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1 INTRODUCTION

Advances in both theoretical methods and com-
puter hardware over the past four decades have led to an
ever-increasing synergy between experiments and electronic
structure calculations. This is particularly apparent in the
inorganic chemistry community where calculations are rou-
tinely employed to understand problems ranging from spectra
deconvolution to bonding in relativistic actinoid complexes
(see Computational Methods: Lanthanides and Actinides).ia640

A wide variety of electronic structure methods currently exist
to accurately describe closed-shell, ground-state singlet sys-
tems. Unfortunately, not all chemistry occurs on closed-shell,
singlet potential energy surfaces so issues such as symmetry
breaking in open-shell compounds must be addressed.

From the theorems of linear Hermitian operators,
it is known that a common and complete set of eigenfunc-
tions exists for two operators, A and B, that commute, i.e.,
[A, B] = 0.1 Therefore, the set of eigenfunctions for a

nonrelativistic Hamiltonian, H, should also be eigenfunctions
of the spin operator, S2, and the spatial symmetry operators
(E, Cn, σ , i, etc.) for the relevant nuclear point group because
these operators commute with H. Spin symmetry breaking
occurs when the eigenstates are not eigenfunctions of S2.
In such cases,�0 is said to be spin contaminated owing to
incorporation of higher spin state character as evidenced by
expectation values of S2, 〈S2〉, larger than S(S + 1).2,3 If the
resulting eigenstates are not eigenfunctions of the symmetry
operations for the full nuclear point group, then �0 exhibits
spatial symmetry breaking and is dubbed a broken-symmetry
wave function.4 Although broken-symmetry wave functions
do not exhibit all the expected eigenvalue properties, they are
not without use (see Broken Symmetry States of Iron–Sulfur ia618

Clusters). It is important to note that while spin-contaminated
and broken-symmetry wave functions are related, one does
not beget the other.

Löwdin pointed out that the computational chemist
is faced with a symmetry dilemma requiring a balance to
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be struck between imposing constraints to enforce correct
spin-symmetry properties in the resulting eigenfunctions or
increasing the variational parameters to achieve the lowest
energy.5 Restricting each occupied orbital in a closed-shell
system to contain one α and one β electron is the simplest
way to enforce spin symmetry, 〈S2〉 = 0, and results in the
restricted family of methods denoted by an R prefixed to
the method’s acronym (e.g., RHF, RMP2, RB3LYP, etc.).
For open-shell systems, spin symmetry is preserved when
each unpaired electron resides in an α spin orbital with the
remaining electrons constrained to doubly occupied orbitals
thereby defining the restricted open-shell methodologies
denoted by an RO in beginning of a method’s acronym.
Although RO methods preserve spin symmetry and increase
the variational parameters compared to restricted methods,
practical experience has shown that they do not provide
adequate structures, energies, and spin densities.6 Beyond RO
methods, multiconfiguration self-consistent field (MCSCF),
single and multireference (MR) configuration interaction (CI)
methods utilizing spin-adapted configuration state functions
(CSFs) maximize the variational flexibility within a truncated
CI framework while providing spin contamination-free wave
functions. Unfortunately, MCSCF, single-reference CI, and
multireference configuration interaction (MRCI) methods
are all too frequently impractical for systems of interest.
Returning to a single-determinant framework, the variational
flexibility can be increased beyond RO methods by allowing
different orbitals for different spins (DODS). These so-
called unrestricted methods are indicated with a U prefixed
to the method’s standard acronym (e.g., UHF, UMP2,
UB3LYP, etc.) and the resulting eigenstates are no longer
eigenfunctions of S2. The variational flexibility in a single-
determinant method is maximized when each electron is
described as a linear combination of α and β spin orbitals.
Such generalized methods are denoted with a G prefixed
to the method’s acronym and generate eigenstates that are
not eigenfunctions of S2. Understanding how to navigate
Löwdin’s symmetry dilemma of balancing flexibility versus
constraints via practical application of the aforementioned
classes of methods is the focus of the rest of this article.
Readers not interested in a rigorous development of the
underlying mathematical principles may wish to skip ahead to
Sections 5 or 6.

2 HARTREE–FOCK

Since many correlated methods, including hybrid
density functional theory (DFT), build upon Hartree–Fock
(HF) theory, it is reviewed here to illustrate the mathematical
underpinnings behind spin contamination. Interested readers
should see Jensen2 or other standard texts for a more detailed
derivation of the HF equations.7 The electronic wave function
for an N -electron system is denoted by a normalized Slater

determinant, �0, containing N spin orbitals ψi .

�0 = |ψ1ψ2 . . . ψN 〉 (1)

Following the variational principle, the spin orbitals are
optimized to minimize the energy, E, while maintaining a
normalized total wave function.

E = 〈�0|H|�0〉 (2)

In equation (2), H is the full electronic Hamiltonian
after application of the Born–Oppenheimer approximation.
Minimizing E with respect to ψi under the constraint
of orthonormality, the following one-electron eigenvalue
equations emerge:

Fiψi = εiψi (3)

Fi is the effective one-electron Fock operator for the ith
electron given by

Fi = hi + V HF
i (4)

where hi is also a one-electron operator describing the motion
of electron i in the electric field generated by Nnuclei each with
charge ZA

hi = −1

2
�2

i −
Nnuclei∑

A

ZA

riA

(5)

and V HF
i is the mean field potential experienced by electron i

owing to the presence of the other electrons.

V HF
i =

N∑
j

Jj − Kj (6)

Jj |ψi(1)〉 = 〈ψj (2)| 1

r12
|ψj (2)〉|ψi(1)〉 (7)

Kj |ψi(1)〉 = 〈ψj (2)| 1

r12
|ψi(2)〉|ψj (1)〉 (8)

Following the method of Roothaan8 and Hall,9 the spatial part,
φi , of each spin orbital can be written as a linear combination
of M basis functions, χν

ψi = ϕi(r) =
Mbasis∑

v

Cviχv(r) (9)

Inserting equation (9) into equation (3) yields

Mbasis∑
ν

FiχνCνi = εi

Mbasis∑
ν

χνCνi (10)
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which can be left multiplied by χµ and integrated to give

Mbasis∑
ν

{
Fµν − εiSµν

}
Cνi = 0 i = 1, 2, . . . , N (11)

where Fµν = 〈χµ|F|χν〉 and Sµν = 〈χµ|χν〉. Equation (11)
can be further simplified by noting that F and S are
Mbasis × Mbasis matrices, C is an Mbasis × N matrix, and ε

is a diagonal N × N matrix.

FC = SCε (12)

F is the matrix formulation of the Fock operator, C is the
matrix of molecular orbital (MO) coefficients, S is the overlap
matrix between basis functions, and ε is a diagonal matrix of
MO energies. Equation (12) is solved in an iterative manner
beginning with an initial guess for C from which F is built. F
is then used to generate a new C and the cycle is repeated until
the change in energies converges below a numeric threshold
and self-consistency is achieved. It is important to note that
F is nonlinear in the MO coefficients because J and K in F
depend upon C. Thus from a mathematical perspective, spin
contamination is a direct manifestation of the nonlinearity of
Fock operators.

Having reviewed the necessary HF equations, the
differences between the R (restricted), RO (restricted open
shell), U (unrestricted), and G (generalized) classes of methods
are easy to see in terms of their corresponding orthonormal
spin orbitals, ψi . In both restricted Hartree–Fock (RHF) and
restricted open-shell Hartree–Fock (ROHF) theory, α and
β spin orbitals have the same spatial functions and therefore
identical values for Cνi . The coefficients can be real or complex
and the wave functions are eigenfunctions of both Sz and S2.

ψα
i (r) = ϕi(r)α, ψ

β

i (r) = ϕi(r)β, ϕi(r) =
Mbasis∑

ν

Cνiχν(r) (13)

Unrestricted Hartree–Fock (UHF) theory uses spin orbitals in
which α and β electrons may have different MO coefficients
thereby resulting in different α and β spatial functions.

ψα
i (r) = ϕα

ia = ϕia(r)α =
[

Mbasis∑
ν

Ca
νiχν(r)

]
α,

ψ
β

i (r) = ϕ
β

ib = ϕib(r)β =
[

Mbasis∑
ν

Cb
νiχν(r)

]
β (14)

The UHF values of Ca
νi and Cb

νi can be either real or complex
and the resulting wave functions are eigenfunctions of Sz but
not S2. A generalized Hartree–Fock (GHF) spin orbital (also
known as generalized spin orbital (GSO) in the literature)
can also have real or complex MO coefficients, but now each
spin orbital is a linear combination of both α and β spin
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orbitals.10

ψi(r) = ϕα
ia + ϕ

β

ib = ϕia(r)α + ϕib(r)β

=
Mbasis∑

ν

{ [
Ca

νiχν(r)
]
α + [

Cb
νiχν(r)

]
β
}

(15)

Although generalized spin orbitals have the most variational
flexibility, they are not eigenfunctions of either Sz or S2.

3 SPIN OPERATORS

Computation of 〈S2〉 is best understood in the
framework of raising and lowering operators.11 Let Sx , Sy ,
and Sz be the components of S along the denoted Cartesian
axis. Raising, S+, and lowering, S−, operators for electronic
spin are defined as follows:

S+ = Sx + iSy , S− = Sx − iSy (16)

S2 can now be expressed in atomic units for one electron in
the following way:

S2 = S2
x + S2

y + S2
z = 1

2 (S+S− + S−S+) + S2
z (17)

For many-electron systems, S2 takes the following form:

S2 = 1

2




N∑
ij

[s+(i)s−(j) + s−(i)s+(j)]




+
(

N∑
i

sz(i)

) 
 N∑

j

sz(j)


 (18)

where lowercase letters indicate one-electron operators with
the following properties in the α and β spin orbital basis sets:

s+ψi = s+ϕα
ia + s+ϕ

β

ib = ϕα
ib

s−ψi = s−ϕα
ia + s−ϕ

β

ib = ϕ
β

ia

sxψi = sxϕ
α
ia + sxϕ

β

ib = 1

2
ϕ

β

ia + 1

2
ϕα

ib

syψi = syϕ
α
ia + syϕ

β

ib = i

2
ϕ

β

ia − i

2
ϕα

ib

szψi = szϕ
α
ia + szϕ

β

ib = 1

2
ϕα

ia − 1

2
ϕ

β

ib (19)

Using equation (19), the following molecular spin-expectation
values can be derived:

〈S+〉 =
Nocc∑

i

Sab
ii , 〈S−〉 =

Nocc∑
i

Sba
ii
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〈S+S−〉 =
Nocc∑

i

Saa
ii + 〈Sx〉2 + 〈Sy〉2 −

Nocc∑
ij

∣∣Sab
ij

∣∣2

〈S−S+〉 =
Nocc∑

i

Sbb
ii + 〈Sx〉2 + 〈Sy〉2 −

Nocc∑
ij

∣∣Sab
ij

∣∣2

〈Sx〉 = 1

2

Nocc∑
i

(
Sba

ii + Sab
ii

)
, 〈Sy〉 = i

2

Nocc∑
i

(
Sba

ii − Sab
ii

)

〈Sz〉 = 1

2

Nocc∑
i

(
Saa

ii − Sbb
ii

)
,

〈S2
z 〉 = Nelec

4
+ 〈Sz〉2 − 1

4

Nocc∑
ij

∣∣Saa
ij − Sbb

ij

∣∣2
(20)

The Saa
ij , Sbb

ij , Sab
ij and Sba

ij terms are spatial orbital overlap
integrals

Saa
ij = 〈ϕia |ϕja〉 =

Mbasis∑
µν

Ca∗
µiC

a
νj Sµν,

Sbb
ij = 〈ϕib|ϕjb〉 =

Mbasis∑
µν

Cb∗
µiC

b
νj Sµν

Sab
ij = 〈ϕia |ϕjb〉 =

Mbasis∑
µν

Ca∗
µiC

b
νj Sµν,

Sba
ij = 〈ϕib|ϕja〉 =

Mbasis∑
µν

Cb∗
µiC

a
νj Sµν (21)

resulting from the expectation-value integration step. Substi-
tuting the relations from equation (20) into equation (17) and
recalling that

∑Nocc
i=1

(
Saa

ii + Sbb
ii

) = Nelec, produces the general
formula for 〈S2〉,

〈S2〉 = 1

2
(〈S+S−〉 + 〈S−S+〉) + 〈S2

z 〉

= 3

4
Nelec + 〈Sx〉2 + 〈Sy〉2 + 〈Sz〉2

−
Nocc∑
ij

|Sab
ji |2 − 1

4

Nocc∑
ij

|Saa
ij − Sbb

ij |2 (22)

For unrestricted spin orbitals, Saa
ij = δij when i and j are α

orbital indices; otherwise,Saa
ij equals zero. Similarly,Sbb

ij = δij

when i and j are β orbital indices; otherwise, Sbb
ij equals zero.

Therefore, 〈S2〉 reduces to

〈S2〉U = 3

4
Nelec + 〈Sz〉2 −

Nocc∑
ij

∣∣Sab
ji

∣∣2 − 1

4
Nelec

= 〈Sz〉 (〈Sz〉 + 1) + nβ −
Nocc∑
ij

∣∣Sab
ji

∣∣2
(23)

For restricted spin orbitals, Sab
ij = Sba

ij = δij , and 〈S2〉U

collapses to

〈S2〉R = 〈Sz〉 (〈Sz〉 + 1) , 〈Sz〉 = 1

2
(nα − nβ) (24)

For unrestricted spin orbitals, a unitary transformation among
the occupied orbitals can be made such that the Sab

matrix is diagonal. The resulting rotated orbitals are termed
corresponding orbitals and their use greatly simplifies the
matrix element expressions for S2n.12–14

Møller–Plesset (MPn) perturbation theory is a con-
venient implementation of many-body perturbation theories
(MBPTn), which adds correlation corrections to HF wave
functions. For second-order Møller–Plesset perturbation the-
ory (MP2) calculations, 〈S2〉 is given by

〈S2〉 = 〈�0|S2|�0〉 + 2〈�0|S2|�1〉 (25)

where |�1〉 is the first-order correction to the HF wave
function. Expressions for higher-order MPn theory have
been worked out, but quickly become complicated.15 When
computing 〈S2〉 for correlated methods such as configuration
interaction with doubles (CID), configuration interaction
with singles and doubles (CISD), quadratic configuration
interaction with singles and doubles (QCISD), coupled-cluster
theory, and Brueckner doubles (BD), a perturbation, λS2, is
added to H so that S2 can be computed as a derivative.16–18

Since density functional theory (DFT) does not
formally employ a wave function, correctly calculating
〈S2〉 becomes challenging. If equation (22) is used with
the occupied Kohn–Sham orbitals, the resulting value of
〈S2〉 is very close to S(S + 1), but this value is for the
noninteracting system rather than for the true interacting
system of interest.19,20 Multireference density functional
theory (MR-DFT),21,22 in which CSFs are constructed using
some DFT matrix elements or constrained density functional
theory with configuration interaction (CDFT-CI)23 may
provide improved 〈S2〉 values. Since S2 is a two-particle
property, its expectation value can be computed from the
two-particle density matrix. For single-determinant methods,
the two-particle density matrix can be expressed in terms of
one-particle density matrices and correlation hole functions.19

Unfortunately, the exact one-particle density matrix is only
known for the exchange-only uniform electron gas, thus all
DFT 〈S2〉 values are approximate.

4 PROJECTION OPERATORS

Unwanted spin states can be removed from spin-
contaminated wave functions with Löwdin’s spin projection
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operators24 derived from the properties of Hermitian spaces25:

Ps =
∏
k �=s

S2 − k(k + 1)

s(s + 1) − k(k + 1)
(26)

Since |�0〉 can be expanded into a basis set of pure
spin states, |�i〉,26,27

|�0〉2S+1 =
∑
i=S

Ci |�i〉 (27)

full application of the projection operators sets all but the
first coefficient in equation (27) to zero. Projection operators
for removing spins s + 1 to s + n involve operators S2

through S2n. Truncation of Ps after the first term produces
the annihilation operator for removing only the state with spin
k from |�0〉.

Ak = S2 − k(k + 1)

〈S2〉 − k(k + 1)
(28)

Besides removing all spin k components, Ak also changes
the relative weighting of the remaining spin components.28

The projection operator is idempotent, Ps
2 = Ps , but for

annihilation operators this is not the case.13 Projection or
annihilation can be incorporated into the self-consistent field
(SCF) procedure since both operators commute with spin-free
Hamiltonians. It is important to note that application of either
projection or annihilation operators after the SCF procedure
produces wave functions that are no longer stationary with
respect to the variational parameters. Practical experience has
shown that spin contamination often occurs from only a few
spin states such that Ps is well approximated by one or two
annihilators.29

5 PROJECTED METHODS

Inclusion of the full projection operator into HF
theory leads to the so-called extended Hartree–Fock (EHF)
method.30 Given the complexity of the EHF equations and the
fact that only RHF or ROHF wave functions are eigenfunctions
of S2,31 approximate projection methods are most commonly
utilized. The interested reader is referred to previous reviews
of these methods for a historical perspective.30,32

The projected energy of a previously determined
UHF wave function can be evaluated as an expectation value.

EPUHF = 〈Ps�0|H|Ps�0〉
〈Ps�0|Ps�0〉 = 〈�0|HPs |�0〉

〈�0|Ps |�0〉
= EUHF + EPUHF (29)

If more than one higher spin state contributes significantly
to the spin contamination, then approximating Ps with
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a single annihilator can result in projected energies that
are artificially lower than the fully projected energy and
not size-consistent.28,33 Although inclusion of a sufficient
number of annihilators will remove the artificial energy
lowering,34,35 it does not eliminate the discontinuity found in
bond-dissociation curves at the RHF UHF instability (see
Figure 1). Therefore, projected unrestricted Hartree–Fock
(PUHF) theory is not recommended for computing reaction
energetics or exploring potential energy surfaces even though
analytic PUHF gradients36 were worked out. Likewise,
projected-DFT is generally not recommended for radicals
and dissociation potentials because projection degrades the
unrestricted DFT results beyond the RHF/UHF instability
point.37

The total MPn energy can be expressed as an
expectation value with the following form:

EMPn = 〈�0|H|�0 + �1 + · · · �n−1〉 (30)

Application of projection operators to the MPn wave function
proceeds in a manner similar to HF theory.15,29,38

Eproj MPn = 〈�0|HPs |�0 + �1 + · · ·�n−1〉
〈�0|Ps |�0 + �1 + · · · �n−1〉 (31)

and when expanded order by order, results in the same
projected energy expression as applying the projection while
developing the perturbation series.34 If the perturbative
corrections for electron correlation, �1 + · · · �n−1, are
Schmidt orthogonalized to the PUHF wave function,
then an approximate formula for projected Møller–Plesset
perturbation theory (PMPn) energy is obtained.29,38 This
approximate formula and the corresponding analytic gradients
work quite well for projected second-order Møller–Plesset
perturbation theory (PMP2) compared to equation (31) and
are much simpler to implement.36 In the case of PMP2, the
energy expression is given by

EPMP2 = EMP2 + EPUHF

(
1 − 〈�1|�̃0〉

〈�̃0|�̃0〉

)

Ps�0 = �0 + �̃0 (32)

Since unrestricted Møller–Plesset perturbation theory
(UMPn) energies can be substantially higher than their pro-
jected counterparts, the use of spin-projected UMPn energies
is generally recommended.

Alternatives to projected UMPn include various
open-shell spin-restricted perturbation approaches, such as
open-shell perturbation theory method 1 (OPT1), open-
shell perturbation theory method 2 (OPT2), restricted
Møller–Plesset perturbation theory (RMPn, also known as
restricted open-shell Hartree–Fock many-body perturbation
theory, ROHF-MBPTn), restricted open-shell Møller–Plesset
perturbation theory (ROMPn), and Z-averaged perturbation
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theory (ZAPTn). Since OPT1 and OPT2 employ eigenfunc-
tions of S2 in the perturbation expansion, the resulting energies
are free of spin contamination. However, the perturbation
series is susceptible to convergence and rotational invariance
difficulties.39 RMPn, ROMPn, and ZAPTn methods use a
restricted open-shell reference determinant, but some spin
contamination enters via the perturbation expansion. Differ-
ences between these methods are usually small. ZAPTn tends
to be a bit better for difficult cases and provides significant
computational advantages because it uses the same spatial
parts for the α and β spin orbitals.40

It was shown that operation of any single annihilator,
Ak+n, upon the coupled cluster singles and doubles (CCSD)
wave function leaves the CCSD energy unchanged 38. Similar
behavior, in which some degree of projection is naturally
included in the method, is found for QCISD, and BD
energies.15,38,41 Because of this, spin-unrestricted QCISD,
coupled cluster (CC), and BD methods are less affected
by spin contamination and are normally employed without
projection. Spin-adapted coupled-cluster methods have been
developed and are spin contamination-free.42

In situations where the spin contamination is small,
Yamaguchi and coworkers devised an approximate projection
(AP) method that does not explicitly require annihilation
operators.43 The AP method connects the concepts of
projection operators to spin Hamiltonians. Although all of
the aforementioned methods with the exception of EHF are
approximate projection techniques, the AP abbreviation has
become associated with only Yamaguchi’s approach in the
literature. When spin contamination is small, Ps is accurately
approximated by Ak and equation (27) can be written as

|�0〉2S+1 = CS|�S〉 + CS+1|�S+1〉 (33)

where S and S + 1 denote the pure low-spin state with
multiplicity 2S + 1 and high-spin state with multiplicity
2S + 3 respectively. The expectation values of energy and
S2 take the following form since the pure spin states are
orthonormal:

E0 = C2
SES + C2

S+1ES+1 = (1 − C2
S+1)ES + C2

S+1ES+1 (34)

〈S2〉0 = (1 − C2
S+1)〈S2〉S + C2

S+1〈S2〉S+1

= 〈S2〉S + C2
S+1

(〈S2〉S+1 − 〈S2〉S
)

(35)

From equation (35) the high-spin state coefficient can be
calculated as

C2
S+1 = 〈S2〉0 − 〈S2〉S

〈S2〉S+1 − 〈S2〉S
= 〈S2〉0 − S(S + 1)

2(S + 1)
(36)

If the high-spin wave function with a multiplicity of 2S + 3
computed at the low-spin geometry, |�0〉2S+3, does not
have any significant spin contamination, then it is a good

approximation for |�〉S+1 and 〈S2〉S+1 ≈ 〈S2〉2S+3
0 . Solving

equation (34) for ES with these approximations yields

ES = αE0 − βES+1 ≈ αE0 − βE2S+3
0 (37)

The coefficients in the preceding equation take the
following forms

α = 1

1 − C2
S+1

= 〈S2〉S+1 − 〈S2〉S

〈S2〉S+1 − 〈S2〉0
≈ 〈S2〉2S+3

0 − 〈S2〉S

〈S2〉2S+3
0 − 〈S2〉0

, β = 1 − α (38)

Gradients were worked out so that geometry optimizations
can be carried out for any level of theory for which 〈S2〉
can be calculated.44 The AP method is closely related to
Ziegler’s method for determining multiplet energies, which is
also based upon equation (33) and determines the coefficients
from group theory.45,46 It is important to note that if |�0〉2S+3

is spin contaminated, then methods based upon equation (33)
may fail or require recursive application.

6 APPLICATIONS

Spin contamination can become an especially
difficult issue for structures exhibiting strained bonds, such as
transition structures, as well as for studies of (multi-) radical
chemistry. To simulate bond strain and radical formation,
bond-dissociation curves for H2 and ScH are examined to
demonstrate some of the concepts outlined above. The former
allows us to illustrate essential physics within the context of
a well-understood and chemically intuitive process, while the
latter provides a practical example where factors common
to transition metal chemistry, in particular, can complicate
electronic structure calculations. The discussion is presented in
qualitative terms, but readers seeking thorough mathematical
details are referred to an earlier review where the bond
dissociation of H2 is also considered.32 All calculations were
carried out using the development version of the Gaussian
suite of electronic structure programs.47

6.1 H2 Case Study

Energy versus H–H bond length curves are plotted
in Figure 1(a). These curves are the three potential energy
surfaces available for H2 with the STO-3G48 minimal basis
set in which one s orbital is centered on each H atom. Electronic
structure descriptions of these states can be understood using
MO theory. At short bond distances, the two 1s atomic orbitals
(AOs) combine to form bonding and antibonding MOs. At
these distances, the RHF singlet wave function properly
generates the ground-state MO configuration as 1σg

2. At very
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long distances the two 1s AOs do not overlap, remain localized
on their respective atomic center, and are degenerate. The
RHF singlet wave function now incorrectly leads to a solution
that includes character from the ionic product H+ + H−. The
correct H + H product state is given by the triplet description;
however, at short bond distances, the triplet state leads to a
1σg

11σg
∗1 electronic configuration and a bond order of zero.
Figure 1(b) shows the lowest eigenvalues of the RHF

orbital-rotation Hessian, or stability matrix,49,50 and the singlet
UHF 〈S2〉 as functions of the H–H distance. Where the lowest
orbital-rotation Hessian eigenvalue is negative, the RHF wave
function is unstable and a UHF wave function is lower in
energy. At bond distances less than ∼1.2 Å, the triplet state
is significantly higher in energy than the singlet state, and
the UHF (singlet) and RHF wave functions are the same.
Thus, the RHF wave function is stable in this region and
the singlet UHF 〈S2〉 is zero. For bond distances greater
than ∼1.2 Å, the RHF wave function is not stable and the
singlet UHF energy is lowest. At long distances, the singlet
UHF wave function localizes one electron on each atomic
center. To achieve this electronic structure within a single-
determinantal picture requires the UHF singlet wave function
to break spin symmetry by mixing with the pure UHF triplet
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Figure 1 (a) Full CI ( ), RHF singlet ( ), UHF singlet ( ),
PUHF singlet ( ), and UHF triplet ( ) energy profiles; and
(b) the lowest RHF singlet orbital-rotation Hessian eigenvalue ( )
and 〈S2〉 for the UHF singlet wave function ( ) plotted against the
H2 bond length. Black horizontal and vertical lines denote a stability
eigenvalue of 0 and the bond distance where the RHF UHF
instability onset is observed, respectively
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state thereby resulting in spin contamination. The degree of
triplet contamination is a maximum at long distances where
the UHF singlet 〈S2〉 = 1, indicating equal mixing of pure
singlet and triplet states.

Figure 2 displays energy profiles for H2 evaluated
using various wave function methods, including full CI. An
important effect of spin contamination is the inclusion of
static correlation (also known as left–right correlation or
nondynamic correlation)51 by mixing in triplet and excited
singlet states. As a result, employing projection operators to
remove spin contamination from the UHF singlet state yields
an unphysical dissociation curve. The PUHF energy profile
suffers from a cusp and an unphysical local minimum near the
RHF UHF instability.

When correlation corrections are explicitly included,
using second-order Møller–Plesset perturbation theory with
an RHF reference (RMP2) for example, an artificial energy
maximum is observed at 2.4 Å and at long bond lengths,
the energy heads to −∞ as the energy denominator goes to
zero. Using second-order Møller–Plesset perturbation theory
with a UHF reference (UMP2) yields a curve that approaches
the correct limit. Despite the fact that perturbation theory
captures a large proportion of electron correlation, it is not
able to remove higher spin states from the reference wave
function. This deficiency leads to poor convergence in the MP
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Figure 2 (a) Energy profiles for Full CI ( ), UHF ( ), PUHF
( ), RMP2 ( ), UMP2 ( ), and unrestricted PMP2 ( )
plotted against H2 the bond length; and (b) an enlarged view of the
Full CI, UHF, PUHF, UMP2, and unrestricted PMP2 energy profiles



REVIS
ED P

AGE P
ROOFS

ia617

8 COMPUTATIONAL INORGANIC AND BIOINORGANIC CHEMISTRY

series for cases displaying significant spin contamination.52–55

Spin projection can correct this problem and lead to very
good performance, particularly in the region just beyond
the instability point where the unrestricted PMP2 (using
equation 32) dissociation curve is comparable to the full CI
result (Figure 2).

Because dynamic correlation contributions are
included at a computational cost that scales the same as HF,
DFT has become the workhorse of computational inorganic
chemistry.56 While DFT is not a panacea, it does perform
quite well in many routine studies including cases where spin
contamination presents difficulties for wave function methods.
As mentioned above, the evaluation of DFT 〈S2〉 values is
not necessarily straightforward. Some time ago, Becke and
coworkers showed that computing 〈S2〉 for the interacting
system—which requires the two-particle density—yields
results that are typically larger than for the noninteracting
system.19 Note that the true, and as yet unknown, density
functional would provide a proper S2 eigenstate with a 〈S2〉
value equal to S(S + 1). For computational simplicity, we use
the noninteracting system to compute 〈S2〉 for DFT examples
discussed here.

Figure 3 presents 〈S2〉 and the lowest eigenvalue
of the restricted-DFT stability matrices as functions of the
H–H bond distance using the BLYP57,58 pure functional and
the B3LYP59 hybrid functional. Also included in Figure 3
are data from the B2PLYP double-hybrid functional, which
incorporates virtual orbital dependencies through the inclusion
of an MP2 energy correction term.60 The general behavior of
these curves is similar to the UHF curves described previously.
However, onset of the restricted unrestricted instability for
all three DFT models comes later in the dissociation curve than
for HF. While 〈S2〉 and stability curves for these DFT levels
are nearly the same, onset of the restricted unrestricted
instability is earliest for B2PLYP, followed by B3LYP, and
BLYP. This ordering is likely due to the extent of HF exchange
included in the functional definitions (53% for B2PLYP, 20%
for B3LYP, and 0% for BLYP). Likewise, the lowest stability
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Figure 3 Lowest RBLYP ( ), RB3LYP ( ), and RB2PLYP
( ) orbital-rotation Hessian eigenvalues, and 〈S2〉 for UBLYP
( ), UB3LYP ( ), and UB2PLYP ( ) wave function plotted
against the H2 bond length

matrix eigenvalue grows more negative more slowly for BLYP
than for B3LYP or B2PLYP.

Energy profiles for H2 dissociation using BLYP,
B3LYP, and B2PLYP functionals are shown in Figure 4.
In general, it is seen that the restricted and unrestricted DFT
curves differ from one another analogous to the qualitative dif-
ferences between RHF and UHF energy profiles (Figure 1a).
Prior to the restricted unrestricted instability both R and U
curves are the same for BLYP and B3LYP. After the insta-
bility point, restricted and unrestricted profiles differ. While
the unrestricted curves lead to an asymptotic limit that is quite
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Figure 4 (a) RBLYP ( ), UBLYP ( ), PUBLYP ( );
(b) RB3LYP ( ), UB3LYP ( ), PUB3LYP ( ); and
(c) RB2PLYP ( ) and UB2PLYP ( ) energy curves plotted
against the H2 bond length. As a reference, the Full CI ( ) energy
curve appears in all plots
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close to the full CI result, RBLYP and RB3LYP energies have
large differences relative to full CI at large H–H distances.
The UBLYP and UB3LYP profiles agree much better with the
full CI curve. In the same manner as UHF, unrestricted DFT
solutions are capable of including static correlation by allow-
ing the different spatial components of α and β MOs, which
gives broken spin-symmetry Kohn–Sham densities beyond
the restricted unrestricted instability point. Projection tech-
niques can also be applied to DFT in the same way as is done
for PUHF where the Kohn–Sham orbitals are used to construct
excited determinants and the spin projector is approximated
by a single annihilator using only doubles excitations.37,61 Pro-
jection of the spin contaminant in the UBLYP and UB3LYP
calculations leads to the same unphysical energy profiles as
the PUHF results in Figure 2. Therefore, use of projected-DFT
is not a recommended method.37

The behavior of the B2PLYP double-hybrid func-
tional is quite similar to MP2 (Figure 2). RB2PLYP incorrectly
displays a large energy barrier at 2.7 Å after which the energy
leads to −∞. Note that the RB2PLYP barrier appears later than
the RMP2 barrier at 2.4 Å. The UB2PLYP energy profile does
lead to the correct dissociation limit, and qualitatively gives
the correct shape of the potential energy curve. Again, this
observation is analogous to the behavior of UMP2. Figure 4(c)
also includes the dissociation curve given by the SCF energy
of the UB2PLYP reference determinant, and it is seen that
the post-SCF correction changes the H2 dissociation curve by
a small amount, which is consistent with the fact that this

SPIN CONTAMINATION IN INORGANIC CHEMISTRY CALCULATIONS 9

double-hybrid functional includes only 27% of the second-
order perturbation energy. The use of projection techniques
with double-hybrid functionals has not yet been fully stud-
ied, though initial tests measuring thermodynamics indicate
that spin projection may not be necessary in these cases.62

These early results seem reasonable given that Kohn–Sham
determinants tend to suffer less from spin contamination and
that only a fraction of post-SCF contributions are included in
these energy expressions. Nevertheless, the utility of projec-
tion methods in the context of double-hybrid DFT functionals
may require further consideration.

6.2 ScH Case Study

Many inorganic systems, especially transition metal
complexes, can suffer from spin contamination problems in a
manner analogous to elongated H2. For recent examples, see
Refs. 63 and 64 along with works cited therein. Often multiple
spin states contribute to the contamination, and the standard
approach of annihilating the first, s + 1, spin contaminant
may not be adequate. As an example of such cases, we now
consider the bond dissociation of ScH on the 1� electronic
ground state. All calculations were carried out using the
6-31G(d) basis set.65 Figure 5(a) shows RHF, UHF (singlet),
and PUHF ScH dissociation curves; the lowest eigenvalue of
the RHF orbital-rotation Hessian is shown together with the
UHF 〈S2〉 in Figure 5(b).
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Figure 5 (a) RHF ( ), UHF ( ), and projected-UHF ( ) energy profiles; and (b) the lowest RHF singlet orbital-rotation Hessian
eigenvalue ( ) and 〈S2〉 for the UHF singlet wave function ( ) plotted against the ScH bond length
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The plots included in Figure 5 show some interesting
behaviors. First, unlike H2, onset of the RHF UHF
instability is quite early for ScH. Whereas the H2 RHF
wave function is stable for some distance beyond the energy
minimum, RHF UHF instability begins at Sc–H bond
lengths shorter than the energy minimum. As a result, RHF
and UHF models predict two different equilibrium bond
lengths. As seen in Figure 5(b), the UHF solution displays
a significant amount of spin contamination beyond 1.1 Å. At
the dissociation limit, 〈S2〉 goes to 1.0, which is consistent
with a broken-symmetry, open-shell singlet state similar to
the solution of H2 at long bond lengths. However, for ScH,
〈S2〉 does not trace out a monotonic or sigmoid curve as in
the H2 case. Instead, between the onset of the RHF UHF
instability and complete dissociation, the UHF solution is
contaminated by higher spin states causing 〈S2〉 to grow
beyond 1.0 for a significant portion of the dissociation process.

Figure 6 shows the energy profiles using the MP2
level of theory. Unfortunately, a full CI calculation on this
system is not feasible and direct comparison of MP2 and CI
dissociation curves is not available. Nevertheless, the RMP2
curve is certainly incorrect and the UMP2 curve shows an
unphysical maximum to dissociation.

As seen in the previous example, applying projection
methods does not yield a satisfactory result in the case of PUHF
(Figure 5a). Similar to the H2 results studied earlier, the PUHF
curve presents a second local energy minimum and displays
an unphysical approach to the dissociation limit. Interestingly,
the unrestricted PMP2 curve is much less acceptable than
the UMP2 profile. The unrestricted PMP2 energy profile
is unphysical and resembles the PUHF curve more than
the UMP2 curve. This result is due to contaminants in the
reference UHF wave function with spin multiplicities higher
than 3. Recall from Section 5 that the usual approximation
in the unrestricted PMP2 energy expression is that only the
next higher spin state contaminates the UHF reference wave
function. Removing the triplet contaminant with a single
annihilator operator reweights the relative contamination of
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Figure 6 (a) Energy profiles for RMP2 ( ), UMP2 ( ),
UMP2 with one spin projection ( ), UMP2 with two spin
projections ( ), and UMP2 with three spin projections ( )
plotted against the ScH bond length

higher states,32 and, in this case, leads to a severe distortion
of the unrestricted PMP2 dissociation curve beginning around
2.5 Å, which is also where the UHF 〈S2〉 rises above 1.0.

With more computational expense, it is possible to
annihilate additional spin contaminants. Energy profiles using
unrestricted PMP2 with two and three contaminants projected
are also shown in Figure 6. Projection of two contaminants
essentially corrects the unrestricted PMP2 curve and gives
a correct physical picture of bond dissociation. The third
projection is probably not needed, as is demonstrated by the
fact that curves with two and three projected contaminants
are indistinguishable. More quantitatively, one can evaluate
the 〈S2〉 values as successive projections are applied. At a
bond length of 2.5 Å, 〈S2〉 values for the reference wave
function with one, two, three, and four projections are 0.715,
0.001, 0.000, and 0.000. At a bond length of 3.1 Å, where the
unprojected UHF 〈S2〉 is at its maximum of 1.184, 〈S2〉 values
for the projected reference wave functions are 1.328, 0.002,
0.000, and 0.000.

Figure 7 shows energy profiles and 〈S2〉 curves for
ScH dissociation using UBLYP, UB3LYP, and UB2PLYP.
The energy profiles predict much larger bond energies than
MP2, though the depth of the minimum decreases going
from BLYP to B3LYP to B2PLYP as contributions from
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Figure 7 (a) UBLYP ( ), UB3LYP ( ), and UB2PLYP
( ) energy profiles; and (b) 〈S2〉 for UBLYP, UB3LYP, and
UB2PLYP singlet determinants plotted against the ScH bond length
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HF exchange and explicit dynamic correlation are included.
More central to the topic of interest here are the 〈S2〉 curves
given in Figure 7(b). In all three cases, the DFT 〈S2〉 values
approach 1.0 at long bond distance indicating equal admixture
of pure singlet and triplet states in the unrestricted DFT
Kohn–Sham determinants, which is similar to the observed
UHF behavior in Figure 5(b). However, the DFT results
suggest much less contamination from higher spin states.
In fact, B3LYP and BLYP 〈S2〉 curves do not appear to
have any significant contaminants higher than triplet states.
As seen in the H2 example, the onset of spin contamination
for the DFT determinants comes later in the ScH curve
than for the HF wave function. For B3LYP and BLYP, spin
contamination does not become problematic until after the
energy minimum. The B2PLYP determinant does begin to
show spin contamination near the minimum, possibly because
of the much higher percentage of HF exchange. Another
important difference between DFT and HF is the range of
bond distances over which 〈S2〉 rises from 0.0 to 1.0, which is
the range where the consequences of spin contamination are
most severe. Note that DFT methods move quickly from the
pure singlet state to the mixed open-shell singlet configuration.

This example demonstrates three important aspects
of spin contamination in computational inorganic chemistry.
First, in cases where restricted wave functions at optimized
geometries are not stable, nonnegligible geometric changes
may accompany relaxation of the wave function constraints.
For ScH, relaxing the RHF wave function by using the broken
spin-symmetry UHF solution at the RHF optimized geometry
decreases the absolute energy by more than 35 kJ mol−1.
Reoptimizing the geometry using the UHF wave function
leads to an increase in the bond distance of 0.11 Å and a
40 kJ mol−1 decrease in absolute energy. Note, though, that
the spin-contaminated UHF minimum geometry does not
differ too much from the geometry on the spin-projected MP2
surface. As mentioned in the literature, spin contamination
is a marker of energy errors, with highly contaminated
wave functions yielding energy errors on the order of
40–50 kJ mol−1; however, the effect of spin contamination
on geometry is much less predictable.36 Second, it is common
for more than one spin contaminant to affect the quality of
HF wave functions. While most systems display a small, if
not negligible, degree of contamination from s + 1 and higher
spin states, it is not atypical for transition metal systems
to display significant contamination by s + 2 and possibly
higher spin states. In these cases, the most common and
computationally economic choice of annihilating only the
s + 1 contaminant may yield worse results than using a spin-
contaminated solution. Third, it was seen that DFT models
contend better with spin contamination than HF. This is not
to say that DFT determinants are free of spin contamination,
but even for the extreme case of ScH, BLYP and B3LYP
functionals include contamination only from s + 1 states.
Moreover, the range of the potential energy surface affected
by spin contamination—the region where 〈S2〉 rises from 0.0
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to 1.0—is much smaller than in the HF case. We have also seen
that the recently developed double-hybrid density functionals
perform quite well for ScH bond dissociation, although future
studies are certainly necessary to fully understand the scope
of applicability of these new functionals.

7 CONCLUSION

In summary, spin contamination occurs when a
system’s wave function or density incorporates character
from higher spin states thereby resulting in 〈S2〉 values larger
than s(s + 1). The formulas necessary for determining these
spin operator expectation values were developed for use with
generalized, unrestricted, and restricted spin orbitals. Although
these formulas are exact for wave functions, the corresponding
equations for modern exchange-correlation functionals are an
area ripe for future efforts. Current projection techniques
were reviewed for a variety of wave function and density
functional methods. As the ScH example clearly illustrates,
spin contamination is an issue that all chemists performing
computational experiments must be mindful of, particularly
when metals are present in the system of interest.
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10 ABBREVIATIONS AND ACRONYMS

AP = approximate projection; AO = atomic orbital;
au = atomic units; BD = Brueckner doubles; CDFT-CI =
constrained density functional theory with configura-
tion interaction; CI = configuration interaction; CID =
configuration interaction with doubles; CISD = configuration
interaction with singles and doubles; CSF = configuration
state function; DFT = density functional theory; DODS =
different orbitals for different spins; Eh = Hartree energy
units; EHF = extended Hartree–Fock; G = generalized;
GHF = generalized Hartree–Fock; GSO = generalized spin
orbital; HF = Hartree–Fock; MCSCF = multiconfiguration
self-consistent field; MBPTn = many-body perturbation the-
ory; MO = molecular orbital; MPn = Møller–Plesset pertur-
bation theory; MR = multireference; MRCI = multireference
configuration interaction; MR-DFT = multireference density
functional theory; OPT1 = open-shell perturbation theory
method 1; OPT2 = open-shell perturbation theory method
2; PUHF = projected unrestricted Hartree–Fock; PMPn =
projected Møller–Plesset perturbation theory; QCI =
quadratic configuration interaction; QCISD = quadratic con-
figuration interaction with singles and doubles; R = restricted;
RHF = restricted Hartree–Fock; RMPn = restricted Møller–
Plesset perturbation theory; RO = restricted open-shell;
ROHF-MBPTn = restricted open-shell Hartree–Fock many-
body perturbation theory; ROMPn = restricted open-shell
Møller–Plesset perturbation theory; SCF = self- consistent
field; U = unrestricted; UHF = unrestricted Hartree–Fock;
UMPn = unrestricted Møller–Plesset perturbation theory;
ZAPTn = Z-averaged perturbation theory.
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