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Abstract 

fhc complete spin-orbital formulation of the analytical first and second derivatives of the Har­
~tcc Fock (HF) energy as well as the analytical first derivative of the correlated second-order 
\!JIIcr Plcsset perturbation energy (MP2) is presented. Some features of an efficient computational 
,,.,,h"d to calculate these derivatives are described. The methods are applied to calculate the har­
">onic vibrational frequencies of ethylene, and the results are compared with experiment. 

1. Introduction 

A wide range of problems in quantum chemistry involves evaluation of de­
ril'ativcs of the electronic energy with respect to external parameters. Well­
~nown examples are calculation of electric moments and polarizabilitics (energy 
derivatives with respect to applied electric fields) and calculation of magnetic 
properties such as diamagnetic susceptibilities and nuclear magnetic resonance 
lhcmical shifts (energy derivatives with respect to external and nuclear magnetic 
fields). In a :ldition, differentiation of the energy with respect to nuclear coor­
dinates corresponds to calculation of forces and force constants determining 
nuclear motion. These nuclear displacement energy derivatives are important 
in the exploration of potential surfaces to find stationary points such as equi· 
librium structures and transition structures. 

There are two general approaches to calculation of energy derivatives. The 
first is the finite-difference method in which calculation of the energy Cf is rc­
p,:;ttcd wit:l a small but finite change llx in a parameter x and the derivative 
obtained ap(~.·oximately by 

oCf(x) [Cf(x + llx)- 0(x)] 
~~ llx • 

(1) 

The second is the analytic method in which formal differentiation of 0(x) is first 
~.:.1rricd out and the resulting expression then computed directly. The finite­
difference method has the advantage that the evaluation of the enegy G'(x) is 
usually nn:c.'l simpler than that of the first or second derivatives oCf /ox or 
o~(, I oxoy. On the other hand, it has the disadvantage that the step size tlx must 
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be small to avoid contaminating effects of higher derivatives, yet not so small 
that computational roundoff causes significant errors. If there are many vari­
ables, the number of individual computations becomes large in the finite-dif­
ference approach, particularly if second derivatives are needed. Clearly, the 
analytical differentiation method is preferable if the mathematics is tractable 
and efficient algorithms can be constructed. 

Most of the work on first and second energy derivatives and associated 
propcrtic.s ba~ been carried oullh conjunction with Hartrcc-Fock or single­
determinant wavefunctions. The general theory of energy derivatives within this 
framework has been outlined by several authors. Bratoz [ l], Bishop and Ran dig 
[2], and Moccia (3] have given analytical expressions for the first and second 
derivatives of the SCF energy for closed shells. Gerratt and Mills [ 4] have out­
lined a perturbed Hartree-Fock theory to calculate one-electron second-order 
properties and have calculated force constants as the analytical derivative of 
the Hellmann-Feynman force. Thomsen and Swanstrom [7] have analytically 
calculated the full second derivative of the energy for H20 with a Gaussian basis 
set. However, major applications to the computation of force constants have been 
with the force method of Pulay [5, 6]. In the force method the forces are obtained 
analytically and these are then differentiated numerically to obtain the force 
constants. This method has been used to calculate the force fields of a variety 
of molecules by Pulay and Meyer [8-1 OJ and by Schlegel, Wolfe, and Bernardi 
[ 11-13 J. Ishida et at. [ 14] have used analytical energy derivatives to study re· 
action paths. 

Only a limited amount of work on energy derivatives has been carried out with 
wavefunctions beyond the Hartrce-Fock level [15-19]. The finite-difference 
approach has been used in these studies to calculate force constants for small 
molecules. 

The main objectives of this article are (1) to give a general spin-orbital for­
mulation of the analytical first and second derivatives of the HF energy, as well 
as the first derivative of the correlated second-order M?ller-Plesset perturbation 
energy [20}; (2) to describe an efficient computational procedure for the eval­
uation of these derivatives in studying molecular force fields. 

2. General Theory 

Hartree-Fock theory is based on an n-clcctron single-determinant wave­
function, 

'l'HF = (n!)-1/ 2IXIX2 • • • Xnl. (2) 

where x 1 .x2 •... , Xn arc a set of orthonormal spin orbitals (one-electron func­
tions of Cartesian and spin coordinates). The corresponding expectation value 
of the nonrelativistic electronic Hamiltonian has the form 

11 \ 11 n 
GHF = L H;; +- L L (ijjjij) + Vnuc· 

i=l 2 i=l )=I 

(3) 

The notation for matrix clements is 

l 

' i 
i 
i 
' 

llt\1{ l Kl,l:-rULl\. t\t'<U i'>II{JLLU< I'LI~:">.':>l',l IIII.UhiL> 

(4) H = f x' Hcorcx dT pq p q • 

(pq\ Irs)= ff x~(l)X~(2)(1/r!2) 
X [xrO hs(2) - xsC l hr(2)] dT I d72. (5) 

where Hcorc is the one-electron core Hamiltonian (kinetic energy plus potential 
energy in the electrostatic field of the nuclei). The two-electron operator in (5) 
is the interelectronic repulsion energy. Note that (pq\ \rs) is antisymmetric in 
both the Firs pq and rs. Finally Vnuc is the nuclear rcpul.~ion energy, which is 
indepcndcl'•t of the electronic coordinates. Orthonormality of the spin orbitals 

implies 
(6) f X~Xq dt = ~pq· 

In practical computations, the spin orbitals are written as linear combinations 

of a set of basis functions w~<, 

Xp = L Cl'pWw 
(7) 

I' 

Note that w
11 

are basis functions in the full one-electron space (Cartesian plus 
spin coordinates). Usually, the set of w11 will be products of a set of Cartesian 
coordinat:! basis functions cp h cp 2, ... (usually contracted Gaussian functions) 
and the spin functions o: and {3. If there arc N cp-typc functions, there will be 2N 
spin-orbital basis functions w~"' viz., cp 1 a, cp 1{3, cp2o:., ... , cprv/3. The sum in (7), 
therefore, has 2N terms for the most general case. Normal practice is to constrain 
the spin o,·'uitals so that they arc pure o:. or pure /3, in which case only N of the 
2N terms i11 (7) would be nonzero. With no further restrictions, this would lead 
to the spin-unrestricted Hartrec-Fock function (UHF), sometimes described 
as different orbitals for different spin (DODS). We shall develop the theory 
generally for the full expansion (7), particular constraints on the spin orbitals 

being imposed at a later stage. 
If the bz.sis expansion (7) is substituted in the Hartrec-Fock energy expression 

(3), we obtain 

0 HF = 'E P JJ.•H ~"" + .!. L P 11vPx.,(.uA.11 V11) + V nuc• 

I'• 2 ~'""" 
where P ~-'"is the spin-orbital density matrix defined by 

(S) 

(9) !l 

P ~"" = L C~;Cvi· 
i=l 

Note th:o.t the sums over Greek subscripts in (8) and elsewhere in this section 
arc over t~1e 2N spin-orbital basis functions. Thus P w arc clements of a 2N X 
2N matrix. With separate o:.- and p-type orbitals, this matrix will be blocked 
with N X No:. and p parts and no o:./3 interaction elements. Orthonormalization 
of the spin orbitals must be retained and requires the condition 

L. c~l"-\'~""c,,q = Opq· 
( l 0) 

I''' 



The matrix elements introduced in (8) and (10) arc the overlap integrals, 

S/lV = f W~Wv dr, 
the core Hamiltonian integrals, 

H~'v = J w~Hcorewv dr, 
and the two-electron integrals, 

(,ul.jj11a) = ff w;(l)w~(2)(ljrl2) 
X [wv(l)w .. (2)- w .. (l)wv(2)] dr1 dr2. 

(II) 

(12) 

(13) 

All of the integrals (I I), (I 2), and (I 3) have to be evaluated given the nature 
and location of the basis functions ww 

Minimization of the Hartree-Fock energy (8) with respect to the linear 
coefficients e~'P [subject to the orthonormality conditions (10)] leads to the 
Fock-type equations 

L (F/lV- fpSilv) evp = 0. 
v (14) 

Here F~'v is the 2N X 2N Fock matrix 

Fllv = Hllv + L P>.11 (,ul.jjll<T), 
>.u (I 5) 

and Ep is the one-electron energy of the pth spin orbital. These are the Har­
trce-Fock self-consistent equations. For UHF theory they separate into two sets 
of coupled equations for the a and {3 spin orbitals. If the Cartesian parts of these 
are identical in pairs, both sets of equations reduce to the closed-shell algebraic 
equations originally derived by Roothaan [2I]. 

Equations (I 4) will be soluble for 2N possible values of the one-electron energy 
Ep. only n of which will correspond to occupied molecular spin orbitals. It is 
convenient to use subscripts i,j,k ( = 1 ,2, ... , n) for occupied spin orbitals and 
a,b,e, ... ( = n + I, ... , 2N) for the remainder (usually described ·as virtual spin 
orbitals). We shall continue to use p,q,r, ... for the entire set of 2N spin or­
bitals. 

The virtual spin orbitals Xa (a= n + 1, ... , 2N) are used in M¢ller-Piesset 
perturbation theory [20] to develop expressions for the correlation energy 
(measuring the error of the Hartrce-Fock energy). The simplest significant level 
is second-order theory, which leads to a total energy 

1 occ virt b 
8MP2 = 8HF-- I: I: I Wllab)j2(~ij )-1• (16) 

4 ij ab 

where 

~f/ = fa + Eb - €; - fj. (17) 

Once the flartrcc--Fock equations (14) arc solved for the coefficients Cvp. the 
matrix clements WI lab) are easily obtained and (16) then gives an easily 
computable expression for the total energy including correlation. I 

l 
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The geneLJ problem with which we arc concerned in this section is finding 
changes that take place in the Hartrce-Fock energy eHF and the M~llcr-Picssct 
energy 0 MP2 when small changes take place in the rna trix elements S ""' H ""' 
and (.u'-11 11rr). As noted in Sec. I, these changes may reflect addition of external 
perturbations or movement of the nuclei. The general theory is the same in all 
cases. We proceed by treating the change in the matrix elements as a pertur­
bation represented by a number of parameters x 1, Xz, x 3, ••• (nuclear dis­
placements c: magnitudes of external fields). The objective is then evaluation 
of the energy derivatives ()(;I CJX; and ()20 I CJX;CJXJ at the origin x 1 = Xz = · · • 
= 0. 

Direct differentiation of the Hartree-Fock energy (8) with respect to the 
parameter x gives 

OGHF _ (~) _!_ (~) -L:P!'V + L P!'vP"Au (,ul.llll<T) ox ~'u (Jx 2 ~'v>.u (Jx 

+ (JVnuc + L ((JP/1:") Hllv + L ((Jp/1:") P>.u(.UAI!IIa). (18) 
CJX /lV CJX !'VAIT CJX 

The first three parts on the right-hand side of (I 8) directly involve the derivatives 
of the integrals H~'"' (,ul.ll11rr), and the nuclear repulsion energy Vnuc· There· 
maining terms involve the derivative of the density matrix and hence of the 
spin-orbital coefficients e";. However, explicit evaluation of (JP ~'"I (Jx can be 
avoided at this point if we note that the final two parts of ( 18) can be written 

n (De"l n ((Jc"·) L: I: .::.::P...!I H~'vCvi + I: I: ::.::...J!!. P"Au(.u>-!llla)c,.; +complex conjugate 
~'" i= 1 (Jx J ~'""Au i= 1 (Jx 

n ((Je" ·) = I: I: .=1!:! F""c11i +complex conjugate 
~'" i= 1 (Jx 

n ((Jc" ·) = I: L .=1!:! f;S ~'"e vi+ complex conjugate, 
11-• i=l (Jx 

( 19) 

using (14) and (I 5). Furthermore, differentiation of the orthonormality equation 
(IO) leads to \with p = q = i) 

[(~) • (~) • ((Jc,.;)] - 2 ) L S!'vevi + el'; _ evi + C!';S!'V - 0. ( 0 
~· (Jx ox (Jx 

Equation (20} may be used to eliminate the coefficient derivatives in ( 19) and 
hence obtain the final formula 

o&HF (()H.) 1 ((J) II --=I: r~~.v .:::.:J!:! +- I: P~'vP>.u - (,ul. 11rr) 
OX ~'" CJX 2 !'v>.u CJX 

+ CJVnuc _ L W"" ((JSI'"), (21 ) 
(Jx ~'" (Jx 

where Ww is an "energy-weighted density matrix," 

W = \~ E,·c:.;c,,;. Jlll ~ ,.. 
(22) 

i=! 

,_ 
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We may obtain second derivatives of the Hartree-Fock energy by differen­
tiating (21) with respect to a second variable y. This leads to 

o20HF_ (o2Hil'') _!_ (__Q.:_) 'II - L p "" + L p I'PPA<1 (J,LI\ M) 
OXOY I'" OXOY 2 I'PA<1 OXOY 

+ o2 
Vnuc - L w"" (o 2

S w) + L (oP ll") (oH ll") 
oxoy "" oxoy "" oy ox 

+ L: (!!_e) Pxa (_Q_) (J.LA.IIv<T)- L: (oW/1.") (oSil"). (23) 
"''A<1 oy ox "" oy ox 

The first four parts of (21) involve the second derivatives of the integrals and 
Vnuc· They can be handled in a manner strictly analogous to (21). The remaining 
terms involve the first derivatives of the density matrices p ""and wl'.; compu­
tation of these can no longer be avoided. 

Differentiation of the Hartrcc-Fock wavefunction with respect to a variable 
y is accomplished by coupled perturbed Hartree-Fock theory (CPHF) [4, 22, 
23]. Here we give the general spin-orbital formulation of the CPHF theory, 
closely following the presentation of the theory for closed-shell systems by 
Gerratt and Mills [ 4]. The problem is to find solutions of the Fock-type equations 
( 14) for values of yin the vicinity of a value y 0 for which solutions arc already 
available. Without loss of generality, we may take y 0 = 0 and the problem is to 
find the derivative of the wavcfunction with respect toy aty = 0. In equivalent 
perturbation terms, we have to find the first-order perturbation of the wave­
function for small y. 

Let us write the Fock equations (14) for general yin the matrix form, 

F(y)cp(y) = <'p(y)S(y)cp(y), (24) 

where cp(y) is a column vector of coefficients for the spin orbital Xp· Alterna­
tively, if C(y) is the full matrix with cp(y) as its columns, these equations can 
be written 

F(y)C(y) = S(y)C(y)E(y), (25) 

where E(y) is the diagonal matrix of one-electron energies <'p(y). We also require 
that the orthonormality condition between spin orbitals is valid for all values 
of y, so that 

ct(y)S(y)C(y) = 1, (26) 

1 being the unit matrix. 
The theory is simplified if the spin-orbital coefficients cp(Y) are transformed 

to a basis corresponding to the unperturbed spin orbitals. Thus we write 

2N 
xp(y) = L: Uqp(y)xq(y). 

q 

x,,(y) = L ci"'(O)wl'(y). (27) 
I' 
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Xq(y) is the f-:·rm the spin orbital Xq would take if the basis functions changed 
from w,.(O) to w"(y) but the c coefficients remained unaltered. Since the basis-set 
expansion of the perturbed orbital is 

Xp(y) = L c"p(y)w"(y), 
I' 

it follows from (27) and (28) that 

or 

2N 

c"p(y) = L: cM(O)uqp(y) 
q 

C(y) = C(O)U(y). 

(28) 

(29) 

(30) 

Clearly U(O) is the unit matrix and our problem is to find U(y) for small y. 
Substituting (30) in (25) and multiplying on the left by the Hermitian con­

jugate ct(O) .. ve obtain 

Ct(O)F(y)C(O)U(y) = Ct(O)S(y)C(O)U(y)E(y). (31) 

This may be further simplified by defining (2N X 2N) Fock and overlap matrices 
transformed by C(O), 

5f(y) = Ct(O)F(y)C(O), 

S(y) = Ct(O)S(y)C(O). 

Then the Fock equations (31) become 

~(y)U(y) = S(y)V(y)E(y), 

and the orthonormality condition (26) becomes 

Ut(y)S(y)C(y) = 1. 

(32) 

(33) 

(34) 

J'(O) is the unit matrix since the unperturbed spin orbitals are orthonormal. \V c 
have already :ooted that U(O) is the unit matrix. It follows from (33) that :7(0) 
is identical w1:i1 E(O) and is a 2N X 2N diagonal matrix with diagonal clements 
equal to the unperturbed one-electron energies Ep (0). 

We now have to solve the basic equations (33) and (34) for small y. This is 
done by expanding the various matrices in powers of y and adopting a nota­
tion 

5f(y) = E(O) + y~< 1 > + O(y2), 

S(y) = 1 + yS< 1> + O(y2), 

U(y) = 1 + yUO> + O(y2), 

E(y) = E(O) +yEO)+ O(y2), (35) 

Note that E< 1> must be diagonal since E(y) is diagonal for all values of y. Sub­
stituting (35) into (33) and (34) and equating first-order terms in y, we ob­
tain 



l.Jl. I'UI'LE /:TAL. 

~< 1 > + E(O)UO> = J>{llE(O) + U<OE(O) + E< 1>, (36) 

U(llt + U<t> + J>< 1> = 0. (37) 

Equations (36) and (37) now have to be solved to find the first-order changes 
uo> and E< 1>. 

At this point, it is convenient to revert to a subscript notation. Diagonal cle­
ments of (37) give 

u< 1>• + u<'> + .s><n = 0 (38) f'P Pf' PI' ' 

We may choose u~~ to be real, since multiplication of Xp by an arbitrary phase 
factor is insignificant. Hence, 

U(l) = -'1 g(l) 
PP 2 PP • 

Diagonal elements of (36) give 

E(l) = ~(I) - gO>€ (0) p pp pp p • 

Off-diagonal elements of (36) lead to 

P(l) _ P(l) (Q) u<n = "-' qp "-' qp Ep 

qp Ep(O)- Eq(O) 

(39) 

(40) 

(41) 

Equations (39)-( 41) give the required first-order quantities uo> and E< 1 > in 
terms of the first-order changes ~o>, j>(I) of the Fock and overlap matrices. 
However, this is not yet a complete solution since :7< 1> will itself depend on 
U<'>. . 

The overlap perturbation expression J>(I) can be handled easily since [from 
(32)] 

J>W = L c:9 (0)S~~)Cvp(O), (42) 
jlV 

where s~~ is the first-order contribution to the original overlap matrix s jlv(y), 

sol = (oS pv) 
P.• • 

oy y=o 

The first-order Fock matrix contribution may be written 

~(I)= JfO) +gO> qp qp qp' 

where Jf~~ is the one-electron part, 

Jf~~ = L c;9 (0)H~~Cvp(O). 
ji.V 

The two-electron part g~) is the first-order term in the expansion of 

n 2N 
gqp(y) = L L u;;(y)us;(y)(qrjjps);. 

; r.t; 

llcrc (qrjjps)} is written for the transformed integral, 

(43) 

(44) 

(45) 

(46) 
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(qri jps)} = L c;9(0)c;.,(O)c.,(O)c"s(O)(,uAjjvO")y. (47) 
p.v>.a 

which depends on y only through the original two-electron integrals. All three 
factors on the right of ( 46) give first-order contributions on expansion, so 

that 

n 2N 
g~~ = L L [uS)l*(qrjjpi) + u})>(qijjpr)] 

i r 

+ L c;q(O)c.,(O)P>.u(O) (~ (,uAIIM)) . (48) 
p.v>.u Oy y=O 

The sum over r in ( 48) is conveniently separated into an occupied part (r = j = 
I, ... , n) and a virtual part (r = a = n + 1, ... , 2N). The occupied part can be 
simplified using (37), so that, substituting back in (44), the first-order Fock 

matrix expression becomes 

1~~ = JiW + i: f: {- J'j}>(qjjjpi) + ~ L [u~1l(qajjpi) + uW(qijjpa)] 
I j I a 

+ L c:q(O)c,.,(O)P>.u(O) [~ ,uA II VO'] }· (49) 
p.v>.u Oy y=O 

This involves the occupied-virtual block uW, which again depends on :7<1> 
through (41). Substituting (49) into (41) and collecting terms we get 

[~:\0>- ~~0>]u~P = Q~P + L L: [uW*(ablliJ) + Ub}\aillib)]. (50) 
j b 

where 

Q~~, = 11W- tW ~:;(O)- L: J>W(alllik) 
k/ 

+ L c;a(O)cv;(O)P>.u(O) [~(,uAjjvO")] . (51) 
p.v>.u OY y=O 

The set of equations (50) can be used to solve for uW by some iterative process. 
Once these are known, the whole matrix 'JW can be obtained directly from ( 49), 
since the right-hand side is then known. 

To use the solutions of (49) in the second-order derivative expression (23), 
we need C>Pp..joy and C>Wp.vfoy. These can be obtained by transformation of 
the corresponding matrices in the spin-orbital basis. Thus the electron density 

pis 
, 2:V 

p(y) = :L xi(y)x,(y) = L: P,s(y)x;xs. (52) 
; rs 

where 
n 

'P,,,(y) = L: u;,(y)rf.,;(y). (53) 
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Expansion of (51) to first order in y gives 

m(D = u<D* + uOl =- o(!) 
L IJ I} }I eJ }I ' 

'Pj~l = uW, 
'PW = o. 

The required P,.v derivative matrix is then 

(
0
:

11
") = ~ t->~J>c;,(O)c,s(O). 

vy y=O rs 

Jn a similar way, the energy-weighted density matrix is 

n 
'W,s(y) = L f;(y)u;;(y)Us;(y). 

i 

Expansion, together with ( 40) and ( 41 ), gives 

Then 

'W~)l = 'J)J>- [€;(0) + fj(O)]S)}>, 

'Wj~> = f;(O)uW, 

ww = 0. 

(oW11
,·) = ~ 'lV~J>c;,(O)c.s(O). 

Oy y=O rs 

(54) 

(55) 

(56) 

(57) 

(58) 

This completes evaluation of the second-derivative expression (23). 
We now turn to the first derivative of the second-order M~ller-Plesset energy 

(I 6). This requires derivatives of the transformed integrals WII ab) as well as 
those of the Fock energies fp (ij II ab) to be written 

2N 

WI Jab)= L u;;u;juraUsb(pqjjrs)l, (59) 
pqrs 

where (pqiJrs)! is given by (47). Differentiation of (pqJirs)t gives a contribution 
to (o/ox)(ijJiab), which is 

L c;;(O)c;j(O)cxa(O)cub(O) (~) (JlviiAo"). 
,.~ ~ 

(60) 

Differentiation of the u and f quantities may be carried out in the same way as 
previously, giving results in terms of the first-order matrices J'~~ and 'JW. 

Full algebraic details will not be given. The final result is conveniently ex­
pressed in terms of the first-order M~llcr-Plessct wavefun<.:tion coefficients 

a7/ = -WIIab)/D-i}'. (61) 

Then the derivative of the second-order correlation energy 0'< 2> is 
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()(;'(2) -- = ,, ,~ aab xah 
;.. L, L, I} I} • 
vX l} ab 

(62) 

,\jjb =.!. L c,.;(O)c.j(O)cxa(O)cub(O) (~) JlVjjA<T) 
2 pVh<T OX 

+ L: {w!!ak)u~~-.!. a2J ['JHl- f;(O)J'Wl-.!. (kjjjab)J'}l>} 
k 2 2 

+ :: {(c) I Jab )u~)> + ~ aff {;7 ~~~ - fb(O )<~' ~),>] - ~ (iJ II ac).\'),;.l 

This can be cak·•1latcd from a knowledge of the first-order matrices J'< 1> and 
;1( 1) (occupied, occupied and virtual, virtual blocks) and the first-order coeffi­
cients uo> (occupied, virtual block). 

3. Computational Procedures 

Computation of the derivatives of 0HF and 0Mr2 uses much common infor­
mation. In the GAUSSIAN 78 program, this is accomplished in the following 
principal steps: 
· Step 1. Evaluation of the integrals S ,.., H ""' and (Jlvll A<T) by standard 

techniques [24-28). The evaluation of the one-electron parts (S ~'" and H ~''') 
involves O(N2) operations, while the two-electron part (Jlv!l A<T) requires O(N4 ) 

steps. The entire matrices containing H ,.,, and S ~'"are stored on the disk. Only 
the nonzero tw.J electron integrals arc saved. 

Step 2. Obt..:i:1 the SCF coefficients c,.p and Fock energies cp by conventional 
methods. 

Step 3. Transformation of integrals to the molecular basis. For the calculation 
of 0 MP2 and the second derivatives of Cf HF, only the set of transformed integrals 
with a maximUiii of two virtual spin orbitals [(i) II ab) and (ia I lib)] is required. 
However, differentiation of CfMp2 requires the larger set (/all be) with three 
virtual spin orbitals. The M~ller-Plesset energy and wavcfunction coefficients 
a'i/ are availa:,le at this stage. This step involves O(nN 4 ) arithmetic opera· 
lions. 

Step 4. Evaluation and storage of the first derivatives of the integrals S,., .. 
H ~'"' and (Jlvl! A<T). See step 7 for more details on the integral evaluation tech­
niques. This step requires O(N4) arithmetic operations. 

Step 5. Use of the integral derivatives to set up and solve the simultaneous 
linear equations (50) for the wavefunction derivative coefficient u~1?. This 
equation cant~~ written in general matrix form as 

(1 -A) 8 - 80 = 0. ( 63) 

Here B is the vector of the unknown uW which we are trying to determine. Bo 
is the vector with n X (2N- n) clements given by 

Q (l.) 

'" Bo(ai) = (o)-=-c(O) · 
(; (J 

(64) 
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Here, Bo(ai) refers to the aith element of Bo where a and i are taken together 
as a single suffix. A is the square matrix of the same dimension given by (for the 
real case) 

_ (abllij) + (ajllib) 
A(ai,bj) - €(0) _ c(O) 

1 ~a 
(65) 

Note that A is not a symmetric matrix. 

The vector Bo is firs! evaluated by processing the stored one- and two-electron 
integral derivatives. 

I;:quation (63) now gives 

"' 
B = L AnBo. (66) 

n=O 

Direct use of (66) to get the unknown B is usually a slowly convergent process 
and involves a large number of iterations. [An iteration consists of getting one 
more term in the series in (66).] This convergence can be improved considerably 
by the following process. 

Define orthogonal vectors B0, B1, ••• , Bk by 

Bn+I = ABn- (projection of ABn on Bn. Bn-1. ... , Bo), 
I.e., 

Bn+l = ABn- £. (Btl AI Bn) 
t=o ( Btl B,) B,. (67) 

Put 

B = aoBo + a1B1 + · · · + akBk. (68) 

The coefficients ao, ... , ak may be obtained by requiring that the projection 
of the left-hand side of (63) on B0, BJ. ... , Bn vanish. Typically, about four to 
six terms are sufficient to give sufficient convergence (RMS deviation of 
J0-6). 

The number of arithmetic operations involved in this step is O(n2N2) for each 
nuclear variable. Note that although the above equations are given for just one 
variable, it is easy to handle all of them together. 

Step 6. Usc of the first derivative of the wavcfunction to evaluate o0<2> fox 
[Eq. (62)] and the final three parts of the second-derivative expression (23). In 
the evaluation of o0<2

> fox, all the terms that are independent of the variable 
x are summed first in intermediate arrays. These are then contracted with the 
necessary first-order terms. For example, the term involving uW is evaluated 
as follows: 

Ykb = L: a:'/WIIak). 
ija 

(69) 

Contrihution to o0<2l fox= Lkb Ykbui~: Note that Yk, is the same for all 
the variables. The number of arithmetic operations involved in the evaluation 
vf c){,'(~)/ ox is O(nN4 ). 

! 
i 
I 
"1 
: 

-------- .~ 
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The final thre~ parts of the second-derivative expression can be calculated 
from the density matrix derivatives and the written-out integral derivatives. Note 
that a number of variables can be handled at the same time in one pass through 
the integral derivative list. The number of arithmetic operations involved in this 
step is O(N4). 

These integrals, the first derivatives, and those two-electron integrals (ttv II >.a") 
involving at leas~ one d function are evaluated by the method of Rys polynomials 
[26}. ln this mcihod, an integral over the primitive Gaussian functions is written 
as a sum whose terms are products of the Rys polynomial and a weighting factor. 
The sum goes ov•;r a discrete range, namely, the zeros of the polynomial. The 
polynomial can be factored into Cartesian x, y, and z components which involve 
integration in the x, y, and z directions, respectively. 

In practice, basis functions sharing a common center and exponents are 
grouped together into a "shell." The basis functions are located on the nuclear 
~.!enters. and throughout the differentiation process remain rigidly attached to 
thc$C c~r.tcn. ihc prof,lram structure is such that the outermost loops go over 
shells. The next ievel of loops goes over the primitive Gausslans that make up 
each shell. At this level, the necessary geometric and exponent information is 
combined to determine the roots and weights of the Rys polynomial. For each 
root, the necessary x, y, and z components of the polynomial are determined. 
The techniques by which the roots, weights, and components are evaluated arc 
described elsewhere [28]. The next level involves the combination of the weights 
and the compo.1cnts to make each primitive integral. The final integrals over 
basis functions 'J.'p. are built up by looping over the Gaussian contractions. These 
are written out to the disk (integrals and first derivatives) or used directly in the 
computer memory (second derivatives). 

The program structure outlined above can be used to calculate the integrals 
and their first a11d second derivatives. In the case of the integral derivatives, the 
derivatives of th~ components are necessary. These are readily obtained since 
they arc simply the components that would be required in evaluating integrals 
containing fun•.;tions of the next higher angular momentum. For the basic in­
tegrals (ttvll >.a) the computer time is roughly divided between evaluation of 
the components and combining then with the weights to get the primitive inte· 
grals. The evaluation of the first and second derivatives of the integrals is 
dominated by the combination step. 

4. Illustrative Calculations 

The derivative programs at the HF and the MP2 level have been used to cal­
culate the harmonic vibrational frequencies of ethylene using the 6-31 G* basis 
[30] (split valence plus polarization functions on the heavy atoms). At both levels, 
the respective equilibrium gcomdry was used. Usc of some other geometry (e.g., 
the experimental geometry) may lead to ambiguities in the harmonic frequencies. 
As Pulay 16] comments, "Cartesian and internal force constants rnay lead to 
different hanr .. mic vibrational frequencies if they arc not calculat..:d at the 
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theoretical equilibrium geometry." At the H F level, a single calculation of the 
energy second derivatives at the equilibrium geometry gives all the frequencies. 
However, at the MP2 level, a series of calculations involving the first derivatives 
of 0MP2 was performed to build the force constant matrix and hence obtain the 
frequencies. These are listed in Table I along with the experimental frequencies 
[29]. Anharmonicity corrections to the experimental frequencies have been made 
by Duncan eta/. [29] to get estimated harmonic frequencies. These aid in direct 
comparison with theory and arc listed in Table I. 

It is seen immediately that HF theory overestimates the harmonic frequencies 
by 55-180 cm- 1

• Inclusion of correlation, even at the simple MP2 level, improves 
the agreement considerably. It accounts for about 70% of the difference between 
the HF theory and experiment yielding frequencies that differ from experiment 
by only I 0-90 cm- 1

• Most of the frequencies are still overestimated. Unfortu­
nately, there is a lot of uncertainty in the anharmonieity corrections. To avoid 
this problem, Pulay and Meyer [10) have corrected their calculated HF force 
constants ( 10% for diagonal stretching force constants and 20% for diagonal 
bending force constants) and get good agreement with experiment. However, 
this does not appear to be a satisfactory solution to this problem. The remaining 
difference between theory and experiment may be due to this uncertainty in the 
anharmonicity corrections or due to the deficiency in the basis set or the 
higher-order effects of electron correlation. 

TABLE I. Vibrational frequencies for ethylene (cm- 1). 

Symmetry of .. . *b Estimated Vibration Hl'/6·31G MP2/6·31G Experiment c ;;:o~!;t~equenciea 

b2u 897.0 851.1 826.0 642.9 

b2g 1099.4 942.6 939.6 958.8 

b 
1u 

1095.0 991.8 949.3 968. 7 

a u 1154. 9 1085.5 1023 1043. 9 

blg 1352.5 1265.9 1220 1244.9 

a 1496.9 1415. 7 1342.2 1369.6 g 

b3u 1610.2 1520.8 1443.5 1473.0 . 1856.2 1721.1 1630 1654.9 g 

b3u 3320.9 3213.3 3021 3146. ~ 

• g 
3344.2 3230.9 3026.4 3152.5 

b1g 3394.6 3300.4 3102.5 3231. 9 

bzu 3429. 7 3323.3 3104.9 3234.3 

"At the HF/6-31G* equilibrium geometry (rcc = 1.317 A, rcH = 1.076 A, LHCH 
116.4°). 

bAt the MP2/6-31G* equilibrium geometry (rcc = 1.335 A, rcH = 1.085 A, LHCH 
116.5°). 

c The experimental frequencies arc from ref. 29. 

~ Anh;mnonicity corrections arc made on the ob;ervcd. Experimental frequencies to gcllhcsc 
estimated values [29]. 
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T!dlLE II. Exc~ulion limesd for the IIF derivative programs (min) for cthykne using 6-31G* 
basis (38 basis fu,Jctions). 

Program 

Integral evaluation 

SCF 

tvaluatlon of !":"1teg4al 
Hut der~'·11tivea 

Two-electron integral 
transformat-ion 

\.PliF + evaluation of density 
~natrix derivative contri.bution 
to second derivatives 

Evaluation of integral 
1econd derivatives 

Total 

HF 

10 

13 

!IF+ 
Firat Derivative 

10 

7c 

20 

HF + First and 
Second. Derivative 

10 

s• 

16b,C 

19 

Jle 

89 

• The converg::nce on the density matrix in the SCF is tightened to get more significant figures 
in the MO coefficients. 

b The integral derivatives are written out. 
' Information about the symmetry of the molecule was used to aid in these parts of the calcula­

tion. 
d All the calculations were performed on a VAX-II /780 computer at Carnegie-Mellon University. 

5. Comparison of the Execution Times for the Derivative Programs 

In order to test the applicability of these derivative techniques, the execution 
times for the various steps outlined in Sec. 3 are listed in Tables II and Ill. Table 
II gives the execution times for the HF first- and second-derivative steps. Table 
Ill gives the corresponding execution times for the MP2 derivative programs. 

TABLE Ill. Execution limcsb for the MP2 derivative programs (min) for ethylene using 6-
JIG* basis (38 basis functions). 

Progr~>~ 

Integral evaluation 

SCF 

Two-electron integral tTans!orma• 
tion 

Evaluation and writing out the 
intoua1 first derivatives 

CPHF + ca~cuhl•on of MP2 
derivative 

Total 

MP2 MP2 + First Derivative 

10 10 

5 154 

16 

31 

20 77 

• More transformed integrals arc calculated in this case as compared to a simple MP2 calcula­

tion. 
hAll the ..:ahdations were pcrforlllerl on a VAX· II f7XO computer at Carncrie- :\lcllon Univer;ity. 
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It is seen from Table II that the calculation of 0Hr and its first derivatives 
takes approximately twice the computer time taken to calculate the energy alone. 
Pulay [ 3 I] and Ishida eta/. [I 4] report that their gradient programs take about 
three to four times as long as the SCF programs. This speed-up is attributable 
to the increased efficiency of the Rys method relative to older integral evaluation 
techniques. 

It is also seen that a full second-derivative calculation (which is sufficient to 
determine the harmonic vibrational frequencies) takes only four to five times 
as much computer time as a gradient calculation. Pulay [5, 6] has mentioned 
that the calculation of the analytical second derivatives may not be practical 
and that the calculation of the force constants by the finite-difference method 
on the gradients may be cheaper. However, the above results show that the 
evaluation of the harmonic force constants from the analytical second derivatives 
of the energy is an efficient and practical method. This is especially true since 
the number of gradient points required in the finite-difference method (for the 
general case) is 0(3m). where m is the number of atoms. Note also that the 
integral gradient times are strongly affected by the degree of contraction of the 
atomic orbital basis. New basis sets are currently under development that use 
fewer primitive Gaussians [32] and these give considerable timing improve­
ments. 

Analytical evaluation of the first derivatives of 0MP2 is also efficient. The 
evaluation of 0MP2 along with its derivatives takes about four times as much 
computer time as the calculation of the energy alone. This should be very useful 
for the exploration of potential surfaces at this level. It also gives improved ac­
curacy in the calculation of force fields and harmonic frequencies. Extension 
of these techniques to higher perturbation orders of the correlation energy as 
well as applications to configuration interaction are currently in progress. 
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