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Empirical valence bond models for reactive potential energy
surfaces. II. Intramolecular proton transfer in pyridone

and the Claisen reaction of allyl vinyl ether
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Empirical valence bond (EVB) surfaces have been constructed for 2-pyridone-2-
hydroxypyridine proton transfer and for the Claisen rearrangement of allyl vinyl ether at
the MP2/6-311þG(d,p) level of theory. A distributed Gaussian approach is used to
approximate the interaction matrix elements. Parameters for the distributed Gaussians are
determined by fitting to energy, gradient and Hessian data obtained from ab initio electronic
structure calculations at one to nine points along the reaction path. An efficient DIIS (direct
inversion of iterative subspace) method is used to solve the fitting equations. Criteria for
choosing internal coordinates for the representation of the potential energy surfaces and
for the interaction matrix element are discussed. Practical techniques for determining the
placement and exponents of the Gaussians are described. With one set of s-, p- and d-type
Gaussians at the transition state, the error in the energy along the reaction path is less than
10 kJmol"1 for pyridone tautomerization. Five sets of Gaussians reduces the error to less than
5 kJmol"1 and seven Gaussians drops the error below 1 kJmol"1. The Claisen rearrangement
is more challenging and requires seven Gaussians to achieve an error of less than 4 kJmol"1

for energies along the reaction path.
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1. Introduction

A reactive potential energy surface, V, can be modeled
by an empirical valence bond (EVB) approach, in
which the reactant and product valence bond con-
figurations,  1 and  2, interact via an empirical
Hamiltonian, H,

! ¼ c1 1 þ c2 2, ð1Þ

H ¼ V11 V12

V21 V22

! "
, ð2Þ

V11 ¼ h 1jĤj 1i, V12 ¼ V21 ¼ h 1jĤj 2i,

V22 ¼ h 2jĤj 2i, ð3Þ

V ¼ 1

2
ðV11 þ V22Þ "

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

$ %
ðV11 " V22Þ

! "2
þV2

12

s

: ð4Þ

Good approximations to V11 and V22 are available from
valence force fields such as those used in molecular
mechanics methods. The interaction matrix element
or resonance integral, V12, is obtainable by fitting
to suitable experimental data or electronic structure
calculations.

Warshel and Weiss originally formulated the EVB
approach to treat reactions in solvated systems [1], and
used simple V2

12 approximations to fit barrier heights.
Chang and Miller [2] modeled V2

12 using a generalized
Gaussian with parameters chosen to fit the energy,
geometry and vibrational frequencies of the transition
state obtained from electronic structure calculations.
Truhlar and co-workers [3–5] used distance weighted
interpolantstoobtainaV2

12 approximationfromelectronic
structure calculations at several points along the reaction
path. Recently, we introduced a method in which V2

12

is represented by a Gaussian times a polynomial at one
or more points on the potential energy surface [6].*Corresponding author. Email: hbs@chem.wayne.edu
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In the Chang–Miller approach [2], the generalized
Gaussian used to approximate the resonance integral
has the form

V12ðqÞ2 ¼ A exp BT"q" 1

2

$ %
"qTC"q

! "
, "q ¼ q" qTS,

ð5Þ

where qTS is the transition state (TS) geometry, and A, B
(a vector), and C (a matrix) are parameters [2]

A ¼ V11ðqTSÞ " VðqTSÞ
& '

V22ðqTSÞ " VðqTSÞ
& '

, ð6aÞ

B ¼ D1

V11ðqTSÞ " VðqTSÞ
& ' þ D2

V22ðqTSÞ " VðqTSÞ
& ' ,

Dn ¼
@VnnðqÞ
@q

((((
q¼qTS

" @VðqÞ
@q

((((
q¼qTS

, ð6bÞ

C ¼ D1D
T
1

V11ðqTSÞ " VðqTSÞ
& '2 þ

D2D
T
2

V22ðqTSÞ " VðqTSÞ
& '2

" K1

V11ðqTSÞ " VðqTSÞ
" K2

V22ðqTSÞ " VðqTSÞ
,

Kn ¼
@2VnnðqÞ
@q2

((((
q¼qTS

" @2VðqÞ
@q2

((((
q¼qTS

: ð6cÞ

The exponents of the generalized Gaussian are
chosen to reproduce the energy, gradient and Hessian
of the transition state (V(qTS), @VðqÞ=@qjq¼qTS

and
@2VðqÞ=@q2jq¼qTS

, respectively). Unfortunately, the
Chang–Miller approach runs into some difficulties
when C has one or more negative eigenvalues [4, 7, 8].
Our first method [6] recasts V12(q)

2 as a polynomial
in iq¼ q" qTS times a spherical Gaussian at the
transition state

V12ðqÞ2 ¼ A 1þ BT"qþ 1

2

$ %
"qTðCþ !IÞ"q

! "

& exp " 1

2

$ %
!j"qj2

! "
: ð7Þ

The Gaussian times a polynomial (GP) approximation
to V2

12 can be generalized by employing a linear
combination of s-, p-, and d-type Gaussians at a
number of points on the potential energy surface (PES).

gðq,qK,0,0,!KÞ ¼ exp " 1

2

$ %
!Kjq"qKj2

! "
,

gðq,qK, i,0,!KÞ ¼ ðq"qKÞi exp " 1

2

$ %
!Kjq"qKj2

! "
,

gðq,qK,i, j,!KÞ ¼ ðq"qKÞiðq"qKÞj

& exp " 1

2

$ %
!Kjq"qKj2

! "
: ð8Þ

Summing up the contributions from Gaussians at
each distributed data point, qK, yields our distributed
Gaussian (DG) approximation to the resonance integral

V12ðqÞ2 ¼
X

K

XNDim

i'j'0

BijKgðq, qK, i, j,!KÞ: ð9Þ

Since the coefficients in equation (9) are linear, V12(q)
2

can be fit more readily than using a linear combination
of generalized Gaussians with nonlinear coefficients.
The number of Gaussians forming a basis at each qK
is chosen to be equal to the number of energy, first
derivative, and second derivative values at qK. Fitting to
the energy and derivative data results in a set of linear
equations

DB ¼ F, ð10Þ

where D is an unsymmetric matrix containing the values
of g(qL, qK, i, j, !K), @g(qL, qK, i, j, !K)/@q|q¼qL , and
@2g(qL, qK, i, j, !K)/@q

2|q¼qL , and F a column vector
containing the corresponding values of V2

12(qL),
@V2

12(q)/@qq¼qL , and @2V2
12(q)/@q

2|q¼qL . In our initial
tests, we employed singular value decomposition
(SVD) to solve these linear equations. Both the GP
and the DG methods were shown to accurately
reproduce one- and two-dimensional surfaces and
small molecule PESs such as HCN [6]. However, even
for simple molecular systems such as 2-pyridone with
only five data points the dimensionality of the system
quickly exceeds 8000 and thus matrix inversion or SVD
are no longer viable linear equation solvers.

In this work, SVD is replaced by the direct inversion
of iterative subspace (DIIS) algorithm, which is a type
of Krylov-subspace method, to solve equation (10).
Pulay and others have shown that the DIIS approach
is very effective in solving the equations arising in
geometry optimization, SCF convergence, couple-
perturbed Hartree–Fock and related problems [9–15].
To facilitate the solution of the fitting parameter linear
equations, the s-type Gaussians in equation (8) are
replaced by

gðq, qK, 0, 0,!KÞ ¼ 1þ 1

2

$ %
!Kjq" qKj2

$ %

& exp " 1

2

$ %
!Kjq" qKj2

! "
: ð11Þ

This yields identity matrices for the diagonal blocks
of the fitting matrix and improves the convergence
of the DIIS method.

2720 J. L. Sonnenberg and H. B. Schlegel
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In the present paper we examine the potential energy
surfaces for the intramolecular proton transfer in
2-pyridone-2-hydroxypyridine and for the Claisen rear-
rangement in allyl vinyl ether. First, some technical
aspects of the DIIS solution of the EVB fitting equations
are considered. Then, criteria for selecting internal
coordinates the potential energy surface and for the
approximations to V2

12 are outlined. Finally, practical
techniques for choosing ! values and placement of the
Gaussians are discussed.

2. Methods

Originally developed in the 1950s, Krylov subspace
algorithms have become increasingly popular in solving
very large systems of linear equations of the form Ax¼ b
[16]. The distinguishing feature between different Krylov
subspace algorithms is how each method iteratively
forms the approximation, x(k),

xðkÞ ¼ xð0Þ þ qk"1ðAÞrð0Þ, rð0Þ ¼ b" Axð0Þ, ð12Þ

to x in the space Wk

Wk ¼ fv ¼ xð0Þ þ y, y 2 KkðA; rð0ÞÞg,
KkðA; rð0ÞÞ ¼ frð0Þ,Arð0Þ, . . . ,Ak"1rð0Þg,

ð13Þ

where x(0) is the initial guess for x, qk"1(A) a polynomial
in A of degree k" 1, r(0) the initial residual vector, and
Kk a Krylov subspace of kth order [17]. Two strategies
exist for generating x(k): choose x(k) such that the
residual r(k) is orthogonal to any vector in Kk(A; r

(0)) or
compute x(k) so as to minimize the Euclidean norm of
the residual, ||r(k)||. Orthogonalizing the residual against
the Krylov subspace results in the full orthogonalization
method (FOM) and its variants, while minimizing
the norm of the residual generates minimal residual
methods.
Inspired by Pople et al.’s use of the Arnoldi process

[18] (aka FOM) to solve for wave function derivative
coefficients [19], Pulay formulated his direct inversion of
iterative subspace (DIIS) to accelerate SCF convergence
[20, 21]. DIIS is a Krylov subspace method aiming to
minimize the norm of the residual subject to the
constraint that the expansion coefficients, ci, sum to one

rðkÞ ¼
Xk"1

i¼1

cie
ðiÞ,

Xk"1

i¼1

ci ¼ 1: ð14Þ

Ionova and Carter showed that the definition of
the kth error tensor, e(k), varies depending upon the

application, but always approximates one of the forms
in equation (15) as a result of Banach’s principle [22]

eðkÞ1 ¼ xðkþ1Þ " xðkÞ, eðkÞ2 ¼ x" xðkÞ ,

eðkÞ3 ¼ xðkÞ " xðk"1Þ :
ð15Þ

After orthogonalizing the error vectors, the expansion
coefficients are determined by solving

h1,1 ( ( ( h1,k 1

..

. . .
. ..

. ..
.

hk,1 ( ( ( hk,k 1
1 ( ( ( 1 0

0

BBB@

1

CCCA

c1
..
.

ck
"

0

BB@

1

CCA ¼

0
..
.

0
1

0

BB@

1

CCA, hi,j ¼ heðiÞjeðjÞi,

ð16Þ

where hi,j is an appropriate inner product in the subspace
and " is a Lagrangian multiplier. With the expansion
coefficients in hand, a new x(k) can be formed and the
cycle repeated

xðkÞ ¼
Xk"1

i¼1

cix
ðiÞ: ð17Þ

Conceptually, DIIS is the forefather of modern
minimal residual methods [17], but the true beauty of
DIIS lies in the generality of the algorithm: e(k) is not
restricted to a particular exact form and A can be
symmetric or unsymmetric, definite or indefinite. Such
flexibility facilitates easy coupling with other numeric
techniques to form the set of preeminent iterative
equation solvers for electronic structure methods
[9–15]. With the current work, Pulay’s inspiration
comes full circle as we employ DIIS in constructing
a chemically accurate, EVB PES for a variety of
reactions.

Electronic-structure calculations were computed at
MP2/6-311þG(d,p) [23–25] with the development ver-
sion of the Gaussian suite [26]. All stationary points
were optimized employing the Berny algorithm [27, 28]
while the intrinsic reaction path was explored via the
damped velocity-Verlet [29] and Hessian-based predic-
tor-corrector integrators of Hratchian and Schlegel
[30, 31]. Transition states and data points along
the IRC were tightly optimized until the maximum
force was 2& 10"6 a.u., whereas all other stationary
points were optimized to 4.5& 10"4 a.u. V11 and V22

are represented by quadratic expansions about the
reactant and product minima using the geometry and
Hessians obtained from the ab initio calculations.
EVB fitting and analysis was carried out using
Mathematica 5.2 [32].

Empirical valence bond models for reactive potential energy surfaces 2721
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To solve equation (10) with DIIS for a given set of
! values, an initial guess, x0, for B is used to generate a
normalized error vector via e(1)¼ (F"Dx0)/||F"Dx0||.
The generalized minimum residual (GMRES) algorithm
[33] utilizing the stabilized Gram–Schmidt procedure
is then employed to iteratively form an orthonormal set
of error vectors in Km

hi,k ¼ heðiÞjAeðkÞi, for i ¼ 1 . . . k, k ¼ 1 . . .m,

eðkþ1Þ ¼ AeðkÞ "
Xk

i¼1

hi,ke
ðiÞ

 !

ðhkþ1,kÞ"1,

hkþ1,k ¼ AeðkÞ "
Xk

i¼1

hi,ke
ðiÞ

)))))

))))):

ð18Þ

At each step Hk forms a kþ 1& k Hessenberg
matrix that is directly decomposed using standard
QR decomposition to produce Qk and Rk such that
Qk

TRk¼Hk. The residual at step k can then be
approximated according to Qk||B"Dx0||v, where v is
the first unit vector in Rkþ1. Once the residual is smaller
than 1& 10"9 the solution is computed in the following
manner:

c ¼ ðHTHÞ"1ðHTjjB"Dx0jjvÞ,
x ¼ x0 þ ETc,

ð19Þ

where E is the matrix formed from the e(k) column
vectors.

3. Results and discussion

3.1. Choice of redundant internal coordinates

Even though both PG and DG methods (equations (7)
and (9)) can utilize any coordinate system, we
employ redundant internal coordinates rather
than Cartesian coordinates to eliminate standard
orientation requirements for the resulting energy hyper-
surface. Bond lengths are in bohr and angles are in
radians. Determining a suitable set of n redundant
internal coordinates for the hypersurface is entirely
analogous to choosing redundant internal coordinates
for geometry optimizations with a few additional
caveats.

(1) The intersection of coordinates for all qK must be
included in the universal set.

(2) Coordinates corresponding to the largest compo-
nents of the transition vector must be included.
For reactions involving bond breaking/forming,
this will automatically include the partially formed

bond coordinate(s) if the TS coordinate system was
well chosen.

(3) Linear bend coordinates and valence angles
passing through linear along the path from
reactants to products are excluded. The range of
dihedral angles is also controlled so that no abrupt
jumps (e.g. "179.9) !þ180.0)) occur along
the reaction path.

The union minus the intersection of coordinate
systems for all qK produces a set of coordinates that
must be carefully examined for adherence to point 3
before addition to the universal set.

V12(q)
2 usually does not depend upon the full set

of redundant internal coordinates necessary for an
accurate representation of the energy hypersurface.
As such, fitting V12(q)

2 in a subspace of the Rn internal
coordinate vector space can offer large computational
savings. An appropriate subspace for most reactions is
easily determined from the difference vector between
reactants and products in Rn. In reactions where the
reactants and products are nearly identical, the differ-
ence vectors between the transition state and either
the reactants or products may be more appropriate.
In most cases, any coordinate corresponding to a
zero element of the difference vector can be removed.
Experience has shown that other coordinates can be
eliminated if the corresponding difference vector
element has a value less than a given tolerance value.
Tolerance values of 1& 10"1–10"3 provide reasonable
results with less than 0.5 kJmol"1 changes in the
maximum energy error along the reaction path.

3.2. Placement of the Gaussian centers, qK

The Gaussian times a polynomial scheme only requires
ab initio data at the TS, while the distributed Gaussian
method can handle any number of data points. The
simplest set of data points for the DG method is
the reactant, product and TS since it is readily available
from standard ab initio investigations. While a three
point DG hypersurface for a well-behaved case is
usually accurate to better than 10 kJmol"1 for points
along the reaction path, a tighter accuracy may be
required for a particular application. It is important to
note that accuracy along the reaction path does not
imply the same accuracy in directions perpendicular to
said path. If the surface will be used for molecular
dynamics, where a uniform description of the hypersur-
face is essential, additional Gaussian centers should be
added in pairs: one data point at roughly the same place
on both sides of the TS. As seen in Truhlar’s work [3, 4]
points at 1/2 and 1/4 down both sides of the reaction
path are also good locations for placement of DG

2722 J. L. Sonnenberg and H. B. Schlegel
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data points. Stationary points occurring in the redun-
dant internal gradient norm curve along the reaction
coordinate provide points for placement of additional
Gaussian centers.

3.3. Optimization of a values for each qK

Determining the optimal values of ! at a particular qK
is a crucial part of both the GP and DG algorithms.
Although both methods permit separate values of ! for
each Gaussian function in the basis, this work utilizes
the same exponent for all basis functions at a particular
data point. Initial values of ! are set to the average
redundant internal Hessian eigenvalue. If a solution to
equation (10) is not found within 75 iterations or the
maximum coefficient in B becomes too large, each !
is set equal to the previous value times a multiplier.
Values of the multiplier range from 1.1 to 2.0 depending
upon the final accuracy required in the resulting EVB
hypersurface.

3.4. 2-Pyridone-2-hydroxypyridine intramolecular proton
transfer

This section focuses on the methodological issues of
fitting EVB surfaces using the GP and DG methods for
the gas-phase interconversion of 2-pyridone to 2-
hydroxypyridine via an intramolecular proton transfer
(figure 1). Future work will explore the rates, isotope
effects and molecular dynamics of the pyridone system
along with the effect of additional water molecules and
bulk solvent on the potential energy surface [34]. Ab
initio energies, gradients and Hessians were computed
for nine points along the 2-pyridone to 2-hydroxypyr-
idine reaction path. In addition to the TS, reactant, and
product, data was also computed at approximately 1/2,
1/4, and 1/8 of the way toward each minimum along the
reaction path, calculated in mass-weighted Cartesian
coordinates. The corresponding values along the reac-
tion path, starting from the reactants with the TS at
zero, were "3.1712, "1.6549, "0.8321, "0.4162, 0.0,
0.4164, 0.8332, 3.6134, and 5.1053 atomic units. To
evaluate the quality of the fitted EVB hypersurfaces,

IRC data was calculated at 117 steps along the reaction
path. A set of 56 redundant internal coordinates was
employed.

Six EVB fits were performed with the number of data
points along the reaction path ranging from K¼ 1 to
K¼ 9. The ! values and error analysis are reported in
tables 1 and 2, respectively. Based upon the redundant
internal coordinate difference vector for the reactant
and product, four different subspaces, Rn, were exam-
ined for each value of K. The subspace with 32
coordinates, R32, reflects the elimination of all dihedral
angles from R56, while Rn values of 31, 25, and 10

Figure 1. Optimized structures of (a) 2-pyridone and
(b) 2-hydroxypyridine.

Table 1. Optimized ! values for gas-phase pyridone tautomerism EVB fits.

K TS Reactant Product "1/2 1/2 "1/4 1/4 "1/8 1/8

1 7.1893
3 1.9100 0.1290 0.1290
5 2.4000 1.5000 1.2000 2.0000 2.0000
7 9.3000 10.0000 10.000 10.100 9.9000 9.8000 9.8000
9 17.5692 10.6879 10.6879 7.3205 7.3205 11.7128 11.7128 12.8841 12.8841

Empirical valence bond models for reactive potential energy surfaces 2723
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correspond to difference vector tolerance values of 10"3,
10"2, and 10"1, respectively. The PG method (K¼ 1)
requires a rather tight ! value in order to correct the
large values of V11 and V22 near the TS. Six measures
were employed to evaluate the goodness of the EVB fits:
the norm of B, the magnitude of the largest coefficient in
B, the maximum error in total energy, the maximum
error in V12(q)

2, the maximum difference in the gradient
norm along the IRC, and the mean angle between the
EVB internal coordinate gradients and the ab inito
internal gradients along the IRC. The B norm and the
maximum B coefficient become very large when the !
values require further refinement or when the subspace
employed in the V12(q)

2 fit is too small. The total energy
and V12(q)

2 have large errors when the ! values are
poorly refined or when K should be increased. When the
gradient norm error and the mean angle between
predicted and actual gradients are sufficiently small,
then the fit is satisfactory and no additional qK are
required.
The polynomial times a Gaussian yields a maximum

error of ca. 7 kJmol"1 along the IRC and is essentially
constant for all subspaces (table 2, K¼ 1). Although
the energy error is less than 10 kJmol"1, the errors
in V12(q)

2 and the angle between the predicted EVB
internal gradient and the actual gradient indicate that
a better fit may be desirable.
For K¼ 3 and 5, the maximum error in energy is

reduced to less than 4.2 kJmol"1, thereby achieving

chemical accuracy along the IRC. In both cases the error
in V12(q)

2 has decreased by an order of magnitude
to 10"4 a.u. but the error in the gradient norm has
increased by an order of magnitude to 10"3. The DG fits
were insensitive to the subspace employed for V12(q)

2

except for R10 which was just too small. As such, R31

was not examined for K4 5, and figures 2–4 were
generated from data in R25. Increasing K to seven drops
the maximum error in the energy along the path to less
than 0.5 kJmol"1 and reduces the error in V12(q)

2 by
another order of magnitude to 10"5. The potential
energy surface as a function of the N–H and O–H
distances is shown in figure 5. Although the energy and
V12(q)

2 are quite accurate for K¼ 7, the gradient norm
error is only slightly better than the PG method
generated. To improve the gradient norm fit, two more
data points lying very near to the TS were necessary.
It should be noted that, for K4 3, all additional points
along the reaction path correspond to stationary points
or inflection points in the gradient norm curve,
suggesting that the gradient norm curve can provide
information on where to place additional Gaussian
centers to improve the fit.

As the number of data points used in the DG EVB
fit increases for the pyridone system, the ! value for
a particular qK always increases. This increase in !
values indicates that the Gaussian basis set at qK is
becoming more localized and therefore less able to
correct errors in the hypersurface fit far away from qK.

Table 2. Gas-phase pyridone tautomerism EVB analysis. Errors are determined from ab initio IRC data. Energies are in kJmol"1,
V2

12 is in a.u.2, and angles are in degrees.

K Rn Norm [B]
Max. B
element

Max.
energy error

Max. V2
12

error
Max. grad.
norm error

Mean angle
between
gradients

1 32 0.09738 0.06067 7.125 1.477& 10"3 2.946& 10"2 17.5
1 31 0.09737 0.06067 7.125 1.477& 10"3 2.947& 10"2 17.5
1 25 0.09728 0.06067 7.123 1.476& 10"3 2.950& 10"2 18.0
1 10 0.09425 0.06067 7.239 1.458& 10"3 2.965& 10"2 20.1

3 32 4.169 2.394 4.157 8.911& 10"4 4.864& 10"3 11.1
3 31 4.147 2.394 4.157 8.911& 10"4 4.865& 10"3 11.1
3 25 4.018 2.396 4.114 8.819& 10"4 4.894& 10"3 12.0
3 10 3.863 2.527 4.432 8.230& 10"4 2.965& 10"2 16.2

5 32 11.280 1.661 3.316 4.899& 10"4 6.549& 10"3 7.03
5 31 11.094 1.659 3.328 4.902& 10"4 6.556& 10"3 7.06
5 25 10.374 1.724 3.792 5.001& 10"4 6.749& 10"3 7.93
5 10 41.767 7.054 86.49 1.417& 10"2 9.309& 10"2 23.7

7 32 1.900 0.2773 0.4365 7.468& 10"5 1.137& 10"2 7.18
7 25 1.570 0.2613 0.4315 7.271& 10"5 1.161& 10"2 7.84
7 10 11.94 2.725 1.812 5.261& 10"4 2.965& 10"2 12.9

9 32 0.8095 0.1196 0.2645 7.751& 10"5 1.810& 10"3 1.97
9 25 0.6836 0.1129 0.2568 7.527& 10"5 4.436& 10"3 3.53
9 10 3.013 0.6279 1.262 3.719& 10"4 2.965& 10"2 11.3

2724 J. L. Sonnenberg and H. B. Schlegel
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Figure 4. Norm of the EVB redundant internal gradient along the reaction path for 2-pyridone$2-hydroxypyridine with K¼ 3
(long dash) and K¼ 7 (short dash). The two surfaces are plotted along with the norm of the IRC redundant internal gradient (red) in
(a), while differences between the IRC and predicted norms are in part (b).

Figure 2. EVB energy along the reaction path for
2-pyridone$2-hydroxypyridine with K¼ 3 (long dash) and
K¼ 7 (short dash). The two surfaces are plotted along with
IRC energies (red) in (a), while differences between the IRC
and predicted energies are in part (b).

Figure 3. EVB V12(q)
2 energy along the reaction path for

2-pyridone$2-hydroxypyridine with K¼ 3 (long dash) and
K¼ 7 (short dash). The two surfaces are plotted along with
IRC V12(q)

2 energies (red) in (a), while differences between the
IRC and predicted V12(q)

2 energies are in part (b).

Empirical valence bond models for reactive potential energy surfaces 2725
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The reduced ability of each basis set to correct long-
range errors in the hypersurface is not problematic so
long as K is large enough. For the pyridone system this
occurs at K values of 7 and 9 where the individual !
values are converging to an average value. Convergence
to average ! values suggests that a single ! may be
appropriate at all qK as K becomes large. Starting with !
values set equal to the average of the ! values listed for
R25 in table 2 and incrementing until convergence, new
EVB fits were generated for K¼ 3–9. As seen in table 3

the average ! values increase the error by a factor of 2
for K¼ 3 and a factor of *1.5 for K¼ 5–9. Depending
upon the accuracy required for a particular application,
an average ! value may be appropriate for production
level work.

3.5. Claisen rearrangement of allyl vinyl ether

As seen above, proton transfer reactions may be
particularly well suited for DG EVB fitting due to the
natural Gaussian-like shape of the energy and V12(q)

2

along the reaction path. As a more challenging case,
we investigated the Claisen rearrangement of allyl vinyl
ether to form pent-4-enal employing a set of 61
redundant internal coordinates (figure 6). The optimized
alpha values are given in table 4. Although the potential
energy profile appears simple enough, V12(q)

2 is
considerably more complex (see figures 7–9). For
the pyridone tautomerism, V12(q)

2 is essentially a ‘one-
humped camel’, but in the Claisen reaction V12(q)

2 is a
‘multi-humped camel’ and therefore more difficult to
reproduce. With just one Gaussian center at the TS,
the PG method can only reproduce V12(q)

2 near the TS
and does very poorly elsewhere, as seen in table 5.

Four additional Gaussian centers, "6, "1.5, 1.5, and
6 a.u., were placed at points indicated by the shape of
the gradient norm and V12(q)

2. As K is increased from 3
to 7, the DG EVB fit improves until chemical accuracy is
achieved at K¼ 7. As with the pyridone system, reducing
the subspace used for V12(q)

2 by employing a tolerance
value of 10"2 had minimal effects on the final hypersur-
face. The gradient norm error and the mean angle
between predicted and actual gradients at K¼ 7 indicate
that more data points will be required along the path
if the resulting EVB hypersurface is to be used in
applications requiring gradients.

Closer inspection of the potential energy surface
suggests that the shape and magnitude of V12(q)

2 are
due to shortcomings in V11 and V22. In particular,
motion from the allyl vinyl ether reactant to the
transition state involves substantial rotation about the
C–O bonds. Representing these torsions as three-fold
rotation potentials rather than simple quadratic

Figure 5. EVB hypersurface for 2-pyridone$2-hydroxypyr-
idine with K¼ 7.

Table 3. Analysis of gas-phase pyridone tautomerism EVB fits employing average ! values. Errors are determined from ab initio
IRC data. Energies are in kJmol"1, V2

12 is in a.u.2, and angles are in degrees.

K Rn ! Max. energy error Max. V2
12 error

Max. grad.
norm error

Mean angle
between gradients

3 25 0.72267 8.302 2.144& 10"3 1.128& 10"2 15.0
5 25 2.0020 4.868 6.728& 10"4 7.067& 10"3 9.15
7 25 9.8429 0.7572 8.380& 10"5 1.270& 10"2 8.13
9 25 12.5620 0.4356 1.274& 10"4 4.436& 10"3 3.80

2726 J. L. Sonnenberg and H. B. Schlegel
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functions of the dihedral angle will improve V11 and V22

significantly. In turn, this should simplify the shape
and diminish the magnitude of V12(q)

2 needed in the
EVB model to reproduce the reaction path energy
profile. The choice of functions for V11 and V22 for ab
initio and molecular mechanics based EVB models will
be examined in a subsequent paper [34].

4. Conclusions

Distributed Gaussians are convenient for fitting EVB
surfaces to energy, gradient and Hessian data from
ab initio calculations. The large sets of linear equations
arising in the fitting procedure can be solved efficiently
with a DIIS approach. Redundant internal coordinates

Figure 8. EVB V12(q)
2 along the reaction path for the Claisen

reaction with K¼ 7 (long dash) and Rn¼ 61. The two surfaces
are plotted along with IRC energies (red) in (a), while
differences between the IRC and predicted energies are in
part (b).

Figure 7. EVB energy along the reaction path for the Claisen
reaction with K¼ 7 (long dash) and Rn¼ 61. The two surfaces
are plotted along with IRC energies (red) in (a), while
differences between the IRC and predicted energies are in
part (b).

Figure 6. Optimized structures of (a) allyl vinyl ether, (b) the transition state, and (c) pent-4-enal in the Claisen reaction.

Empirical valence bond models for reactive potential energy surfaces 2727
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are attractive for representing the V12(q)
2 matrix

elements in the EVB method, since they avoid the
standard orientation problem encountered with the
use of Cartesian coordinates. Some care is needed in
selecting internal coordinates to ensure that they vary
smoothly from reactant to transition state to products.
A subset of the internal coordinates may be sufficient for
representing V12(q)

2. The gradient norm and the energy

difference along the reaction path are useful guides to
placing additional Gaussians to improve the EVB
surface fit. Care should be taken to test that the
accuracy both on and off the reaction path is appro-
priate for the application at hand. With five or more
Gaussians, optimizing a single value for ! provides a fit
nearly as good as optimizing the different !’s separately.
Tests on pyridone tautomerism and on the Claisen
reaction show that EVB surfaces reproduce the energy
along the reaction path to chemical accuracy and can be
fit with less than 10 ab initio data points.
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Table 4. Optimized ! values for gas-phase Claisen
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K TS Reactant Product 1.5 "1.5 6 "6

1 26.718
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Table 5. Gas-phase Claisen reaction EVB analysis. Errors are determined from ab initio IRC data. Energies are in
kJmol"1, V 2

12 is in a.u.2, and angles are in degrees.

K Rn Norm[B]
Max. B
element

Max. energy
error Max. V2

12 error
Max. grad.
norm error

Mean angle
between gradients

1 61 0.09091 0.03820 59.27 1.511& 10"2 1.054& 10"1 77.1

3 61 0.09091 0.03820 39.16 1.494& 10"2 5.462& 10"2 74.5

5 61 14.85 3.155 10.53 6.672& 10"3 1.874& 10"2 56.1
5 59 1.782 0.2801 10.40 2.563& 10"3 2.008& 10"2 63.5

7 61 5.187 0.4660 3.625 3.446& 10"3 1.871& 10"2 51.4
7 59 24.42 2.492 3.826 3.544& 10"3 1.885& 10"2 62.1
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