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The theoretical treatment of chemical reactions inevitably includes the integration of reaction path-
ways. After reactant, transition structure, and product stationary points on the potential energy sur-
face are located, steepest descent reaction path following provides a means for verifying reaction
mechanisms. Accurately integrated paths are also needed when evaluating reaction rates using vari-
ational transition state theory or reaction path Hamiltonian models. In this work an Euler-based
predictor–corrector integrator is presented and tested using one analytic model surface and five
chemical reactions. The use of Hessian updating, as a means for reducing the overall computa-
tional cost of the reaction path calculation, is also discussed. © 2010 American Institute of Physics.
[doi:10.1063/1.3514202]

I. INTRODUCTION

The reaction path is a central concept in the theoretical
description of chemical reactivity, and is given by the curve
traced across the Born–Oppenhiemer potential energy sur-
face (PES) as nuclei rearrange and move from one minimum
(reactant) to another (product).1–5 This path, which may
include one or more transition structures (TSs) and inter-
mediates, describes the reaction mechanism. With a well-
integrated reaction pathway, statistical models can be used
to evaluate reaction rates and quantitatively understand how
reaction mechanisms proceed.6–11 The highest energy point
along the path connecting reactant to product is the TS, which
is a single-geometry representation of the transition state re-
gion. Because it lies on the lowest energy path between two
minima, it corresponds to a stationary point on the PES with
one, and only one, negative second-derivative eigenvalue. The
eigenvector associated with this negative eigenvalue is known
as the transition vector and is tangent to the reaction path.

Specific definitions of the reaction path vary, but for the
purposes of this work it is taken to be the steepest descent
pathway initiating from the TS along the transition vector (in
both directions). Defining s as the reaction coordinate, or arc
length along the path, the steepest descent reaction pathway
is defined according to

dx
ds

= − g (x)

|g (x)| , (1)

where x is the vector of coordinates and g is the energy gra-
dient at x. When defined in terms of mass-weighted Carte-
sian coordinates, the steepest descent reaction pathway is also
known as the intrinsic reaction coordinate (IRC).12

Integration of the IRC requires care as Eq. (1) is a stiff
differential equation, and methods for integrating steepest de-
scent paths have been extensively reviewed.1–5 Both explicit
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and implicit integrators have been used. An explicit integrator
determines the end-point of each step using only information
from the current point, while implicit integrators are written
in terms of data at both the current and next points. For this
reason, implicit integrators are somewhat more difficult to im-
plement and typically include an iterative optimization proce-
dure, though they tend to enjoy greater numerical stability and
one is often able to use larger integration step sizes without
loss of accuracy relative to a similar explicit method.13 Some
common explicit integrators used to solve IRCs include Euler
integration, Ishida–Morokuma–Komornicki (stabilized Euler)
method,14, 15 Runge–Kutta (RK)16, 17 and Runge–Kutta–
Fehlberg schemes,18 Page and McIver’s local quadratic ap-
proximation (LQA),19, 20 and the modified LQA of Sun and
Ruedenberg21, 22 and Eckert and Werner.23 Explicit reaction
path following integrators based on classical dynamics have
also been reported, and include the dynamic reaction path24

and damped velocity Verlet methods.25

Widely used implicit integrators include the Müller–
Brown implicit Euler scheme26 and the second-order implicit
trapezoid method of Gonzalez and Schlegel (GS2).27, 28 Gon-
zalez and Schlegel also described a family of higher-order
implicit integrators.29 More recently, Burger and Yang re-
ported an interesting algorithm that switches between RK and
GS2 integrators depending on the stiffness of Eq. (1).30 This
method takes advantage of the fact that the IRC is not very
stiff over much of the path. As a result, implicit integrators,
which may require multiple optimization iterations together
with multiple energy and derivative evaluations, are often un-
necessary for large regions of the reaction path. Therefore, the
extra cost of using an implicit integrator is reserved for those
integration steps where it is needed. They have also general-
ized the implicit RK method beyond second order.31

Explicit and/or implicit integrators can be combined to
form predictor–corrector integrators. A predictor–corrector
scheme is made up of three processes: a predictor step (P)
moves from the current point to a guess for the next point, the
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function and any necessary derivatives are evaluated (E), and
then the current point is refined by a corrector step (C).13, 32

Often, predictor–corrector integrators follow P–E–C–E or
P–E–C type procedures. Note that in the context of predictor–
corrector language, implicit integration methods typically
follow a P–E–(C–E)m algorithm where the superscript m
indicates that C and E steps are repeated m times.

A few years ago, Hratchian and Schlegel developed a
Hessian-based predictor–corrector (HPC) IRC integrator.33, 34

The HPC method uses LQA for the predictor component and
a modified Bulirsch–Stoer (mBS) integrator13, 32, 35–37 for the
corrector portion, and follows a P–E–C scheme. The effi-
ciency of the HPC method comes from the use of surface
fitting during the C steps. In particular, data from the P step
is used to form a distance weighted interpolant (DWI) sur-
face on which the mBS integration is carried out. For studies
using ab initio model chemistries, this procedure essentially
reduces the cost of the corrector integrator to zero. Thus, the
stability and accuracy afforded by predictor–corrector inte-
gration (relative to integration using a related explicit inte-
grator) are gained absent additional computational cost. As
compared to the widely used GS2 method, this savings can
be quite meaningful. While both methods can be used with
similar integration step sizes,33, 34 GS2 typically requires 3–5
E steps per integrated IRC point; again, HPC only requires a
single E step for each IRC point. Another important aspect of
the HPC integrator is that the P and the C steps are coupled
through the surface fitting procedure. Although mBS is for-
mally an explicit method, in the context of the HPC scheme
the mBS is dependent on the predictor end-point as the C inte-
gration is done on the fitted surface defined in terms of this P
step. In this way, two explicit integrators are coupled to form
a predictor–corrector propagation scheme.

In this paper, a P–E–C predictor–corrector method com-
bining the Euler explicit integrator (for the P step) and the
mBS scheme (for the C step) is proposed. The E step is used to
fit a local DWI surface, on which the C integration is carried
out. As with the HPC method, the integrator presented here
requires only one evaluation of the energy and derivatives per
integrated point on the IRC. This Euler predictor–corrector
(EulerPC) integrator is tested on a model PES as well as a set
of five chemical reactions. The DWI surfaces used during the
C components employ energy second derivatives, and these
tests are initially carried out using analytic Hessians evalu-
ated during each E step. The use of Hessian updating with
EulerPC reaction path following is also explored.

II. METHODS

The EulerPC integrator presented here is conceptu-
ally similar to the HPC integrator33, 34 and other predictor–
corrector schemes used in ab initio classical trajectory
calculations.38, 39 As mentioned above, the EulerPC algorithm
is a P–E–C type predictor–corrector method. The P step uses
Euler integration, the results of the E step are used to fit a
local surface, and the C step refines the P result using mBS
integration on the fitted local surface. Memory and central
processing unit (CPU)costs for both the predictor and cor-
rector integrators (components 1 and 3) scale as O(NAtoms),

where NAtoms is the number of atoms. In this paper, the sur-
face fitting portion of the algorithm is done using DWIs,40–43

which requires O(N 2
Atoms) storage and work. On the other

hand, the HPC integrator, which requires diagonalization of
the second derivative matrix, has a CPU cost that scales as
O(N 3

Atoms).
The starting point for the EulerPC method is to expand

the energy to first-order in the atomic center coordinates, x,
substitute this approximate energy into Eq. (1), and integrate
with a step size of �s to yield

x̃i+1 = xi − gi

|gi |�s, (2)

where x̃i+1 will later be corrected by the mBS step.
The Bulirsch–Stoer method is fully described

elsewhere.32, 35–37 Briefly, this algorithm integrates over
a given interval (set equal to the distance from xi to x̃i+1

in the present case) with some step size h. Then, using a
smaller step size reintegrates over the same interval. The
results of these two integrations are then fit as a function(s)
of h and extrapolated to h = 0. If the truncation error of
this extrapolation is less than a user-defined threshold the
extrapolated result is taken as the final integration solu-
tion, xi+1; otherwise, the integration is done again with
a smaller step size and the extrapolation carried out with
a higher-order polynomial. This process is repeated until
the truncation error falls below the threshold. Tests shown
later employ a threshold of 1 × 10−6 amu1/2 bohr. The size
of h is determined by the total integration interval and a
defined number of steps, nh , which increases with each
mBS cycle. In the present work, a sequence based on that
originally proposed by Bulirsch and Stoer is employed:
nh = {48, 64, 96, 128, . . .}.32, 35–37 The mBS scheme used
here differs from the conventional Bulirsch–Stoer method in
that simple Euler, rather than modified-midpoint, integration
is used. This modification has been made because the stiff
nature of Eq. (1) in some regions of the reaction path is
significantly magnified with modified-midpoint integration,
while Euler integration is much better behaved in the same
regions. Readers interested in the complete justification of
mBS for reaction path following are referred to previous
work.33

Over the course of a complete reaction path integration,
the mBS integration will require a large number of function
evaluations. For this reason, the corrector integration cannot
be carried out on the actual PES. Instead, a local surface is fit
to the data from the predictor step, across which mBS inte-
gration is efficiently applied. Following the HPC scheme, the
present method employs DWI surfaces, which have success-
fully been used in a number of applications.40–44 The energy
on the DWI surface, EDWI, at position x is written as a linear
combination of Taylor series expanded about the Ndata data
points,

EDWI =
Ndata∑
i=1

wi Ti , (3)

where wi and Ti are the weight and Taylor series values about
data point i . Each Taylor series is expanded to second order
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Ti (�xi ) = Ei + gt
i�xi + 1

2�xt
i Hi�xi , (4)

where

�xi = x − xi . (5)

In Eqs. (4) and (5), xi , Ei , gi , and Hi are the coordinate vector,
energy, gradient, and Hessian at data point i on the PES. In the
present work, the weights used in Eq. (3) are given by

wi = 1

|�xi |2

⎛
⎝

Ndata∑
j=1

1∣∣�x j

∣∣2

⎞
⎠

−1

(6)

which, after some algebraic manipulation, can be reformu-
lated to avoid division by zero. In the case where Ndata = 2,
the two weighting functions are

w1 = |�x2|2
|�x1|2 + |�x2|2

,

(7)

w2 = |�x1|2
|�x1|2 + |�x2|2

.

Note that the first fitting data point is the fully refined point
from the previous C step and the second fitting data point is
the current P step end-point. Therefore, the gradient used in
solving Eq. (1) during mBS integration, and thus the mBS so-
lution itself, depends on x̃i+1 given by the predictor integrator.
Also note that despite use of second derivative information
in the DWI fitting procedure, EulerPC is nevertheless a first-
order method as the truncation error is dictated by the actual
integration and not the form of the fitted surface.

III. NUMERICAL TESTS

Calculations using the EulerPC IRC integrator have been
carried out using the development version of the GAUSSIAN

program suite.45 The integrator has been tested using the
two-dimensional Müller–Brown surface and five chemical
PESs. The chemical reactions considered are HCN → HNC,
H3CCH2F → H2CCH2 + HF, Cl− + CH3Cl → ClCH3

+ Cl−, H2COH → H3CO, and SiH2 + H2 → SiH4. For the
chemical reaction cases, the PM6 semi-empirical method has
been employed,46, 47 and the IRCs are integrated using mass-
weighted Cartesian coordinates. After considering the per-
formance of the EulerPC integration scheme using analytic
Hessians at all IRC points, the quality of EulerPC reaction
paths using Hessian updating is considered. When used, Hes-
sian updating has been carried out using Bofill’s scheme,48

which has been shown to perform very well for IRC
integration.34

A. Müller–Brown surface

The Müller–Brown (MB) surface is often used to test re-
action path following methods. In terms of two parameters x
and y, the MB surface is given by

E(x, y) =
∑

i

Ai exp
[
ai

(
x − x0

i

)2

+ bi
(
x − x0

i

) (
y − y0

i

) + ci
(
y − y0

i

)2 ]
(8)

FIG. 1. Reaction path following on the Müller–Brown surface using a step
size of 0.10 with (a) Euler (×) and LQA (◦) integrators, and (b) EulerPC
(×) and HPC (◦) integrators. Stationary points are indicated by solid circles
and the reference reaction path is given by the solid curve connecting the
stationary points. See the text for details.

where

A = {−200,−100,−170, 15} ,

x0 = {1, 0,−0.5,−1} ,

y0 = {0, 0.5, 1.5, 1} ,
(9)

a = {−1,−1,−6.5, 0.7} ,

b = {0, 0, 11, 0.6} ,

c = {−10,−10,−6.5, 0.7} .

Figures 1 and 2 include contour plots of the MB
surface. The region of the surface shown includes the
TS at (−0.822, 0.624) and minima at (−0.558, 1.442) and
(−0.050, 0.467). These stationary points are indicated in
Figs. 1 and 2 by solid circles. A reference reaction path has
been integrated using Euler integration with a step size of
0.01, and this reference path is given in the figures by the
thick solid curve. The path leading from the TS to the min-
imum at (−0.558, 1.442) passes through a region of signifi-
cant curvature. As shown in Figs. 1(a) and 2(a), the first-order
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FIG. 2. Reaction path following on the Müller–Brown surface using a step
size of 0.20 with (a) Euler (×) and LQA (◦) integrators, and (b) EulerPC
(×) and HPC (◦) integrators. Stationary points are indicated by solid circles
and the reference reaction path is given by the solid curve connecting the
stationary points. See the text for details.

Euler integrator is unable to follow the reaction path in this re-
gion; with a step size of 0.20 (Fig. 2) Euler integration yields
a path that suffers from large oscillations about the IRC. The
second-order LQA integrator follows the reaction pathway
quite closely for the smaller 0.10 step size [Fig. 1(a)]. For
the larger 0.20 step size [Fig. 2(a)] LQA experiences minor
difficulties following the reaction path through the region of
strong curvature, but is able to smoothly right itself back to
the reference path in short order. Figures 1(b) and 2(b) dis-
play paths using the related predictor–corrector integrators.
As shown, EulerPC and HPC results using step sizes of both
0.10 and 0.20 are in excellent agreement with the reference
reaction path.

These results on the MB surface clearly indicate the use-
fulness of predictor–corrector integrators. While the corrector
integration component does not change the formal order of
the error term, it does significantly reduce the magnitude of
the error term prefactor. As a result, the EulerPC first-order
integrator yields results that are better than the second-order
LQA integrator.

TABLE I. RMS and maximum integration errors for reaction paths solved
using EulerPC with analytic Hessians at all predictor integration steps.a

Error

Reaction NSteps RMS Max

Step size = 0.10 amu1/2 bohr
HCN → HNC 61 0.0002 0.0002
H3CCH2F → H2CCH2 + HF 61 0.0002 0.0007
Cl− + CH3Cl → ClCH3 + Cl− 26 0.0001 0.0003
H2COH → H3CO 31 0.0001 0.0002
SiH2 + H2 → SiH4 36 0.0003 0.0009

Step size = 0.40 amu1/2 bohr
HCN → HNC 15 0.0020 0.0027
H3CCH2F → H2CCH2 + HF 15 0.0048 0.0106
Cl− + CH3Cl → ClCH3 + Cl− 7 0.0020 0.0037
H2COH → H3CO 8 0.0010 0.0016
SiH2 + H2 → SiH4 9 0.0059 0.0111

aErrors are reported in units of amu1/2 bohr. NSteps gives the number of integration
steps included in the error analysis.

B. Chemical reaction tests using analytic Hessians

Having demonstrated the accuracy of the EulerPC inte-
grator on the MB surface, we now consider five chemical
reactions. In this subsection, energy second derivatives have
been evaluated analytically at all predictor integration steps.
For each reaction, EulerPC pathways have been integrated
using step sizes of 0.10 and 0.40 amu1/2 bohr. For compar-
ison, reaction paths using Euler integration with a step size of
0.40 amu1/2 bohr are also considered. IRCs integrated using
HPC with a step size of 0.02 amu1/2 bohr and analytic second
derivatives at all predictor integrator points are used as essen-
tially exact solutions to Eq. (1) and are referred to as reference
reaction paths in the following discussion.

To quantify the accuracy of the EulerPC integrated reac-
tion pathways, the perpendicular distance from each EulerPC
IRC point to the reference reaction path has been computed
and root-mean-squared (RMS) and maximum errors are in-
cluded in Table I. Near the reactant and product basins, these
errors can become artificially high due to slightly different
ending points. Therefore, this analysis has been carried out
specific distances downhill in each direction from the TS:
(1) HCN → HNC errors are evaluated over −3.0 ≤ s ≤ 3.0
amu1/2 bohr; (2) H3CCH2F → H2CCH2 + HF errors are eval-
uated over −3.0 ≤ s ≤ 3.0 amu1/2 bohr; (3) Cl− + CH3Cl
→ ClCH3 + Cl− errors are evaluated over 0 ≤ s ≤ 2.5
amu1/2 bohr; (4) H2COH → H3CO errors are evaluated over
−1.5 ≤ s ≤ 1.5 amu1/2 bohr; and (5) SiH2 + H2 → SiH4 er-
rors are evaluated over −1.5 ≤ s ≤ 2.0 amu1/2 bohr. In all
cases, these limits are located roughly halfway between the in-
flection and end points in each direction on the reaction path.

Numerically, the order of an integrator can be tested by
evaluating the growth of the average error as a function of
the integration step size. For an nth-order integrator, the er-
ror will increase as the step size raised to the n + 1 power.
The increases in error with step size reported in Table I are
consistent with a first-order integrator. Indeed, for each reac-
tion the leading error term is second-order in the step size (in-
creasing the error by roughly a factor of 16 as one increases

Downloaded 14 Jan 2011 to 141.217.11.44. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



224101-5 Reaction path following J. Chem. Phys. 133, 224101 (2010)

FIG. 3. HCN angle vs C–H bond distance along the HCN → HNC re-
action pathway using the EulerPC integration and step sizes of 0.10 (×)
and 0.40 (◦) amu1/2 bohr. Results of Euler integration using a step size of
0.40 amu1/2 bohr are also shown (�). The reference reaction path results are
given by the solid curve.

�s from 0.10 to 0.40 amu1/2 bohr). Following the same er-
ror analysis procedure, integration errors for these test reac-
tions have also been compiled using step sizes of 0.20 and
0.30 amu1/2 bohr. Using the four average RMS errors (over
the five test reactions) and plotting ln (error) as a function of
ln (�s) gives a line with slope 2.016, clearly indicating that
EulerPC is a first-order integration method.49

The first reaction tested was the rearrangement rection of
HCN. Figure 3 gives the H–C–N angle as a function of the
H–C bond length. It is seen that EulerPC integration using
step sizes of 0.10 and 0.40 amu1/2 bohr agrees with the ref-
erence IRC calculation. Using Euler integration with a step
size of 0.40 amu1/2 bohr follows the reference IRC well near
the TS. However, as the reactant and product basins are ap-
proached the Euler path displays oscillations about the refer-
ence path. The �s = 0.1 amu1/2 bohr EulerPC path exhibits
nearly zero error relative to the reference reaction path, and
the �s = 0.40 amu1/2 bohr EulerPC calculation has an RMS
error of only 0.0020 amu1/2 bohr and a maximum error of
only 0.0027 amu1/2 bohr. These results, for a reaction which
involves significant coupling of Cartesian coordinates as the
H atom moves from one side of the C–N bond to the other, in-
dicate how accurately the EulerPC method integrates reaction
paths.

The four center elimination reaction CH3CH2F
→ CH2CH2 + HF, which has been extensively studied
by Kato and Morokuma,50 has been used in previous studies
of reaction path following methods. Figure 4 gives the
energy along the reaction path as a function of the H–F bond
distance. With an integration step size of 0.40 amu1/2 bohr,
Fig. 4 shows that simple Euler integration separates from the
reference path only slightly as the path is integrated from the
TS to the reactant well (CH3CH2F). As the Euler integration
approaches the product well, the resulting path suffers from
excessive H–F bond vibration. On the other hand, the results
shown in Fig. 4 indicate that EulerPC integration yields
accurate reaction paths using both tested step sizes.

As with the HCN rearrangement reaction, the four cen-
ter elimination reaction also shows essentially zero error

FIG. 4. Four center elimination reaction pathway using the EulerPC integra-
tion and step sizes of 0.10 (×) and 0.40 (◦) amu1/2 bohr. Results of Euler
integration using a step size of 0.40 amu1/2 bohr are also shown (�). The
reference reaction path results are given by the solid curve.

in the �s = 0.1 amu1/2 bohr case. The larger step size
comes with larger RMS and maximum errors of 0.0048 and
0.0106 amu1/2 bohr. While these errors appear relatively
large, in absolute terms they are quite low, particularly given
that a step size of 0.40 amu1/2 bohr is much larger than one
typically expects to use in practice.

The third test reaction is the symmetric SN 2 reaction of
chloride and methylchloride. This reaction path is known to
be difficult for IRC integrators,51 and as such is an excellent
test case for new methods. Near the TS, integration of the re-
action path can be quite difficult owing to strong coupling of
the path tangent and symmetric C–H stretch coordinates. In
Fig. 5 the C–H bond distance is plotted as a function of the
C–Cl distance. (Note that only one integration direction from
the TS is shown as the reaction path is symmetric about the
TS.) Euler integration with a step size of 0.40 amu1/2 bohr
oscillates across the reference path, resulting from the stiff
nature of Eq. (1). EulerPC integration is able to properly fol-
low the reaction path even in the region where the stiff na-
ture of the IRC is most severe. The EulerPC calculation on

FIG. 5. Reaction path for Cl− + H3CCl → ClCH3 + Cl−, using the EulerPC
integration and step sizes of 0.10 (×) and 0.40 (◦) amu1/2 bohr. Results of
Euler integration using a step size of 0.40 amu1/2 bohr are also shown (�).
The reference reaction path results are given by the solid curve.
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FIG. 6. H2COH → H3CO reaction path using the EulerPC integration and
step sizes of 0.10 (×) and 0.40 (◦) amu1/2 bohr. Results of Euler integration
using a step size of 0.40 amu1/2 bohr are also shown (�). The reference
reaction path results are given by the solid curve.

this reaction results in RMS and maximum errors of only
0.0020 and 0.0037 amu1/2 bohr for the larger integration step
size.

The reaction H2COH → H3CO, a 1,2 hydrogen shift re-
action, is a model for 1,n group shift reactions. Figure 6 shows
the C–H distance as a function of the C–O–H angle. Again,
the EulerPC integrator results, using step sizes 0.10 and
0.40 amu1/2 bohr, clearly follow the reference reaction path.
In agreement with this qualitative assessment, the errors of
this reaction path (Table I) are quite low. In fact, this test
reaction yields the smallest errors of the test set for both
�s = 0.40 and 0.10 amu1/2 bohr cases.

The final chemical reaction considered is SiH2 + H2

→ SiH4, which has been thoroughly studied.52, 53 This reac-
tion serves as a model three center insertion reaction, making
it another useful test for new reaction path integrators. Figure
7 is a plot of the H–H bond distance versus the reaction coor-
dinate. Whereas Euler integration incorrectly develops H–H
vibrations when entering the reactant channel, the EulerPC
solutions cleanly follow the reference IRC.

FIG. 7. SiH2 + H2 → SiH4 reaction path using the EulerPC integration and
step sizes of 0.10 (×) and 0.40 (◦) amu1/2 bohr. Results of Euler integration
using a step size of 0.40 amu1/2 bohr are also shown (�). The reference
reaction path results are given by the solid curve.

The errors of this three center insertion reaction are the
largest of the test set. When �s = 0.10 amu1/2 bohr, the RMS
and maximum errors are 0.0003 and 0.0009 amu1/2 bohr.
With the larger integration step of 0.40 amu1/2 bohr the re-
action path RMS and maximum errors rise to 0.0059 and
0.0111 amu1/2 bohr. As noted above regarding the four cen-
ter elimination test reaction, errors of this magnitude are
not large in an absolute sense. Moreover, the error of the
�s = 0.10 amu1/2 bohr pathway, an accepted step size upper
limit in most reaction path following applications, is entirely
acceptable.

C. Chemical reaction tests using Hessian updating

As developed thus far, the mBS corrector component of
EulerPC integration employs a DWI fitting scheme and re-
quires second derivatives of the energy at each predictor point.
Analytic evaluation of second derivatives at each point on the
IRC can present a significant computational bottleneck, par-
ticularly when ab initio (or density functional theory) model
chemistries are employed. A commonly used approach for
overcoming this bottleneck in quasi-Newton optimization, di-
rect dynamics, and other IRC algorithms is Hessian updating.
In this way, the change in the second derivatives with each
step is numerically estimated using changes in positions and
gradients. Thus, the need for costly analytic second-derivative
evaluations at each step is eliminated. In this subsection, such
an approach is considered in connection with EulerPC IRC
integration.

To quantify the accuracy of the EulerPC integrated
reaction pathways when Hessian updating is used, inte-
gration errors were determined using a step size of 0.10
amu1/2 bohr following the same scheme used for the data
given in Table I. Also, the same portions of each reac-
tion path were included in the error analysis: (1) HCN
→ HNC errors were evaluated for −3.0 ≤ s ≤ 3.0 amu1/2

bohr; (2) H3CCH2F → H2CCH2 + HF errors were eval-
uated for −3.0 ≤ s ≤ 3.0 amu1/2 bohr; (3) Cl− + CH3Cl
→ ClCH3 + Cl− errors were evaluated for 0 ≤ s ≤ 2.5i
amu1/2 bohr; (4) H2COH → H3CO errors were evaluated for
−1.5 ≤ s ≤ 1.5 amu1/2 bohr; and (5) SiH4 → SiH2 + H2 er-
rors were evaluated for −1.5 ≤ s ≤ 2.0 amu1/2 bohr. In each
case, this range corresponds to the same number of integration
steps as for the all analytic Hessian case (see Table I).

In previous work, it was shown that Hessian updating
techniques are quite useful for predictor–corrector reaction
path following34 and direct dynamics methods.39 Similar to
the direct dynamics case, each test chemical reaction has been
integrated using an analytic Hessian every two, five, and ten
predictor integration steps and updated Hessians at all inter-
mediate steps. Reaction paths have also been integrated us-
ing Hessian updating at all integration steps. In all cases,
analytic Hessians have been used at the TS, and Hessian
updating has been carried out using Bofill’s scheme.48 The
root-mean-squared and maximum errors along these inte-
grated reaction paths are given in Table II.

In general, the results shown in Table II are quite good.
Using a step size of 0.10 amu1/2 bohr the RMS errors are less
than 0.002 amu1/2 bohr for all cases, including calculations
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TABLE II. RMS and maximum integration errors for reaction paths solved using EulerPC with a step size of 0.10 amu1/2 bohr incorporating Hessian updating
for some or all predictor integration steps.a

Analytic Hessians every n points

Reaction n = 2 n = 5 n = 10 All updated Hessians

RMS error
HCN → HNC 0.0002 0.0003 0.0005 0.0013
H3CCH2F → H2CCH2 + HF 0.0002 0.0003 0.0008 0.0017
Cl− + CH3Cl → ClCH3 + Cl− 0.0001 0.0001 0.0001 0.0003
H2COH → H3CO 0.0001 0.0001 0.0002 0.0003
SiH4 → SiH2 + H2 0.0003 0.0006 0.0013 0.0014

Max error
HCN → HNC 0.0004 0.0006 0.0010 0.0037
H3CCH2F → H2CCH2 + HF 0.0006 0.0006 0.0018 0.0050
Cl− + CH3Cl → ClCH3 + Cl− 0.0003 0.0002 0.0004 0.0010
H2COH → H3CO 0.0002 0.0003 0.0004 0.0009
SiH4 → SiH2 + H2 0.0009 0.0013 0.0028 0.0028

aErrors are reported in units of amu1/2 bohr.

using all updated Hessians. Similarly, the maximum error val-
ues do not exceed 0.005 amu1/2 bohr. These error metrics
are comparable to those reported for the second-order HPC
integrator,34 which is notable given that EulerPC integration
is formally a first-order method. These results further empha-
size the usefulness of predictor–corrector integration schemes
and the utility of the fitted surface mBS corrector scheme.

IV. CONCLUSIONS

In this work, an Euler-based predictor–corrector
(EulerPC) reaction path integrator has been presented. The
integrator has been validated on the Müller–Brown surface
and with five chemical reactions. In all cases, EulerPC
integration yields paths that agree very well with highly
accurate reference reaction paths. Integration errors have also
been evaluated quantitatively, and it has been shown that
the EulerPC integrator performs nearly as well as higher-
order schemes. This level of accuracy is achieved because
of the corrector integration component. Noting that this
integrator has been developed for use in electronic structure
studies, this enhancement of accuracy comes without any
additional computational cost since the corrector integration
is carried out on a fitted surface. It has also been demon-
strated that Hessian updating techniques can be successfully
employed with EulerPC reaction path following. Hence,
the EulerPC integrator is an approach that simultaneously
provides a high degree of accuracy and computational
affordability.
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