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Optimization of a transition state typically requires both a

good initial guess of the molecular structure and one or more

computationally demanding Hessian calculations to converge

reliably. Often, the transition state being optimized corre-

sponds to the barrier in a chemical reaction where bonds are

being broken and formed. Utilizing the geometries and bond-

ing information for reactants and products, an algorithm is

outlined to reliably interpolate an initial guess for the transi-

tion state geometry. Additionally, the change in bonding is

also used to increase the reliability of transition state optimiza-

tions that utilize approximate and updated Hessian informa-

tion. These methods are described and compared against

standard transition state optimization methods. VC 2015 Wiley

Periodicals, Inc.

DOI: 10.1002/jcc.23910

Introduction

The optimization of equilibrium geometries and transition

states is an important step in the computational study of

chemical reactions (see Refs. [1] and [2] for overviews of these

methods). In general, geometry optimization begins by com-

puting the energy and forces acting on a guess structure and

then explores a local approximation to the potential energy

surface (PES) with the goal of locating a structure where the

forces are zero (the forces are the negative of the potential

energy gradient). This is accomplished by an iterative process,

where each successive optimization step produces a geometry

closer to the solution, and new energies and forces are com-

puted to update the local approximation. The commonly used

Newton–Raphson type optimization methods utilize informa-

tion about the second derivatives of the PES, the Hessian

matrix, to explore the surface with greater confidence than

using only the forces alone and to reduce the number of opti-

mization steps required. The full Hessian matrix can be com-

puted analytically at a significantly higher computational cost

than required to produce an energy and gradient. Alterna-

tively, a few of the eigenvectors and eigenvalues may be com-

puted analytically or numerically at a reduced cost.[3–5] For

quasi-Newton optimizations seeking a minimum energy struc-

ture, it is usually sufficient to begin with a diagonal, positive

definite estimate based on empirically determined values.[6–8]

Estimating the Hessian for transition state optimization by the

quasi-Newton method is more difficult, as the Hessian matrix

must have exactly one negative eigenvalue.

Quasi-Newton methods begin with an analytical or esti-

mated Hessian matrix, and then update it using gradients cal-

culated during the course of the optimization with one of a

variety of different Hessian update schemes (e.g., see Refs.

[9–15]). When using a (quasi-)Newton Raphson method to

locate transition states, the Hessian matrix must have exactly

one negative eigenvalue. The eigenvector corresponding to

this eigenvalue is also called the transition vector, and the

energy along this vector is a maximum at the transition state.

If the initial structure to be optimized is sufficiently close to

the actual transition state geometry, the exact Hessian matrix

computed by analytical or numerical means will have only one

negative eigenvalue and any Hessian update formula that

allows for negative eigenvalues[9,14,15] may be used to con-

verge to the transition state geometry. However, it is often dif-

ficult to produce such a good guess geometry, and other

approaches must be used, such as selecting which eigenvector

to follow uphill and then correcting the Hessian before com-

puting the step,[16] or utilizing a reduced potential surface to

restrict the transition state search to the dominant coordinates

in the reaction.[17–19]

If appropriate estimates of the reactant and product struc-

ture are used, the transition vector can be estimated by the

tangent of a simple interpolated pathway,[20] and an empirical

estimate of the Hessian may be used after some initial steps

are taken along the approximate pathway to correct the curva-

ture.[21] However, these estimates tend to be good approxima-

tions to the reaction path only when the structures

corresponding to the reactant and product in the interpolation

lie close to the barrier on the PES. In practice, when fully opti-

mized reactant and product geometries are used, considerable

reorientation of the geometry may be required before the

reaction can occur. Methods such as the dimer method[22] or

one of many reaction path optimization methods[23–27] may be

used to explore the surface to locate a region that is likely to

contain the transition state. These produce good initial guess

structures for quasi-Newton transition state optimizations and

in some cases may also be used to generate suitable approxi-

mate or updated Hessians[28,29] that rapidly accelerates conver-

gence to the transition state geometry, but at the cost of

many gradient calculations prior to the beginning of the tran-

sition state search.
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Previous work[30] demonstrated that a reaction pathway may

be accurately described by a small number of composite coordi-

nates constructed as linear combinations of primitive Cartesian

or internal coordinates. When the transition state represents the

energy barrier for a simple conformational change in geometry,

several bending, stretching, and torsional coordinates may con-

tribute significantly to the motion along the path near the tran-

sition state, and it can be difficult to determine which of these

coordinates are necessary to represent the transition vector

based on the reactant and product geometries alone. However,

for a chemical reaction, the desired transition state necessarily

involves the forming and/or breaking of bonds. In the following

work, we attempt to use knowledge about the bonding in reac-

tants and products to produce a guess structure for the geome-

try at the transition state. Additionally, this bonding information

is used to decrease the need for the computation of an analyti-

cal Hessian and to improve the selection of the transition vector

during the optimization to reduce the number of gradient cal-

culations needed to locate a transition state. To evaluate the

performance of our proposed methods, 20 reactions were

selected from a variety of published[21,31–33] and unpublished

libraries for use as a test set (see Fig. 1 for details). This test set

contains characteristic examples of many types of organic reac-

tions including insertions, additions, eliminations, hydrolysis,

ring openings, substitutions, cycloadditions, and rearrange-

ments. Reactions containing transition metals will be examined

in future work.

Methods

Choice of coordinate system

The first step in any geometry optimization algorithm is the

selection of a coordinate system to describe the changes in

the geometry. While the Cartesian coordinates of the nuclear

centers are an intuitive and straightforward set of coordinates

to use, a redundant set of internal coordinates[34] (bond

stretches, angle bends, and dihedral torsions) are a more natu-

ral basis for describing the potential energy landscape for a

chemical system. Such coordinate systems reduce the coupling

between the various coordinates, resulting in a much more

diagonally dominant Hessian matrix than typically observed in

a Cartesian representation. This is especially important for opti-

mization methods that rely on Hessian updating, and hence,

redundant internal coordinate systems have enjoyed a wide-

spread use in geometry optimization.

Any number of different coordinate sets may be constructed

from the possible combinations of bond stretches, angles, and

dihedrals, so long as enough coordinates are included to com-

pletely describe the internal degrees of freedom of the system.

The standard approach to define a set of redundant internal

coordinates for optimization is to begin by determining the

bonding skeleton of the structure. This can be input to the

optimizer by the user, or it can be generated automatically by

computing all of the distances between atoms in the mole-

cule, and considering any two atoms bonded if they are

roughly as close as, or closer than, a reference single bond

length for those two atoms. Once the connectivity of the

structure is known, the coordinate system may be constructed

by including the bond stretches between any bonded atoms,

the bends between any pairs of stretches that share an atom,

and dihedral angles between bends that share a bond. Once

this set is defined, extra care must be taken to be sure to

include any coordinates necessary to describe the bending of

a near-linear angle, the motion into/out of a plane for atoms

in a nearly planar configuration, as well as any coordinates

necessary to describe the relative motion of two unconnected

fragments in the geometry.

This approach is complicated when selecting a coordinate

set for optimization of the transition state for a chemical reac-

tion. In this case, the bond lengths corresponding to bonds

breaking would be much longer in the product structure, and

bond lengths corresponding to bonds forming are going to

be significantly longer in the reactants. If the reactant or prod-

uct structures are multimolecular, additional virtual bonds

must be added, usually joining the pair of atoms in two mole-

cules with the shortest distance between them. This will result

in a coordinate set that includes coordinates to describe the

relative motion between fragments, but the added virtual

bond may not necessarily be a bond involved in the reaction

if significant reorientation of the molecules is required to

move from the minimum structure to the region of the PES

where the transition state lies. Including such coordinates can

cause problems in an optimization and should be avoided.

Likewise, special coordinates such as those needed to describe

the bending motions of angles that are nearly linear might be

appropriate for describing the reactant and/or the product

even when the corresponding angle is nonlinear at the transi-

tion structure, and the inclusion of such coordinates can also

frustrate an optimizer. For these reasons, taking the union of

coordinates defined at the reactants and products may not be

the best approach for a transition state optimization.

The approach described in this work, instead, merges the

bonding skeletons from the reactant and product structures,

and then uses the merged skeleton to define the redundant

internal coordinates in the standard fashion. For the purpose of

interpolating an initial geometry, an initial coordinate set may

be defined by adding or removing the necessary coordinates to

describe the linear or planar structures in the reactants and the

products. Once the initial guess for the transition state is gener-

ated, the coordinate set is redefined using the geometry of the

guess, so that only the linear and planar coordinates necessary

to describe the interpolated structure are included. Defining the

coordinates in this way, the number of reactions that fail to pro-

duce an initial geometry by linear interpolation of the reactants

and products is reduced from 6 to 2 for the 20 reactions in our

test suite. To further improve the reliability of interpolating reac-

tant and product structures to produce an approximate transi-

tion state geometry, a new approach must be introduced.

Bond order interpolation with relaxation

To find the transition state corresponding to a reaction where

the minimized structures of the reactants and products are
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already known, the typical approach is to begin by interpolat-

ing between the two structures to generate a better guess for

the transition state optimization. This is usually done by a sim-

ple linear interpolation, often in distance matrix or internal

coordinates, to the midpoint of the line connecting the reac-

tants and products. This approach includes an explicit

Figure 1. Reactions for transition state optimization.
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dependence on the reactant and product geometries, which

can result in wildly different guess structures when different,

equally valid, geometries are input. A simple example would

be in the case of a bimolecular reaction, where the interpo-

lated midpoint is highly dependent on the distance between

the two reactants. Typically, only a few of the total number of

coordinates that describe the system are involved with the

reaction, and it is better to limit the interpolation to that

reduced set. Intuitively, the bonds that are breaking or forming

over the course of the reaction must belong to that set, and it

should be sufficient to interpolate along only those

coordinates.

To use the bonding information to interpolate a guess of

the structure at the transition state, it is necessary to have a

convenient description of bonding. Using the concept of bond

order, a relationship between a bonds length and approximate

strength can be described. Pauling[35] suggested using the fol-

lowing equation

oðrÞ5eðr02rÞ=a (1)

rðoÞ5r02a ln ðoÞ (2)

where o is the order, r0 is a reference single bond length for the

atoms involved, and a is a positive constant determined by fit-

ting to known experimental or computational data. With a 5 0.3

Å, this equation agrees well with typical values for double and

triple bonds. Unfortunately, Pauling bond order initially decays

quite rapidly when r is longer than a single bond length, and

there is a smooth decrease in the bond order out to infinity.

Using eq. (2), a bond of order 0.5 would be roughly 114% the

length of the reference single bond length, while the associated

bond length will increase slowly to infinity as the order

approaches zero. These are characteristics that are undesirable

for interpolation of bonds in transition state geometries.

Instead, this work will use the following approximation for

interpolation of the bond order

~oðrÞ5max 0;
bðr0=rÞ21

b21

� �

rð~oÞ5 b

ðb21Þ~o11
r0; ~o � 0

(3)

While this form is not as accurate as the Pauling bond order

for bond orders greater than one, it decays much more quickly

as the bond length increases, and will assign a bond order of

zero to all bond lengths greater than a particular value (deter-

mined by selection of b). A typical bond length at a transition

state for a bond being broken or formed is between roughly

120–150% the length of the corresponding standard bond

length, and it is usually safe to assume that when the distance

between two atoms is greater than twice the standard bond

length they are not bonded. Using a value of 2 for b in the

equations above results in a bond length 133% of the refer-

ence at bond order 0.5, and a bond order of zero for bond

lengths greater than or equal to 200% the reference length.

Table 1 lists the mean, maximum and minimum bond order of

the bonds being broken/formed for the geometries in the test

set computed at the PM6 level of the theory and demon-

strates that a bond order of roughly 0.5 produces reasonable

bond lengths for a wide variety of reactions.

Using this definition of bond order, the linear interpolation

can be restricted to the bond order of only the bonds being

broken or formed during the reaction. A direct, least-squares

fit to the change in the bonding coordinates that is necessary

to achieve the interpolated structure may cause other parts of

the geometry to change in unfavorable ways, and bring atoms

too close to one another. To maintain reasonable values for

the remaining coordinates, a relaxed scan that minimizes an

inexpensive approximate potential energy orthogonal to the

set of bonds is used.

Molecular mechanics potentials like the Universal Force Field

(UFF)[36] are among the least expensive approximations to the

energy of a chemical system, and should be sufficient for the

purpose of relaxing the coordinates orthogonal to the bonds

being broken or formed. The UFF potential is simple and para-

meterized for a large number of atom types, and when the

combined connectivity skeleton from the reactants and prod-

ucts is used to select the atom types, it is generally sufficient

to produce bonds and angles that avoid very unfavorable

regions of the actual potential. Alternatively, semiempirical

electronic structure methods such as PM6[37] may produce

structures that are better suited for optimization of transition

states using Hartree–Fock or density functional theory (DFT).

Table 1. Barrier distances versus the bond order at the PM6 transition

state geometry.

Reaction

Barrier CTS bond order[a]

Forward

(mH)

Reverse

(mH)

Distance[b]

(%) nCTS Mean Max Min

C2N2O 4.43 8.68 34 2 0.32 0.33 0.31

C5HT 6.44 6.44 50 2 0.52 0.52 0.52

HCN 13.70 11.58 54 2 0.49 0.66 0.33

Cope 5.99 5.99 50 2 0.75 0.75 0.75

CPHT 6.13 6.13 50 2 0.55 0.55 0.55

Cyc-but 7.11 6.36 53 1 0.45 0.45 0.45

DACP2 5.33 8.88 37 2 0.43 0.55 0.32

DACP 1 eth 4.89 8.84 36 2 0.44 0.44 0.44

DFCP 1.49 7.37 17 2 0.58 0.77 0.39

Ene 6.16 10.03 38 3 0.57 0.69 0.42

Grignard 3.74 6.81 35 2 0.73 1.07 0.39

H2 1 CO 12.34 9.32 57 3 0.59 0.94 0.24

HF 1 eth 8.23 10.24 45 3 0.49 0.51 0.45

Hydro 3.23 3.36 49 6 0.54 0.71 0.40

MeOH 13.39 13.54 50 3 0.41 0.62 0.23

Oxirane 3.42 2.66 56 2 0.45 0.46 0.44

Oxycope 5.10 6.80 43 2 0.62 0.65 0.59

Silane 4.06 8.46 32 3 0.65 0.92 0.20

SN2 0.35 6.02 6 2 0.49 0.73 0.24

Sulfolene 2.65 8.59 24 2 0.54 0.54 0.54

[a] nCTS is the number of bonds breaking or forming in the reaction. [b]

The energetic distance of the barrier is defined as the ratio of the for-

ward barrier height to the sum of the forward and reverse heights. A

distance much smaller than 50% can be viewed as an indicator of an

early transition state, while a distance much larger than 50% can be

viewed as an indicator of a late transition state.
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To avoid significantly impacting the total cost of the optimization,

the low level method used during interpolation and relaxation

should be at least an order of magnitude faster than the electronic

structure method used for the transition state optimization. For dif-

ferent classes of reactions other than the representative organic

reactions discussed in this work, such as those involving transition

metals, the selection of the appropriate low level method for this

interpolation process may require further investigation.

The proposed interpolation algorithm is as follows:

1. Determine which atom pairs are bound for both the reac-

tant and product. Compare the lists of bonds to determine

which bonds are breaking/forming, and combine the lists

of bonds to construct a redundant coordinate set.

2. Compute the bond orders for the breaking/forming set

in both reactants and products, and compute a set of

goal bond lengths for these bonds from the average

value of the bond order.

3. Clean up the reactant and product structures by fitting

the displacements to bring any bond lengths longer

than two times the reference length down to two times

the reference length, and then minimize the low level

energy orthogonal to the breaking/forming set.

4. Beginning with the reactant structure, take a series of

steps no greater than 0.5 bohr along the displacement

to the goal lengths. Following each step, the low level

energy is minimized by updating the coordinates orthog-

onal to the breaking/forming set.

5. Repeat 4, beginning with the product structure.

6. Select the guess with the lower energy, evaluated by the

low level method, as the initial geometry to optimize to

a transition state on the actual potential.

When force field methods are used for interpolation and relax-

ation, some care is needed for defining the atom types for atoms

that undergo a change in bonding. The atom types for these

atoms are selected based on the number of connected groups

in the combined connectivity skeleton if such an atom type is

defined, otherwise the atom type is set to the atom type with

the largest number of connected groups for that atom.

When this algorithm is applied to interpolate an initial guess

structure for each of the 20 reactions in the test set, a struc-

ture with reasonable bond lengths and angles is produced

even when beginning with fully minimized reactant and prod-

uct structure. In some cases, however, the optimization of the

structures either fails to converge or converges to a transition

state for an alternate reaction, particularly when Hessian

updating is used. To improve the reliability of the transition

state search, new methods for selecting the transition vector,

computing the optimization step, and estimating the Hessian

for a transition state optimization were developed.

Using connectivity change to approximate the transition

vector

Once an approximate structure has been obtained, a transition

state optimization needs to be carried out to find the structure

that maximizes energy along the transition vector while mini-

mizing the energy along all other coordinates. The Newton–

Raphson method can accomplish this using a shifted Hessian

to compute the displacement toward the stationary point with

the desired curvature

Dq52ðH1SÞ21g (4)

where g and H are the gradient and Hessian of the PES, and S

is a matrix that is typically constructed to control the direction

and the size of the displacement step. For a transition state

optimization, the shifted Hessian must have exactly one nega-

tive eigenvalue. The rational function optimization (RFO)

method defines S as a scaled identity matrix (i.e., S 5 k I),

where the scaling factor is the predicted energy change of the

step on a local rational function approximation to the PES.[16]

This scaling factor is computed straightforwardly as an eigen-

value of the augmented Hessian

Haug5
H g

gT 0

 !
(5)

For a geometry defined by n variables, the augmented Hes-

sian has n 1 1 eigenvalues, and using the nth most negative

eigenvalue results in a shifted Hessian with n 2 1 negative

eigenvalues.

While the RFO method can compute a single correction

such that the shifted Hessian has the correct number of nega-

tive eigenvalues, this will always result in following the eigen-

vector of the Hessian with the most negative eigenvalue

uphill. The partitioned RFO (pRFO) method selects a specific

eigenvector to follow uphill, which may not necessarily be the

one corresponding to the most negative eigenvalue, and

defines S as the following sum

SpRFO52k1 mTSm
T
TS2k2

Xn21

i

mim
T
i (6)

where mTS is the eigenvector whose corresponding eigenvalue

should be negative and k1 is the most positive eigenvalue of

the augmented Hessian constructed in the eigenspace defined

by mTS, while the mi are the remaining n 2 1 eigenvectors of

the Hessian and k2 is the most negative eigenvalue of the

augmented Hessian defined in that space.

The most difficult part of a transition state optimization that

uses the pRFO method is the selection of the eigenvector

along which the energy should be maximized. One existing

strategy that has been used effectively in the past is to com-

pare the eigenvectors of the Hessian to the tangent of a sim-

ple approximation to the reaction path. These approximate

pathways are typically functions of the geometries correspond-

ing to the reactant and product, with some also including a

dependence on the geometry at the current step of the opti-

mization. Three such functions[20,21,38] that have been used in

the past are a linear path connecting reactants (qR) and prod-

ucts (qP), a quadratic path connecting qR and qP through this

estimate of the transition state (qTS), and an arc of a circle
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connecting qR and qP through qTS. The tangent for the linear

(slin), quadratic (squad), and arc of a circle (sarc) paths are given

by

slin5qP2qR (7)

tlin5
s T

linðqTS2qRÞ
s T

linslin

(8)

squad5slin1
ð122 tquadÞððqP2qRÞ2tquadslinÞ

tquad2t 2
quad

(9)

sarc5
ðqP2qTSÞ
jqP2qTSj2

2
ðqR2qTSÞ
jqR2qTSj2

(10)

see Bell and Crighton[38] for the derivation of the quadratic

vector, and Peng et al.[31] for the derivation of the arc vector.

All coordinate values are expressed in redundant internal

coordinates.

These approaches can produce an accurate estimate of

the transition vector when the reaction is relatively simple,

or when the reactant-like and product-like structures sup-

plied are located quite close to the transition state, but they

tend to be less reliable when fully optimized structures are

used, and when the reaction path has multiple, distinct

regions with different curvature. When the transition state

involves bond breaking and forming, bond stretch coordi-

nates tend to be the dominant coordinates in the transition

vector. As an alternative to the above approaches, a simple

delta bonding (Db) vector is proposed, whose elements are

defined in the following way:

1. Stretches corresponding to bonds forming in the reac-

tion have the value 1.

2. Stretches corresponding to bonds being broken in the

reaction have the value 21.

3. All other coordinates have a value of 0.

This vector is trivial to compute and does not depend

explicitly on the geometry at the reactant, product, or transi-

tion state. Additionally, for the reactions in the test set, Db has

a large overlap with the transition vector while typically having

a small overlap with all remaining eigenvectors of the Hessian

computed at the transition state geometry. Table 2 compares

the linear, quadratic, and arc of circle tangents to the Db vec-

tor for the set of reactions shown in Figure 1. The vectors, in

redundant internal coordinates, are computed according to

the eqs. (7–10) using the transition state geometry, and then

projected into the locally nonredundant space

sNR5BB1s (11)

where B is the Wilson B-matrix, which contains the partial

derivatives of the internal coordinates with respect to a

change in the Cartesian coordinates Bij 5 (@qi/@xj). B1 is the

Moore-Penrose pseudoinverse of B. The Db vector not only

has a large overlap with the transition vector in the majority

of the reactions but it also tends to have a small overlap with

the remaining coordinates.

Initial approximation of the Hessian

For minimizations, a simple valence force field Hessian tends to

work well as it is a rough, but reasonable, approximation to the

exact Hessian at a minimum. This reduces the amount of work

that the optimizer and update formulas must do to improve it.

Additionally, when the initial geometry is poor and forces are

large, the shift matrix S in eq. (4) will tend to dominate, resulting

in similar optimization steps regardless of whether the Hessian

used is exact or approximate. For transition state optimizations,

however, the direction of the step is considerably more sensitive

to the accuracy of the Hessian, particularly in how the transition

vector couples to the minimization modes when far from the

solution. As the initial few steps of transition state optimizations

will be largely downhill, it would be beneficial to make use of

the increased stability of the downhill RFO steps and Broyden-

Fletcher-Goldfarb-Shanno (BFGS) updates to get as close as pos-

sible to the transition state when using approximate or updated

Hessian information.

The method described earlier to interpolate an estimated

transition state geometry along the bonds being broken or

formed during the reaction utilizes a less expensive method to

approximate the PES for the purpose of relaxing the geometry

along the remaining coordinates. While these methods gener-

ally do a good job at predicting bond lengths and angles,

they may neglect or simplify many of the nonbonding

Table 2. Comparison of overlap between different tangent approxima-

tions and eigenvectors of the Hessian computed at the transition state of

the PM6 PES.

Reaction

Transition vector[a] Other vector[b]

slin squad sarc Db slin squad sarc Db

C2N2O 0.69 0.28 0.68 0.89 0.38 0.32 0.39 0.38

C5HT 0.13 0.13 0.13 0.82 0.67 0.67 0.67 0.36

HCN 0.84 0.77 0.83 0.91 0.37 0.37 0.38 0.29

Cope 0.35 0.35 0.35 0.78 0.19 0.19 0.19 0.43

CPHT 0.28 0.21 0.28 0.83 0.24 0.37 0.24 0.15

Cyc-but 0.13 0.10 0.07 0.70 0.59 0.29 0.58 0.52

DACP2 0.20 0.04 0.14 0.84 0.56 0.22 0.47 0.36

DACP 1 eth 0.17 0.03 0.12 0.83 0.37 0.16 0.30 0.20

DFCP 0.48 0.52 0.53 0.89 0.20 0.22 0.15 0.21

Ene 0.30 0.28 0.35 0.84 0.35 0.24 0.33 0.22

Grignard 0.11 0.09 0.11 0.69 0.32 0.39 0.32 0.43

H2 1 CO 0.60 0.75 0.79 0.82 0.25 0.50 0.33 0.40

HF 1 eth 0.44 0.44 0.44 0.96 0.41 0.41 0.41 0.14

Hydro 0.30 0.27 0.30 0.92 0.29 0.28 0.29 0.17

MeOH 0.55 0.47 0.54 0.87 0.34 0.36 0.30 0.29

Oxirane 0.15 0.18 0.18 0.84 0.38 0.26 0.36 0.33

Oxycope 0.26 0.19 0.25 0.79 0.26 0.23 0.26 0.34

Silane 0.63 0.56 0.66 0.72 0.68 0.48 0.68 0.59

SN2 0.96 0.01 0.83 0.92 0.18 0.74 0.45 0.35

Sulfolene 0.30 0.02 0.23 0.83 0.52 0.31 0.37 0.26

[a] Transition vector refers to eigenvector with a corresponding nega-

tive eigenvalue. The bold numbers indicate which approximation has

the largest overlap with the transition vector. [b] The other vector col-

umns report the largest overlap with the tangent approximation among

the remaining eigenvectors.

FULL PAPER WWW.C-CHEM.ORG

1162 Journal of Computational Chemistry 2015, 36, 1157–1166 WWW.CHEMISTRYVIEWS.COM



interactions that are more correctly accounted for in Hartree–

Fock or DFT calculations. The resulting forces may still be quite

large in the displacements corresponding primarily to the non-

bonded interactions. Relaxing these modes on the same PES

that the transition state optimization will be carried out on

prior to beginning the transition state search should help to

reduce some of the risks associated with using approximated

and updated Hessian information.

As it would be difficult to attempt to define a set of coordi-

nates corresponding only to the nonbonded interactions, the

minimization phase is carried out by choosing a small number

of coordinates to be frozen while there remaining are allowed

to relax. The frozen set contains the bonds being broken or

formed, and angles between any pairs of these bonds that

share an atom. If the convergence criterion on the minimiza-

tion phase is too loose, the geometry may not change enough

to make a meaningful impact on the transition state optimiza-

tion. Likewise, convergence criteria that are too tight may

result in an unnecessarily large number of optimization steps

in the minimization phase with no improvement to the transi-

tion state optimization, particularly in any case where the

actual transition vector is not entirely contained in the frozen

set. Using the root mean square (RMS) of the gradient in the

active set of coordinates as the sole convergence metric, a

threshold of 3.2 3 1024 hartree/bohr was determined to pro-

vide a good balance between the time spent in the minimiza-

tion phase and the efficiency and reliability of the transition

state optimization. This is comparable to the convergence

threshold used for regular geometry optimization.

During the minimization phase, the empirical approximation

to the Hessian will work as well as it does in a standard mini-

mization, and use of the BFGS update formula should be suffi-

cient to achieve convergence. Following the minimization

phase, however, it is likely that the approximate Hessian will

be positive definite, making it a poor choice to begin the tran-

sition state search. Given that Db is a good approximation to

the transition vector, the initial Hessian for the transition state

optimization may be constructed from the updated, positive

definite Hessian from the minimization phase ( ~H) by reversing

the sign and adjusting the magnitude of the Rayleigh coeffi-

cient along the locally nonredundant projection of Db. Using

sNR from (11), the initial Hessian H0 for the transition state

optimization is given by

H05~H21:5
s T

NRHsNR

s T
NRsNR

sNRs T
NR

s T
NRsNR

(12)

This simple transformation produces an approximate Hes-

sian with the correct curvature for a transition state search,

and that guarantees that the eigenvector with a negative

eigenvalue will have a large overlap with Db.

Divided RFO

The shifted Hessian computed with the pRFO shift matrix (6)

guarantees that the computed step will be downhill in the

minimization space and uphill along the chosen transition vec-

tor. This is a consequence of the fact that the scale factor in

the minimization space is more negative than the most nega-

tive eigenvalue in that space, and the scale factor along the

transition vector is more positive than its corresponding eigen-

value. When the Hessian information is accurate, the step size

computed by this approach tends to be reasonable even

when the minimization space is not positive definite. However,

during an optimization that utilizes Hessian updating, and par-

ticularly when the initial Hessian is approximate, the sign of

some of the eigenvalues of the Hessian may be incorrect. In

this case, the pRFO method produces a very ill-conditioned

shifted Hessian that results in very large steps that are primar-

ily along the eigenvectors with incorrect curvature. Even when

the step size is scaled back to a reasonable limit prior to tak-

ing the step, it may take the optimizer a number of steps to

correct the Hessian sufficiently and continue to make good

progress toward the solution. Additionally, it is possible that

updates to the Hessian will reduce the overlap of the transi-

tion vector with Db, or increase the overlap of other vectors

with Db, complicating the selection of the transition vector in

subsequent steps.

To increase the stability of the transition state optimization,

the following divided RFO (dRFO) approach is proposed. First,

the eigenvectors of the Hessian are compared against Db, and

any with an overlap of greater than 0.5 are considered to be

part of the transition vector space. The augmented Hessian is

constructed in each space, and k1 is defined as the second

most negative eigenvalue of the augmented Hessian in the

transition vector space, while k2 is defined as the most nega-

tive eigenvalue of the minimization space. In the case where

the transition vector space has only one vector, this is identical

to the pRFO approach. In addition, the augmented Hessian is

constructed and diagonalized in the full space, and the second

most negative eigenvalue is used as the shift factor k3 that is

applied to the entire space

ScpRFO52ðk11k3Þ
XnTS

i

mim
T
i 2ðk21k3Þ

Xnmin

i

mim
T
i (13)

Just as in the case of the pRFO method, all three of the

scale factors in the dRFO method tend toward zero as the

magnitude of the gradient is reduced, but the additional cor-

rection makes it less likely that the shifted Hessian will be ill-

conditioned. This results in an optimization that favors steep-

est descent in the minimization space over a step along a vec-

tor with the wrong curvature when the gradient in the

minimization space is still large. A second consequence of the

additional correction is that motion in the transition vector

space tends to be favored, helping the optimizer to locate the

ridge corresponding to the transition vector before taking

large steps downhill, which has been shown[39] to increase the

stability of transition state optimizations in the past.

Implementation and Discussion of Results

The interpolation and optimization methods described in the

previous sections will be referred to collectively as the
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Connectivity Transition State (CTS) method for the following

discussion. The CTS method was implemented in the develop-

ment version of Gaussian 09.[40] Reactant and product struc-

tures for the 20 reactions in Figure 1 were optimized on the

PM6 and B3LYP[41–44]/6–31G(d,p) PES. The results of these opti-

mizations were then used as input for the CTS interpolation

prior to the transition state search. Table 3 summarizes the

performance of the CTS method using UFF during interpola-

tion and optimizing to the transition state on the PM6 PES,

while Table 4 summarizes the performance of the CTS method

using UFF or PM6 during interpolation and optimizing to the

transition state on the B3LYP/6-31G(d,p) PES. In each case, the

CTS results are compared with the two input Quadratic Syn-

chronous Transit (QST2) method and are measured by the

total number of optimization steps required for convergence.

The PM6 results in Table 3 are shown with analytical Hes-

sians computed at every step (Always), an analytical Hessian

computed once at the beginning of the optimization (Once),

and estimated force constants without computing an analyti-

cal Hessian (Never). In the latter two cases, the Hessian

approximation is updated at each step using the combined

SR1/PSB method proposed by Bofill.[15] The number of steps

required for convergence of only the initial minimization phase

of the CTS method is also reported separately. For the CTS

method, it was determined that computing the Hessian at the

beginning of the transition state optimization performed bet-

ter than computing it at the beginning of the initial minimiza-

tion phase. Hence, the Once and Never results for CTS both

use estimated Hessians for the minimization phase.

The most dramatic difference between the two algorithms is

in the interpolation phase. As mentioned previously, the linear

interpolation in redundant internal coordinates used by the

QST2 method fails to produce a structure in 6 of the 20 reac-

tions using the PM6 minima structures, while the CTS interpo-

lation succeeds for all 20 reactions. An additional four QST2

optimizations fail to converge to the correct transition state:

DACP2 and Silane follow the incorrect eigenvector and wander

away from the region containing the transition state, HCN

incorrectly converges to a structure with nonzero Cartesian

forces due to an error in defining the internal coordinates, and

MeOH converges to the transition state for a different reaction.

The QST2 method is usually used with reactant-like and

product-like structures which are chosen to more closely

Table 3. Number of surface evaluations required to converge at PM6

level of theory.

Reaction

QST2

Hessian?

CTS (UFF interpolation)

Hessian?

Minimization Total[a]

Always Once Never Aways Never Always Once Never

C2N2O 9 13 17 5 5 13 10 20

C5HT 10 16 15 3 9 11 34 48

HCN Fail[b] Fail[b] Fail[b] 4 5 7 8 9

Cope Fail[c] Fail[c] Fail[c] 14 20 19 30 36

CPHT 8 10 16 5 7 7 9 10

Cyc-but 6 10 9 4 5 9 17 21

DACP2 Fail[d] Fail[d] 38 5 6 11 12 27

DACP 1 eth 11 32 24 5 6 7 13 18

DFCP Fail[c] Fail[c] Fail[c] 4 5 7 10 11

Ene 17 35 35 7 9 11 21 30

Grignard Fail[c] Fail[c] Fail[c] 6 10 14 35 78

H2 1 CO 10 14 15 7 5 18 23 15

HF 1 eth 12 19 17 4 5 10 14 17

Hydro Fail[c] Fail[c] Fail[c] 4 5 15 51 42

MeOH 15[e] 20[e] 27[e] 3 5 8 14 14

Oxirane Fail[c] Fail[c] Fail[c] 8 15 19 71 73

Oxycope Fail[c] Fail[c] Fail[c] 8 11 12 17 25

Silane Fail[f ] Fail[f ] Fail[f ] 5 6 11 20 18

SN2 6 7 9 2 3 7 9 9

Sulfolene 14 30 25 11 7 14 23 24

[a] The Min columns contains only the number of PES evaluations

required to converge the minimization phase, while the Total columns

contain the PES evaluations required for both the minimization phase

and the transition state optimization. [b] Convergence of the internal

coordinate gradient was achieved on a structure with a nonzero Carte-

sian gradient, indicating an internal coordinate definition error. [c] Lin-

ear interpolation failed to produce an initial geometry. [d] Exceeded the

default maximum number of optimizaiton steps, which was set as the

larger of the number of coordinates being optimized or 100. [e] Optimi-

zation converged to the transition state for the decomposition of meth-

anidyloxidanium (CH2OH2) to formaldahyde and H2. [f ] Optimizer exit

with an error due to very small Hessian eigenvalue.

Table 4. Number of surface evaluations required to converge at B3LYP/6–

31G(d,p) level of theory.

Reaction

QST2

Hessian?

CTS

PM6

interpolation

UFF

interpolation

Hessian? Hessian?

Always Never Aways Never Always Never

C2N2O Fail[a] Fail[a] 8 9 11 13

C5HT 11 14 6 7 11 16

HCN Fail[b] Fail[b] 6 7 9 10

Cope Fail[a] Fail[a] 7[c] 9[c] 30 37

CPHT Fail[d] Fail[d] 8 9 11 12

Cyc-but 9 9 16 17 17 18

DACP2 45 30 18 31 19 26

DACP 1 eth Fail[a] Fail[a] 8 10 8 12

DFCP 13 14 31 47 19 19

Ene Fail[a] Fail[a] 9 16 15 16

Grignard Fail[a] Fail[a] 50 51 30 57

H2 1 CO Fail[d] 28 Fail[d] 18 37 26

HF 1 eth Fail[a] Fail[a] 9 12 12 15

Hydro Fail[a] Fail[a] 14 24 15 25

MeOH Fail[a] Fail[a] 19 20 12 14

Oxirane Fail[a] Fail[a] 20 41 39 64

Oxycope Fail[a] Fail[a] 11 18 19 25

Silane 24 23 Fail[d] Fail[d] Fail[d] Fail[d]

SN2[e] 25 25 18 30 21 21

Sulfolene 26 27 8 20 32 40

[a] Linear interpolation failed to produce an initial geometry. [b] Con-

vergence of the internal coordinate gradient was achieved on a struc-

ture with a nonzero Cartesian gradient, indicating an internal

coordinate definition error. [c] Converged to a transition state with a

boat configuration, approximately 1.1 mH higher in energy than the

chair configuration. [d] Failed to converge within the maximum number

of iterations, which was set as the larger of the number of coordinates

being optimized or 100. [e] The transition state for methyl chloride 1 -

fluoride does not exist at the B3LYP/6-31G(d,p) level of theory. The tert-

butyl chloride 1 fluoride reaction, wihch is energetically similar to the

methyl chloride reaction, was used instead.
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resemble the expected geometry at the transition state than

the fully optimized reactants and products. This could account

for some of the difficulties that the method has with the inter-

polation and optimization of the reactions in the test set. The

CTS method manages to converge to the correct transition

state for each reaction at the PM6 level theory when starting

from optimized reactant and product structures, while per-

forming similarly to QST2 in most cases where both methods

manage to converge.

In a number of cases, part or all of the geometry in the CTS

guesses using the UFF energy for interpolation had higher

symmetry than what is observed in the transition state. For

example, the initial CTS structure for 1,3-pentadiene hydrogen

transfer (C5HT), has C2V while the transition state only has CS

symmetry. The initial CTS structure for the Cope rearrange-

ment is a nearly planar ring twisted by ca 35� and has D2 sym-

metry, while the transition state has a chair-like geometry with

C2h symmetry. Other reactions with symmetries in the initial

CTS structures that are not present in the final geometry

include the ring closing of 1,3-butadiene (Cyc-But), the ene

reaction of propene and ethylene, and the addition of sulfur

dioxide to 1,3-butadiene (Sulfolene). The optimizations used to

generate the initial CTS structures would seem to favor high

symmetry. As the gradient in the direction of the atomic

motion required to break symmetry is zero, it can be difficult

for an optimizer to step away from the symmetric geometry

and progress toward the transition state geometry, especially

when exact Hessian information is not used. This can also be a

problem in cases where the initial CTS structure does not nec-

essarily have a higher degree of symmetry than the transition

state, but does possess incorrect symmetry that must be bro-

ken. This is observed in the CTS structure for the Cope reac-

tion as well as the decomposition of formaldehyde to H2 to

carbon monoxide, which had the initial position of the H2

rotated by 90� relative to the carbon monoxide, compared

with the entirely planar transition structure geometry.

For the majority of the reactions in the test set, the PM6

transition state and the B3LYP/6-31G(d,p) transition state are

quite similar, with the exception of the SN2 reaction which

does not have a barrier on the DFT PES. The SN2 results in

Table 4 are for the energetically similar reaction of tert-butyl

chloride with a fluoride ion. While the transition states were

generally similar, the minimum energy structures often differed

significantly, particularly in the distance or relative position

between bimolecular reactants, with the H2 1 CO and Silane

reactions showing the largest difference. The relative orienta-

tion of the bimolecular reactant structures for both of these

reactions at the DFT level provides a much greater challenge

for the interpolation than the corresponding minima on the

PM6 surface. Additionally, some reactions where linear interpo-

lation of the PM6 minima succeeded, failed using the DFT min-

ima (C2N2O, DACP 1 eth and Ene), while some reactions where

linear interpolation of the PM6 minima failed succeed using

the DFT minima (DFCP, HF 1 eth). In most cases, the CTS inter-

polation using PM6 as the low level energy resulted in a struc-

ture that was as good as or better for optimization of the DFT

transition state than when UFF was used, with DFCP as the

only reaction significantly favoring UFF interpolated structure.

The PM6 interpolation for the Cope structure does converge

more quickly than the UFF interpolation, but it converges to a

higher energy boat configuration. The symmetry issues dis-

cussed above are not seen during the PM6 interpolation.

Summary

The QST2 method implemented in the Gaussian suite of pro-

grams is a powerful tool for locating transition state geome-

tries from known reactant and product configurations. The

methods described in this article seek to improve on the sta-

bility and efficiency of locating the transition state by using

bonding information to improve the construction of a redun-

dant internal coordinate set to be used for the optimization,

and to remove the explicit dependence on the reactant and

product geometries from the estimation of the initial transition

state geometry and from the computation of subsequent

steps throughout the optimization. Whether exact Hessians

are computed or not, the CTS method locates transition states

with an efficiency comparable with the QST2 method on reac-

tions where both are able to locate the correct transition state,

but also succeeds in optimizing most transition states where

the QST2 method fails.
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