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Abstract

[he complete spin-orbital formulation of the analytical first and second derivatives of the Har-
wsec Fock (HF) encrgy as well as the analytical first derivative of the correlated second-crder
\iyller- Plesset perturbation energy (MP2) is presented. Some features of an efficient computational
~cthod to calculate these derivatives are described. The methods are applied to calculate the har-
monic vibrational frequencies of ethylene, and the results are compared with experiment.

1. Introduction

A wide range of problems in quantum chemistry involves cvaluation of de-
rivatives of the electronic energy with respect to external parameters. Well-
xnown examples are calculation of electric moments and polarizabilities (cnergy
derivatives with respect to applied electric fields) and calculation of magnetic
propertics such as diamagnetic susceptibilitics and nuclear magnetic resonance
chemical shifts (energy derivatives with respect to external and nuclear magnetic
ficlds). In a-ddition, differentiation of the energy with respect to nuclear coor-
dinates corresponds to calculation of forces and force constants determining
nuclcar motion. These nuclear displacement encrgy derivatives are important
in the exploration of potential surfaces to find stationary points such as equi-
fibrium structures and transition structures. :

There are two general approaches to calculation of energy derivatives, The
first is the finite-difference method in which caleulation of the encrgy & is re-
peated with a small but finite change Ax in a parameter x and the derivative
obtained aprvoximately by

6(x) [6(x + Ax) — 6(x)].

ox Ax
The second is the analytic method in which formal differentiation of &(x) is first
carried out and the resulting expression then computed directly. The finite-
difference method has the advantage that the evaluation of the enegy &(x) is

usually much simpler than that of the first or second derivatives 86/0x or
06 /0xdy. On the other hand, it has the disadvantage that the step size Ax must
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be small to avoid contaminating cffects of higher derivatives, yet not so small
that computational roundoff causes significant errors. If there are many vari-
ables, the number of individual computations becomes large in the finite-dif-
ference approach, particularly if second derivatives are needed. Clearly, the
analytical differentiation method is preferable if the mathematics is tractable
and efficient algorithms can be constructed.

Most of the work on first and sccond energy derivatives and associated
properiics has been carried bul ih conjunction with Hartree-Fock or single-
determinant wavefunctions. The general theory of energy derivatives within this
framcwork has been outlined by several authors. Bratoz [1], Bishop and Randig
(2], and Moccia [3] have given analytical expressions for the first and sccond
derivatives of the SCF energy for closed shells. Gerratt and Mills {4] have out-
lined a perturbed Hartree~Fock theory to calculate one-electron second-order
propertics and have calculated force constants as the analytical derivative of
the Hellmann-Feynman force. Thomsen and Swanstrom [7] have analytically
calculated the full second derivative of the cnergy for HyO with a Gaussian basis
set. However, major applications to the computation of force constants have been
with the force method of Pulay {5, 6]. In the force method the forces are obtained
analytically and these are then differentiated numerically to obtain the force
constants. This method has been uscd to calculate the force fields of a varicty
of molecules by Pulay and Meyer [8-10] and by Schlegel, Wolfe, and Bernardi
{11-13]. Ishida et al. {14] have used analytical cnergy derivatives to study re-
action paths.

Only a limited amount of work on encrgy derivatives has been carried out with
wavefunctions beyond the Hartree-Fock level [15-19]. The finite-difference
approach has been uscd in these studies to calculate force constants for small
molecules.

The main objectives of this article are (1) to give a general spin-orbital for-
mulation of the analytical first and second derivatives of the HF energy, as well
as the first derivative of the correlated second-order Mdller-Plesset perturbation
energy {20]; (2) to describe an efficient computational procedure for the eval-
uation of these derivatives in studying molecular force fields.

2. General Theory

Hartree-Fock theory is based on an n-clectron single-determinant wave-
function,

Yae = ()72 x1x2 0+« Xals @

where X1,X2, . . ., X are a sct of orthonormal spin orbitals (one-clectron func-
tions of Cartesian and spin coordinates). The corresponding expectation value
of the nonrelativistic electronic Hamiltonian has the form

n \noon
Eur = Zl H;; +_2— Zl Z:l ('Jl I’J) + Ve (3)
i= i=| j=

The notation for matrix clements is

R RN

Hpy = S X H®™Xq dr, 4)

= < (D)x;(2)(1/r12)
(gl lrs) = I x3(1)x5(2) /”i I (Dx:(2) = XD drrdra )

where Heo™ is the onc-electron core Hamiltf)nian {kinetic cnergy ph;z F;tf:t(l:;
energy in the clectrostatic field of the nuclei). The two—clecgon ?Pe atorin )
is the interelectronic repulsion energy..Note that (pg} |rs).1b antisy et
both the pairs pg and rs. Finally Vpuc is the nu::\car rcpu.lsmx} c}nt‘:rg‘\., \orb;m;;
indcpendcint of the clectronic coordinates. Orthonormality of the spin :

implics
§ XpXq dt = bpg- (6)

in practical computations, the spin orbitals are written as linear combinations

of a set of basis functions w,,
Xp = L Cup@ur N
m

full one-electron space (Cartesian p_lus
will be products of a st of Cartcsian
acted Gaussian functions)
functions, there will be 2N

Note that w,, are basis functions in the
spin coordinates). Usually, the set of w,
coordinate basis functions ¢, ¥2, - - - (usually contr
and the spin functions a and B3. If there are N ¢-type e s in (1)
spin-orbital basis functions wy, VizZ., €10, e8¢0, .- "pNﬂ T t Congtmin,
therefore, has 2V terms for the most general case. No_rmal Prautlcc isto ’. it
hat they are pure ¢ or purc 3, in whlch case gnly N of the
d be nonzero. With no further restrictions, this would .1cad
:), sometimes described

the spin orvitals sot

2N terms in (7) woul e o
to the spin-unrestricted Hartree-fock unctl '
as diffc?clnt orbitals for different spin (poDS). We shall develop the theory

generally for the full expansion (7}, particular constraints on the spin orbitals
ing imposed at a later stage. ‘ ) ‘
bellnfgt}ie Easis expansion (7) is substituted in the Hartree-Fock energy expression

(3), we obtain

Y ! + Voue (3)
Epr = % PuuH;w + 2 Z P“,,P)\a(}.l)\HVd) nue

urvie

where P, is the spin-orbital density matrix defined by

n . 9
Puv = Z Cyicvi- ( )
=
ipts 1 ¢ in this section
Note that the sums over Greek subscripts in (8) and elsuwhlcre mtt‘hox; :czN "
: pi i asis functions. Thus Py, arc ciemenis ot «
are over tue 2V spin-orbital basis ' e e ocked
i i - -type orbitals, this matrix lock
SN matrix. With separate a- and 8 ' ‘
wli\tl'n N X N « and 8 parts and no aff interaction elements. O.r.thonormahzatxon
of the spin orbitals must be retained and requires the condition

(10)

¥ cupSulug = Opq-
uv



The matrix clements introduced in (8) and (10) are the overlap integrals,

Sp=J wiw, dr, (11
the core Hamiltonian integrals,

Hyy = [ wyHeorey, dr, (12)
and the two-electron integrals,

WAl [va) = ff wp(Dwi(2)(1/1,2)
X [w,(Nwe(2) = wo(1w,(2)] d7y drs. (13)

All of the integrals (1 1), (12), and (13) have to be evaluated given the nature
and location of the basis functions Wy
Minimization of the Hartree-Fock energy (8) with respect to the linear

coefficients c,, [subject to the orthonormality conditions (10)] leads to the
Fock-type equations

2 (F, - €pSuy) Cyp = 0, (14)
Here F,, is the 2N X 2N Fock matrix

Fo,=H,+ AZP)\,([I)\”UU), (15)

and ¢, is the one-electron energy of the pth spin orbital. These are the Har-
trec-Fock self-consistent equations. For UnF theory they separate into two sets
of coupled cquations for the o and Bspin orbitals. If the Cartesian parts of these
are identical in pairs, both sets of cquations reduce to the closed-shell algebraic
equations originally derived by Roothaan [21].

Equations (14) will be soluble for 2N possible values of the one-electron energy
€p. only n of which will correspond to occupied molecular spin orbitals. It is
convenient to use subscripts Ljk (=12,...,n) for occupied spin orbitals and
abe,... (=n+1,... , 2N) for the remainder (usually described ‘as virtual spin
orbitals). We shall continue to use pq.r, . . . for the entire set of 2V spin or-
bitals.

The virtual spin orbitals Xa(@=n+1,...,2N)are usedin Mgller-Plesset
perturbation theory [20] to develop expressions for the correlation energy
(measuring the error of the Hartrec-Fock energy). The simplest significant level
is second-order theory, which leads to a total energy

1 occ virt . aby—1
EMp2=6ur—=3Y 3 [(if]lab)|2(A%%)-1, (16)
475 e
where
A‘,-‘f’=e,,+eb—e,~—ej. an

Once the Hartree-Fock cquations (14) arc solved for the cocfficients Cyp, the
matrix clements (if||ab) are casily obtained and (16) then gives an casily
computable cxpression for the total encrgy including correlation.
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The gener:! problem with which we are concerned in this scctlorl]1 is f;)r;d::c%
changes that take place in the Hartree-Fock encrgy Enr a.nd Llhc M¢t cér: ;{
encrgy &mpz when small changes take place in the matrix edfj['lt]'en if é‘,f{cm“;i
and (uA]|va). As noted in Sec. 1, these changes may reflect addi 1lc])n of external
perturbations or movement of the nuclei. The general 'thcory is the same o
cascs. We proceed by treating the change in the matrix clements as al perdu.q-
bation represented by a number of parameters x|, X2y X35 oo (nuc c[ar lis
placemcents cr magnitudes of external ficids). The ObjcCtIVC.IS' then Eva u:_xtu-)rj
of the cnergy derivatives 96 /0x; and 026 /0x;0x; at the origin x; = x; = -

) %ircct differentiation of the Hartree-Fock energy (8) with respect to the
parameter x gives

d
d6ur _ OH,, ) +iy p Pro (—) (uAl|vo)
ox —EP‘”( ox 2;;%0 g ox,
Vnue aPu») . (ﬂ’.u) Pro(iM]|vo).  (18)
+ ox + E ( ox K M:L::a ox

The first three parts on the right-hand side of (18) directly involve the derivatives

* of the integrals H,,, (uA]|va), and the nuclear repulsion energy Vpye. The re-

maining terms involve the derivative of the density m:atrix and hence ?f tlt:c
spin-orbital cocfficients c,;. However, explicit evaluation of 0P,,/0x ca:l C
Avoidcd at this point if we note that the final two parts of (18) can be written

; i [0 iups
r Z' (%ﬂ,‘ Hyci+ 2 X (—a—;—) Prs(uA]|vo)c,; + complex conjugate
ur i=1 Xy uvio i=1
=2 i (%) F,,cvi + complex conjugate
uy i=1 ox
=3 i (%) €:5,,¢,; + complex conjugate, (19)
ury i=1 ox

using (14) and (15). Furthermore, differcntiation of the orthonormality equation
(10) leads to \with p = g = i)

. Sy g [OCuli L
Z [(‘a’agﬂ) Spucvi + C;[ (—_a-xL-) Cyi + cyiSFu ( ax )] - O (20)
py X

Equation (20) may be used to eliminate the coefficient derivatives in (19) and
hence obtain the final formula

Beeo s, (L) 1] 5 p, (2] oo

ax uv bx 2 yu)\a
OV hue _ 9§}-‘_") (21)
-z )

i i ; rix
where W, is an “cnergy-weighted density matrix,

- 22)
W= acpcur (

i=}
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We may obtain second derivatives of the Hartree-Fock cnergy by differen-
tiating (21) with respect to a sccond variable p. This leads to

28 OZHH,, 2
HF:ZP;W( B )+_I'ZP;WP)\0( 0 )(#A”VJ)
Ox0y  w x 0y 2 uore OxQy
2y 2
+ 0%V hue - Z W‘w (a S#v) + Z (aP#D) (aH#v)
0x0y v ox0y av \ Oy ox
_ (P, o] oW, \ [0S,
+ 5 (B oy [ 2] gl - 5 (2 (28], )
urio oy 0x uy oy ox

The first four parts of (21) involve the second derivatives of the integrals and
Vnue: They can be handled in a manner strictly analogous to (21). The remaining
terms involve the first derivatives of the density matrices P, and W,,,; compu-
tation of these can no longer be avoided.

Differentiation of the Hartree-Fock wavefunction with respect to a variable
y is accomplished by coupled perturbed Hartree-Fock theory (CPHF) [4, 22,
23). Here we give the general spin-orbital formulation of the CPHF theory,
closcly following the presentation of the theory for closed-shell systems by
Gerratt and Mills {4]. The problem is to find solutions of the Fock-type cquations
(14) for values of y in the vicinity of a value yq for which solutions arc already
available. Without loss of generality, we may take yg = 0 and the problem is to
find the derivative of the wavefunction with respect to y at y = 0. In cquivalent
perturbation terms, we have to {ind the first-order perturbation of the wave-
function for small y.

Let us write the Fock cquations (14) for general y in the matrix form,

F)e,(0) = ,0)S (e, ). (24)

where ¢, () is a column vector of coefficients for the spin orbital x,. Alterna-
tively, if C(y) is the full matrix with ¢,(y) as its columns, thesc equations can
be written

FO)CW) =SOUCOEW), (25)

where E(y) is the diagonal matrix of one-elcctron energies €,(y). We also require
that the orthonormality condition between spin orbitals is valid for all values
of y, so that

C'SK)CH) =1, (26)

1 being the unit mnaltrix.
The theory is simplified if the spin-orbital cocfficients ¢, (y) arc transformed
to a basis corresponding lo the unperturbed spin orbitals. Thus we writc

o0 = 3 gy (N Z 0,
q

Xq () = L g (0w, (). (27
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Xq(¥) is the ferm the spin orbital x4 would take if the basis functions changed
from w4(0) to w,(y) but the ¢ cocfficients remained unaltered. Since the basis-sct
cxpansion of the perturbed orbital is

Xp()’) =2 Cup()))wu()’)r (28)

it follows from (27) and (28) that

) =3 60 (0)igp () (29)
q
or

Cy) = COU(). (30)

Clearly U(0) is the unit matrix and our problem is to find U(yp) for small y.
Substituting (30) in (25) and multiplying on the left by the Hermitian con-
jugate Ct(0). we obtain

CHOF()C(O)U() = C1(0)S()C(OUWEQ). (1)

-This may be further simplified by defining (2N X 2V) Fock and overlap matrices

transformed vy C(0),
FO) = CHO)F()C(0),

) = CHO)SY)C(0). (32)

Then the Fock equations (31) become '
FUQ) = $GIVGEDR), (33)

and the orthonormality condition (26) becomes
Utp)$»ty) = 1. (34)

&(0) is the unit matrix since the unperturbed spin orbitals are orthonormal. We
have already soted that U(0) is the unit matrix. It follows from (33) that F(0)
is identical witih E(0) and is a 2V X 2N diagonal matrix with diagonal clements
cqual to the unperturbed onc-electron energies €,(0).

We now have to solve the basic equations (33) and (34) for small y. This is
done by expanding the various matrices in powers of y and adopting a nota-
tion

F() = E0) +yFO + 0p?).
S =14+ySM + 0,
Uy) =1+ yuU + 0(y?),
E(y) = E(0) + yED + 0(y?). (35)

Note that E® must be diagonal since E(y) is diagonal for all values of y. Sub-
stituting (35) into (33) and (34) and cquating first-order terms in p, we ob-
ain
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FO + EQ)UD = $ME(0) + UME(0) + EW), (36)
UMt + UM 4+ £ = 0, (37)

Equations (36) and (37) now have to be solved to find the first-order changes
U and EM,

At this point, it is convenient to revert to a subscript notation. Diagonal clc-
ments of (37) give
ul) +ull) + £l =0. (38)
We may choose u},‘,,) to be real, since multiplication of x,, by an arbitrary phase
factor is insignificant. Hence,
upy = =, S5, (39)
Diagonal elements of (36) give
€)= F0) — $We,(0). (40)
Off-diagonal elements of (36) lead to
SW — 8Me (0
ul) = — A —— A=k ( ). (41)
€,(0) — €4(0)

Equations (39)-(41) give the required first-order quantities U and E(M) in
terms of the [irst-order changes F(), £ of the Fock and overlap matrices.
However, this is not yet a complete solution since F will itself depend on
v, '

The overlap perturbation expression §(1) can be handled easily since [from

(32))

Stp = L cug(0)S ) c,p(0), (42)
v
where S{) is the first-order contribution to the original overlap matrix Sy,
05,
SL = ( b ) : (43)
oy jy=0

The first-order Fock matrix contribution may be written
1) = q/(1) 1 U
gSIP) - 7"(5111 + Qg,}, (44)

where 7)) is the one-electron part,

Hep = L cug(0)Hcyp(0). (45)
uv
The two-electron part 4 is the first-order term in the expansion of
. n 2N .
gqp()’) = Z Z u;i(,V)u:i(,V)(qu |P5)}; (46)

Lere (gr||ps)) is written for the transformed integral,

HARTREE-FOCK AND M(,DLLERJ’LHSSET THEOQOKILLES &2
(griios)t= T cuq(0)c3,(0)cup(0)cas(0)(ur||va),, (47)
uvia

which depends on y only through the original two-electron integrals. Al.l three
factors on the right of (46) give first-order contributions on expansion, s0O

that

W

W = zziv (W8 (gr| 1p) + « gt [p)]

o)
. o (0)Px.(0) | — kua) . (48)
R OURNCL AN I
The sum over r in (48) is conveniently separated into an occupie.d part(r=j=
1,...,n)andavirtualpart r=a=n+1,... ,2N). The occu;?xed part can be
simplified using (37) , so that, substituting back in (44), the first-order Fock
matrix expression becomes

7=+ 5% {— £l 1) + T 5 (4" (aal o) + el o)

]

+ 3 cpg(0)cip(0)Prg(0) 3/.L)\Hua }v:o}' (49)

uvho [a})

This involves the occupied-virtual block %!, which again depends on F)
through (41). Substituting (49) into (41) and collecting terms we get

[ — <Muld =00+ % % (uD*(ab||ij) + ub (aj]ib)],  (50)
J
where

0L = 74 = $ &(0) = T Skl |ik)

0
. (0)Prs(0) | (uAl||vo . (51
+ “}_;fg Cua(o)cw(o) )\v( ) [Oy (I'L H )]y=0 ( )
The set of equations (50) can be used to solve for u'V by some iterative process.
Once these are known, the whole matrix F$) can be obtained directly from (49),
since the right-hand side is then known. o _

To use the solutions of (49) in the second-order derivative expressxon.(23),
we need dP,,/dy and OW,,/0y. These can be obtained by transformanon‘of
the corresponding matrices in the spin-orbital basis. Thus the electron density
pis

2 2A\' Ay A B
p0) = £ X Ox0) = L )i ke (52)

where
Pr() = T un (i (). (53)
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Expansion of (51) to first order in y gives
1 — -
P = uf)" + ufp = ~ g,

P’(‘}) = u(l.)

(1) —
Pab) = 0. (54)
The required P, derivative matrix is then
or 2N
—4 =5 ().
( oy )y=0 rzs“ P’S C,,,(O)c,s(()). (55)

In a similar way, the energy-weighted density matrix is

n
Wr) = 2 60Ut (s (). (56)
Expansion, together with (40) and (41), gives

WP = F( ~ [6:(0) + (0],
WD = (0)uf)

WY = o, -
Then
oW 2N
— =X qp(D) .
( ay )y=0 rz‘; C“,)”_ C“’(O)CU.\‘(O)' (58)

This completes evaluation of the second-derivative expression (23).

We now turn to the first derivative of the second-order Mgller-Plesset energy
(16). This requires derivatives of the transformed integrals (ij] |ab) as well as
those of the Fock energies ¢,(i/| [ab) to be written

2N
(fllab) = 3 upuyuraug (pql|rs)t, (59)
pqrs

where (pq| |rs)} is given by (47). Differentiation of (pql | rs)* gives a contribution
to (0/0x)(ij| |ab), which is

2 3i(0)e;;(0)cra(0)ces(0) (a—ax) (ur||Aa). (60)

2%

th(':[‘(,ntlﬂtlf)l? of the u ar'ld € quantitics may be carried out in the same way as
previously, giving results in terms of the first-order matrices $(0 and F()
Fu]l l b . d . - . 3 . qp . qp'
algebraic ctails will not be given. The final result is conveniently ex-
pressed in terms of the first-order Méller-Plessct wavefunction cocfficients

aif = =(ij||ab)/ A%, (61)

I'hen the derivative of the second-order correlation energy 6@ is
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26
=\ $ abyab
- IA; ’
ax % HZ[; a '/ J (62)
1 o
X =~ 5 ci(0)c,;j(0)caa(0)cs5(0) (—‘) uvl|Ao)
2 2., ox

+§{wuamwy—§a%ﬁmv~exmsw1—%wnwws&1
+ {(le Jab)ul} + %“7;‘( [FG) = e (0)$] ~ % (i) IG(‘)A‘}J-)}-

This can be calculated from a knowledge of the first-order matrices 8¢ and
FM (occupiced, occupied and virtual, virtual blocks) and the first-order coefTi-
cients U(D (occupied, virtual block).

3. Computational Procedures

Computation of the derivatives of &g and &pmp; uses much common infor-
mation. In the GAUSSIAN 78 program, this is accomplished in the following
principal steps:

“Step 1. Evaluation of the integrals S,,, H,,, and (ur||Ao) by standard
techniques [24-28]. The evaluation of the one-electron parts (S,, and H,,)
involves O(V2) operations, while the two-clectron part (uv||Ae) requires O(NV?)
steps. The entire matrices containing H,, and S, are stored on the disk. Only
the nonzero two clectron integrals are saved. .

Step 2. Obtzin the SCF cocfficients ¢, and Fock encergies ¢, by conventional
mcthods.

Step 3. Transformation of integrals to the molecular basis. For the calculation
of §mp2 and the second derivatives of §yr, only the set of transformed integrals
with a maximuni of two virtual spin orbitals [(ij||ab) and (ia] |j?)] is required.
However, differentiation of &mpa requires the larger set ({a] {f6c) with three
virtual spin orbitals. The Mgller-Plesset energy and wavefunction cocfficients
aj-’j” are availalle at this stage. This step involves O(n/N4) arithmetic opcra-
tions.

Step 4. Evaluation and storage of the first derivatives of the integrals S,
H,,, and (uv||Ao). See step 7 for more details on the integral cvaluation tech-
niques. This step requircs O(N*) arithmetic operations.

Step 5. Use of the integral derivatives to sct up and solve the simultancous
linear equations (50) for the wavefunction derivative cocfficient u$?. This
cquation can b2 written in gencral matrix form as

(1-A)B—-By=0. (63)

Herc B is the vector of the unknown u$} which we are trying to determine. Bg
is the vector with n X (2N — n) clements given by
(1)

ol
Bowi = 5 o) (64)
¢, Cy
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Here, Bo(aiy refers to the aith element of Bo where @ and 7 are taken togcther

as a single suffix. A is the square matrix of the same dimension gi
ion giv
real case) given by (for the

_ (ab]i)) + (aj][ib)
(9 — O (65)

Alai.bj)

Note that A is not a symmetric matrix.
' The vcctqr By is first evaluated by processing the stored one- and two-clectron
ntegral derivatives.

Equation (63) now gives

B=3 A"Bo. j

n§0 0 (66)

Dlrcpt use of (66) to get the unknown B is usually a slowly convergent process
and involves a large number of iterations. [An iteration consists of getting onc

more term in the scrics in (66).] This convergence can be improved considerably
by the following process.

Define orthogonal vectors B, By,...,B; by
B.+1 = AB, — (projection of AB, onB,, B,_,..., By),
ie.,
n (B;]A|B,)
B = AB, — Z (_/_L_J_ﬂ B,.
8 S~ (B/|B) ' (67)
Put

B= a0B0+a1B1 + o4 B, (68)

The coefficients v, . . ., & may be obtained by requiring that the projection
o'fthe left-hand side of (63) on By, By, ..., B, vanish. Typically, about four to
slx())( (t)c):rms are sufficient to give sufficient convergence (RMS deviation of

The number of arithmetic operations involved in this step is O(n2N?2) for each
nuqlcar variable. Note that although the above equations are given for just onc
variable, it is easy to handle all of them together.

Step 6. Use of the first derivative of the wavefunction to evaluate 062 [ox
{Eq. (62)] and the final three parts of the second-derivative expression (23). In
the evaluation of 96()/dx, all the terms that are independent of the variable
x are summed first in intermediate arrays. These are then contracted with the

necessary first-order terms. For example, the term involving u{} is evaluated
as follows: ‘

Yo = 3 aff(ij| |ak). (69)

ija

Contribution 1o 6P [dx = ¥4y Yipull): Note that ¥y, is the same for all -

lhp variables. The number of arithmetic operations involved in the evaluation
of 6P [ox is O(uN?).

R s
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The final thres parts of the second-derivative expression can be calculated
from the density matrix derivatives and the written-out integral derivatives. Note
that a number of variables can be handled at the same time in one pass through
the integral derivative list. The number of arithmetic operations involved in this
step is O(N4).

These integrals, the first derivatives, and those two-electron integrals (uv||Aa)
involving at lcast one d function are evaluated by the method of Rys polynomials
[26]. In this mcihod, an integral over the primitive Gaussian functions is written
as a sum whose terms are products of the Rys polynomial and a weighting factor.
The sum goes over a discrete range, namely, the zeros of the polynomial. The
polynomial can be factored into Cartesian x, y, and z components which involve
integration in the x, y, and z directions, respectively.

In practice, basis functions sharing a common center and exponents are
grouped together into a “shell.” The basis functions are located on the nuclear
centers, and throughout the differentiation process remain rigidly attached to
these centers, The program structure is such that the outermost loops go over
shells. The next level of loops goes over the primitive Gausslans that make up
cach shell, At this level, the necessary geometric and exponent information is
combined to determine the roots and weights of the Rys polynomial. For each
root, the necessary x, y, and z components of the polynomial are determined,
The techniques by which the roots, weights, and components are cvaluated are
described elsewhere [28]. The next level involves the combination of the weights
and the compoaents (o make cach primitive integral. The final integrals over
basis functions <, are built up by looping over the Gaussian contractions. These
are written out to the disk (integrals and first dcrivatives) or used directly in the
computer memory (second derivatives).

The program structure outlined above can be used to calculate the integrals
and their first aud second derivatives. In the case of the integral derivatives, the
derivatives of the components are necessary. These are readily obtained since
they are simply the components that would be required in evaluating integrals
containing fun<tions of the next higher angular momentum. For the basic in-
tegrals (uv||Ao) the computer time is roughly divided between evaluation of
the components and combining then with the weights to get the primitive inte-
grals. The evaluation of the first and second derivatives of the integrals is
dominated by the combination step.

4. IMNustrative Calculations

The derivative programs at the HF and the MP2 level have been used to cal-
culate the harmonic vibrational frequencies of ethylene using the 6-31G* basis
[30] (split valence plus polarization functicns on the heavy atoms). At both levels,
the respective cquilibrium geometry was used. Use of some other geometry (c.g.,
the experimental geometry) may lead to ambiguities in the harmonic {requencies.
As Pulay [6] comments, *Cartestuan and internal force constants may lead to
different harronic vibrational frequencics il they are not calculated at the
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theoretical cquilibrium geometry.” At the HF level, a single calculation of the
encrgy second derivatives at the equilibrium geometry gives all the frequencics,
However, at the MP2 level, a series of calculations involving the first derivatives
of 6 mp2 was performed to build the force constant matrix and hence obtain the
frequencies. These are listed in Table I along with the experimental frequencics
[29]. Anharmonicity corrections to the experimental frequencies have been made
by Duncan et al. [29] to get estimated harmonic frequencies. These aid in direct
comparison with thcory and are listed in Tablc 1.

Itis secn immediately that HF theory overestimates the harmonic frequencics
by 55-180 cm™!. Inclusion of corrclation, even at the simple MP2 level, improves
the agreement considerably. It accounts for about 70% of the difference between
the HF theory and experiment yielding frequencies that differ from experiment
by only 10-90 cm~!. Most of the frequencies are still overestimated. Unforty-
nately, there is a lot of uncertainty in the anharmonicity corrections. To avoid
this problem, Pulay and Meyer [10] have corrected their calculated HF force
constants (10% for diagonal stretching force constants and 20% for diagonal
bending force constants) and get good agreement with experiment. However,
this does not appear to be a satisfactory solution to this problem. The remaining
difference between theory and experiment may be due to this uncertainty in the
anharmonicity corrcctions or due to the deficiency in the basis set or the
higher-order effects of ¢lectron correlation.

TABLE 1. Vibrational frequencies for cthylene (cm™1),

Syumetry of K . b Estimated
Vibration HP/6~31G MP2/6-31G £xperiment © Harmonic Pléequenclu

From Expt.
hZu 897.0 851.1 826.0 842.9
28 1099.4 942.6 939.6 958.8
blu 1095.0 991.8 949.3 968.7
a, 1154.9 1085.5 1023 1043.9
b'lg 1352.5 1265.9 1220 1244.9
.8 1496.9 1415.7 1342.2 1369.6
h]u 1610.2 1520.8 1443.5 . 1473.0
.S 1856.2 1721.1 1630 1654.9
b3u 3320.9 3213.3 3021 3146.¢
lg 3344.2 3230.9 3026.4 3152.5
1g 3394.6 3300.4 3102.5 32319
qu 3420.7 3323.3 3104.9 3234.3

3 Al the HF/6-31G* equilibrium geometry (rcc = 1.317 A, rey = 1.076 A, HCH
116.4°).

P At the MP2/6-31G* cquilibrium geometry (rcc = 1.335 &, ren = 1.085 A, <HCH
116.5°).

¢ The experimental frequencies are from ref. 29.

4 Anharmonicity corrections are made on the observed. Experimental frequencies Lo get these
estimated values |29].

S o

HARTREE- FOCK AND MQPLLER-PLESSET THEORIES 239

TABLE H.  Exceution timesd for the HIF derivative programs {min) for cthylene using 6-31G*
basis (38 basis functions).

HF + First and

Program HF HF +
Second Derivative

First Derivative

Integral evaluation 10 10 10
a
SCF 3 3 5
Evaluation of fategral e b,
first derfvatives 7 16
Two-clectron {integral
transformarion 8
LPUF + evaluation of density
matrix derivative contribution
to second derivatives . 19
Evaluation of integral e
second derivatives 31
Total 13 20 89

& The convergznce on the density matrix in the SCF is tightened to get more significant figures
in the MO cocfficients. ‘

b The integral derivatives are written out,

¢ Information about the symmetry of the molecule was used to aid in thesc parts of the calcula-

tion,
4 All the calculations were performed on a VAX-11/780 computer at Carncgic-Mellon University.

5. Comparison of the Execution Times for the Derivative Programs

In order to test the applicability of these derivative techniques, the execution
times for the various steps outlined in Sec. 3 are listed in Tables 11 and Iil. Table
I1 gives the execution times for the HF first- and second-derivative steps. Table
11 gives the corresponding execution times for the MP2 derivative programs.

TABLE TIT.  Exccution times® for the MP2 derivative programs (min) for cthylene using 6-
31G* basis (38 basis functions).

Progrem MP, MP, + First Derivative
Integral evaluation 10 10
SCF 5 5
Two-electron integral transformae~ 2
tion 5 15
Evaluation and writing out the
intesxral first derivatives 16
CPHF + calculation of MP2 L
derivative 3
Total 20 77

: : : . . o P 4 o N
a More transformed integrals are calculated in this case as compared to a simple MP2 caleula

tion,
® All the ealenlations were performed on o VAX-11/780 computer at Carnegie-Mclion University.
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It ts seen from Table [1 that the calculation of & yr and its first derivatives
takes approximatcly twice the computer time taken to calculate the energy alone.
Pulay [31] and Ishida et al. [14] report that their gradient programs take about
three to four times as long as the SCF programs. This speed-up 1s attributable
to the increased efficiency of the Rys method relative to older integral evaluation
techniques.

It is also scen that a full second-derivative calculation (which is sufficient to
determine the harmonic vibrational frequencies) takes only four to five times
as much computer time as a gradicnt calculation. Pulay [5, 6] has mentioned
that the calculation of the analytical sccond derivatives may not be practical
and that the calculation of the force constants by the finite-difference method
on the gradicnts may be cheaper. However, the above results show that the
evaluation of the harmonic force constants from the analytical second derivatives
of the energy is an efficient and practical method. This is especially true since
the number of gradient points required in the finite-difference method (for the
general case) is O(3m), where m is the number of atoms. Note also that the
integral gradient times are strongly affected by the degree of contraction of the
atomic orbital basis. New basis sets are currently under development that use
fewer primitive Gaussians [32] and these give considerable timing improve-
ments.

Analytical evaluation of the first derivatives of &mp2 is also efficient. The
evaluation of &npz along with its derivatives takes about four times as much
computer time as the calculation of the energy alone. This should be very usefu!
for the exploration of potential surfaces at this level. It also gives improved ac-
curacy in the calculation of force fields and harmonic frequencies. Extension
of these techniques to higher perturbation orders of the correlation energy as
well as applications to configuration interaction are currently in progress.
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