to 
the plane defined by 3 other atoms, while linear angle bend 
coordinates describe the bending motion of 3 atoms which 
have become nearly or completely linear. Out-of-plane 
bend coordinates, such as an improper dihedral angle, may 
provide some benefit to an optimization but are generally 
unnecessary for structures containing more than 4 atoms as 
the relevant motions are well described by the redundancy 
in the standard RIC set. For the present work, no out-of-
plane coordinates are used.

Linear bend coordinates, on the other hand, may be 
essential when the optimized structures have linear or 
near-linear angles. Inclusion of standard bend angle coor-
dinates (and the corresponding dihedral angle coordinates) 
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for an angle that has become near linear can be disastrous 
for an optimization, even when the remaining coordinates 
in the RIC set are sufficient to fully describe the molecule. 
Whether or not angles and their corresponding dihedrals 
can simply be omitted from the RIC definitions depends 
on how many atoms are bonded to the center atom in the 
linear angle and may be possible to do so with as few as 
3 bonded atoms. When the local structure around a central 
atom is non-planar and there are at least 4 bonds, the linear 
angle coordinates can always be safely omitted since the 
local structure can be completely defined with bonds and 
nonlinear angles. In the standard method, linear bends were 
handled by the approach outlined in Sect.  1 whenever an 
angle exceeds 165° and the central atom is bonded to fewer 
than 5 atoms, which is assumed to be sufficient to ensure 
non-planarity around the central atom.

Transformation of gradient/Hessian

Since the derivatives of the PES are computed in terms of 
the absolute Cartesian coordinates of the atomic centers 
in a molecule, at each step of the optimization the gradi-
ent (and Hessian, if it is computed) must be transformed 
into internal coordinates. This transformation involves the 
multiplication of the Cartesian gradient by the generalized 
inverse of Wilson’s B-Matrix, which is defined as the par-
tial derivatives of the RIC with respect to a change in the 
Cartesian coordinates:

where qi are the internal coordinates, and xa are the Carte-
sian coordinates.

B is an nric × ncart, where nric is the total number of 
redundant internal coordinates, and ncrt is the total num-
ber of Cartesian coordinates (3 times the number of 
atomic centers). The generalized inverse (also known as 
the Moore-Penrose pseudo-inverse) is a generalization of 
the concept of an inverse to non-square or singular matri-
ces such that only the non-singular part of the matrix is 
inverted. Two approaches for computing the pseudo-inverse 
of the B matrix, in particular, are through inversion of 
B-squared (BTB), and by singular value decomposition.

For the first approach, it should be recognized that BTB 
is a ncart × ncart singular matrix, and so care must be taken 
when inverting it. So long as the internal coordinates cho-
sen to define B are sufficient to fully describe the internal 
motions of the molecule, the singular part of BTB corre-
sponds to the infinitesimal rotations and translations of the 
molecule. A projector onto this space can be added to BTB 
without effecting the end result of the pseudo-inverse. This 
projector PTR can be computed as a sum of the projector 

(14)Bia =
∂qi

∂xa
→ δqi =

∑

a

Biaδxa

onto the individual infinitesimal translation (ti) and rotation 
(ri) vectors

where the portion of these vectors corresponding to the kth 
atom are given by

where × denotes the 3-dimensional cross product, ei is the 
unit vector in the ith direction, and xk are the 3-dimensional 
Cartesian coordinates for atom k. These vectors are not 
orthonormal with respect to each other, but for a nonlinear 
molecule, they fully span and are entirely contained within 
the 6 instantaneous translation and rotation degrees of free-
dom for the molecule defined by the coordinates x. The 
generalized inverse may then be computed as

The primary benefit of computing the generalized inverse 
this way is that 

(
BTB+ PTR

)−1
 allows the use of iterative 

inversion methods for when the size of the molecule is too 
large to invert the matrix directly and/or store the result. 
For the present work, however, the generalized inverse was 
computed using singular value decomposition (SVD). The 
SVD of B is given by B = U�VT, where U is a square, 
unitary matrix of size nric, V is a unitary matrix of size ncrt, 
and � is a matrix of the appropriate dimensions that is zero 
everywhere except for the first ncrt − 6 diagonal elements. 
The generalized inverse may be computed as

where �− is the transpose of �, with the nonzero diago-
nal elements replaced by their inverse (i.e., 

[
�

−
]
ii
= 1/�ii 

if �ii �= 0). Whether Eq. 18 or Eq. 19 are used, the same 
matrix should result. The primary benefit of using Eq. 19 
is that the locally non-redundant active space for the cur-
rent geometry (the nact = ncrt − 6 orthogonal linear com-
binations of the redundant internal coordinates in which B 
is defined for a given geometry) is computed as a conse-
quence of doing the SVD. The active space is defined as the 
first nact rows of U.

With B− defined, the typical approach for transformation 
of the gradient and Hessian begins with an algebraic rear-
rangement of the chain rule definition of the gradient (using 
x and q subscripts to differentiate between Cartesian and 
redundant internal coordinate gradients, respectively)

(15)PTR =

3∑

i

tit
T
i + rir

T
i

(16)ti,k =ei

(17)ri,k =xk × ei

(18)B− =
(
BTB+ PTR

)−1
BT

(19)B− = V�−UT

(20)gx = BTgq → gq =
(
B−

)T
gx
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A similar approach is used to transform the Hessian

Projection into non‑redundant space

When using a redundant coordinate system, the total num-
ber of coordinates being optimized exceeds the number of 
internal degrees of freedom, and this must be accounted for 
when computing a step. Constraints or a penalty function 
approach could be used to compute a valid step in the full 
set of redundant coordinates, but here a projection method 
is used. The active space described in the previous section 
may be used to project the gradient gr = Uactgq and Hes-
sian Hr = UactHqU

T
act into a reduced space. The step, �qr, 

is computed in this space and then transformed back to the 
full �q0 = UT

act�qr.

Back‑transformation of step

Due to the curvilinear relationship between the redundant 
internal and Cartesian coordinates, the back-transforma-
tion has to be done iteratively. This is done by minimiz-
ing the difference between the current geometry q(x) 
and a goal geometry, in redundant internal coordinates 
qg = q0 +�q0 , where q0 is the internal coordinate geom-
etry at the current iteration, and �q0 is the computed step. 
This can be thought of as the minimization of the following 
functional

with respect to �x, starting with x = x0 where x0 is Car-
tesian geometry at the current step. This gives the typical 
iterate for �x

This process continues until the RMS of �xi = xi+1 − xi is 
<10−6 bohr.

Linear bends

Definition of terms

There are various ways to handle linear bends. In the pre-
sent work, a dummy atom is used to define the two degrees 
of freedom associated with a linear bend. The Cartesian 
coordinates, bond lengths, bend angle, and torsion angle 
are denoted by xi, rij > 0, 0 ≤ θijk ≤ π and −π ≤ φijkl ≤ π 
respectively. The atoms involved in the linear angle are 
indicated by numbers 1 through 3 (i.e., the angle which is 

(21)Hq =
(
B−

)T
(
Hx − gTq

∂B

∂x

)(
B−

)

(22)
F(x +�x) =

1

2
(�q)2

=
1

2

(
qg − q(x +�x)

)2

(23)xi+1 = xi + B−
i �qi

nearly/completely linear is θ123), the dummy atom is indi-
cated by the subscript d, and n and m are used to indicate 
any atoms bonded to 1 and 3, respectively.

Placement of the dummy atom

If θ123 is not completely linear, then the plane in which 
the angle bends may be defined by r12 and r23, while if it 
is linear, the choice of bend direction is arbitrary. For con-
sistency and convenience, the bend direction may be cho-
sen such that either φn12d or φd23m is 0 for some n or m. 
Once the plane is defined, the dummy atom is placed such 
that θ12d = θ32d and r2d is equal to a constant value. In the 
present implementation, this is set to 2  bohr since that is 
a fairly typical bond length, but the choice is more or less 
arbitrary.

Definition of coordinate set to handle linear bends

With the dummy atom placed, the optimization is carried 
out by modifying the coordinate definitions and constrain-
ing three coordinates per linear bend to define the location 
of the dummy atom relative to the rest of the molecule. 
The standard approach is used to construct the coordinate 
set beginning with all of the stretches corresponding to the 
bonded atoms, and angle bends between pairs of stretches 
that share a common atom. The angle θ123 is redefined as 
the equivalent sum θ12d + θ32d. The dihedral angles are 
included for all pairs of angle bend coordinates (not includ-
ing θ123) that share a bond, including all of the dihedrals 
φn12d and φd23m, and the improper dihedral φ12d3.

The constrained coordinates always include r2d , 
θ12d − θ32d, and a dihedral, but the choice of dihedral 
depends on the structure. For the vast majority of cases, the 
choice of any φn12d or φd23m is appropriate, with special 
care taken when there are multiple adjacent linear bends 
(i.e., 4 or more bonded, colinear atoms) to ensure that one 
dihedral for each dummy atom is included. If the molecule 
contains only 3 atoms, the improper dihedral φ12d3 can be 
constrained as the bend direction is completely arbitrary for 
a potential that only depends on the internal coordinates.

Coordinate transformation/back‑transformation

Let Bopt be the B-matrix for the redundant internal coordi-
nate set defined in the previous section, and Bconstr be the 
B-matrix for the set of coordinates that will be used to con-
strain the motion of the dummy atom. The transformation 
is carried out using an otherwise identical approach to the 
standard unconstrained transformation, using a projected 
B-matrix Bprj = Bopt − BoptB

−
constrBconstr, and assum-

ing that the gradient and Hessian elements corresponding 
to the dummy atoms are all 0. Bprj has the correct number 
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of non-singular values (3 ∗ natoms) for the original sys-
tem. If analytical Hessians are used, the B-matrix deriva-
tives are similarly projected: for internal coordinate i, 
∂
[
Bprj

]
i
=

(
I− B−

cnsBcns

)
∂
[
Bopt

]
i

(
I− B−

cnsBcns

)
.

Once a step is computed, the back-transformation is 
done in an unconstrained fashion, with the goal values for 
the constrained coordinates set according to their current 
values. A second iterative back-transformation is used, if 
necessary, to reimpose the dihedral constraint since there 
may be some redundancy between the dihedral constraint 
chosen and dihedral coordinates used in the optimization. 
During the second iterative back-transformation, only the 
dummy atom is allowed to move.

Step size and direction control

RFO

The rational function optimization [26] (RFO) method 
begins by approximating the PES as a rational function:

with the matrix S taken to be the identity matrix for con-
venience. Equation 24 has the property that, for a nonzero 
gradient, there exactly n+ 1 stationary points on the sur-
face, where n is the number of coordinates defining the 
surface, with each stationary point having a different cur-
vature (determined by the number of negative eigenval-
ues in the second derivative of ERF). By stepping toward 
the stationary point on the rational function surface with 
the desired curvature, an optimization may be directed to 
a particular solution even when the number of negative 
eigenvalues in H0 is incorrect. The stationary condition 
(the value of �q where ∂ERF/∂�q is zero) for all n+ 1 
stationary points is given by diagonalizing the augmented 
Hessian

The step may be computed using either the mth eigenvector 
(vm) or eigenvalue (�m) of the augmented Hessian.

Both approaches result in the same displacement, and the 
resulting step satisfies the following relationship

(24)

ERF(q0 +�q)

= E0 +
�qTg0 +

1
2
�qTH0�q

1+�qTS�q

(25)Haug =

[
H g

gT 0

]

(26)�qRFO,m =

(
vm,1, vm,2, . . . , vm,n

)

vm,n+1

(27)�qRFO,m = −(H− �mI)
−1g

For minimizations, the most negative eigenvalue of the 
augmented Hessian is used. For transition states, even 
though the second most negative eigenvalue results in a 
shifted Hessian with a single negative eigenvalue, the parti-
tioned RFO (pRFO [26]) approach tends to result in a more 
stable optimization behavior. The pRFO approach involves 
searching for a minimum in n− 1 directions (usually 
selected to be eigenvectors of the Hessian), and a maxi-
mum in the remaining direction. This is done by combining 
an RFO minimization step in the n− 1 space, and an RFO 
maximization step in the remaining space.

The RFO method provides a means to compute a step 
in the correct direction for an optimization even when the 
Hessian has the incorrect number of negative eigenval-
ues (0 for minima, 1 for transition states). Often times, 
however, when the geometry is far from the solution, 
and especially when the Hessian data are approximate/
updated, the computed step size may be unreasonably 
large and needs to be scaled back to avoid over-shooting 
the solution. For minimizations, an adaptive step size 
approach is frequently used and will be included in the 
standard method (see Ref. [27] for a more indepth dis-
cussion of adaptive step size methods). The adaptive 
step size, or trust region, is initialized to a modest value 
(0.5  bohr or rad for the present work), and at each step 
of the optimization, the predicted quadratic change in 
energy (�Equad = �qTg + 0.5�qTH�q) is compared to 
the actual change in the energy. When the ratio of �Equad 
and the actual change in energy is >75 % and the length 
of the step is at least 80 % of the current trust region, the 
trust region is doubled. If the ratio of �Equad and the actual 
change in energy is <25 %, the trust region is reduced to a 
quarter of the length of the previous step.

Hessian update

To facilitate the discussion of different Hessian update for-
mulas, the following standard notations for the displace-
ment s = �q, change in gradient y = �gq, and quadratic 
error z = y−Hs is used.

(28)�m =
(
�qRFO,m

)T
g

(29)�HBFGS =
yyT

yT s
−

sHHsT

sHs

(30)�HSR1 =
zzT

zT s

(31)�HPSB =
szT + zsT

sT s
− sTz

ssT

(
sT s

)2
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When attempting to locate a minimum energy structure, 
the BFGS update (Eq.  29) is widely considered to be the 
gold standard as it is generally quite stable, so long as 
sTy is positive and the current approximation to the Hes-
sian is positive definite. For transition-state optimiza-
tions, which require the Hessian to be indefinite with one 
negative eigenvalue, there is not such a clear cut winner. 
The SR1 method (Eq.  30, also referred to as the MS or 
Murtagh–Sargeant update) tends to produce the most rea-
sonable updates, particularly when the change in the Hes-
sian is large (for example, when the approximation is poor 
or the change in the gradient is large), but it can suffer from 
stability issues when sTz is small relative to zTz. The PSB 
method (Eq. 31), on the other hand, is very stable, but the 
updates tend to be significantly poorer as they increase in 
magnitude. A combination of these two updates, the MSP 
method (Eq. 32), was proposed by Bofill [14]. This com-
bined update attempts to leverage the pros and cons of the 
SR1 and PSB methods by blending them together accord-
ing to the overlap of the quadratic error and the displace-
ment (Eq. 33).

Convergence

An optimization is considered converged when the RMS 
change in �q is less than 1.2× 10−3 bohr or radians, the 
maximum absolute element in �q is less than 1.8× 10−3 
bohr or radians, the RMS of gr is less than 1.5× 10−4 har-
tree/(bohr or rad), and the maximum absolute element in gr 
is less than 4.5× 10−4 hartree/(bohr or rad). These conver-
gence criteria are equivalent to those used by Gaussian 09 
[21].
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