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Abstract: A new method for constructing empirical valence bond potential energy surfaces for
reactions is presented. Building on the generalized Gaussian approach of Chang-Miller, V12

2(q)
is represented by a Gaussian times a polynomial at the transition state and generalized to handle
any number of data points on the potential energy surface. The method is applied to two model
surfaces and the HCN isomerization reaction. The applications demonstrate that the present
method overcomes the divergence problems encountered in some other approaches. The use
of Cartesian versus internal or redundant internal coordinates is discussed.

Introduction
In the empirical valence bond (EVB) approach, the potential
energy surface (PES) for a reaction in solution is modeled
as an interaction between a reactant and a product PES.1 The
interaction between surfaces results in an avoided crossing
and yields a smooth function describing the reaction on the
ground-state potential energy surface. Good empirical ap-
proximations for the noninteracting potential energy surfaces
of reactants and products are available from molecular
mechanics methods. To obtain a reliable model of a PES
for a reaction, a suitable form of the interaction matrix
element or resonance integral,V12(q), is needed.

For a two-state system, the interaction between reactant
and product surfaces is taken as a modified Morse function
in Warshel and Weiss’ original multistate EVB method.2 The
function is adjusted to reproduce barrier heights gleaned from
experiments or high-level ab initio calculations, but the form
of the surface is not flexible enough to fit frequencies at the
transition state (TS). Chang and Miller represented the square
of the resonance integral,V12

2, with a generalized Gaussian.3

The exponents of the Gaussian are chosen to fit the structure
and vibrational frequencies of the TS from electronic
structure calculations. This form of the EVB surface is
sufficiently accurate for molecular dynamics.4-12 The Chang-
Miller model has also been applied by Jensen13,14 and
Anglada et al.15 to transition-state optimizations.

More elaborate functions of the interaction matrix elements
were used in the molecular mechanics/valence bond model
developed by Bernardi et al. for exploring photochemical
reaction potential energy surfaces.16 Minichino and Voth

generalized the Chang-Miller method3 for N-state systems
and provided a scheme to correct gas-phase ab initio data
for solutions.17 Truhlar and co-workers employed a general-
ized EVB approach by using distance-weighted interpolants
to model the interaction matrix elements in their multicon-
figuration molecular mechanics method.18-20

The simplicity of the Chang-Miller resonance integral
formulation is appealing, but certain difficulties must be
overcome to provide the greater flexibility required to model
more complex chemical reactions using molecular dynamics.
The present article explores two possibilities for improving
the representation of the interaction matrix elements. In
particular, the generalized Gaussian utilized in the Chang-
Miller approach is replaced with a quadratic polynomial
times a spherical Gaussian. This avoids the well-known
problem caused by negative exponents that may arise in
practice.12,15,18Second, to improve the accuracy of the fit, a
linear combination of Gaussians times quadratic polynomials
placed at suitable locations on the potential energy surface
is employed.

Model Description
The EVB model describes a reactive PES in terms of a linear
combination of reactant and product wave functions. The
coefficients are obtained by solving a simple 2× 2
Hamiltonian for the lowest energy.

* Corresponding author. E-mail: hbs@chem.wayne.edu.

Ψ ) c1ψ1 + c2ψ2 (1)

H ) [V11 V12

V21 V22] (2)

905J. Chem. Theory Comput.2006,2, 905-911

10.1021/ct600084p CCC: $33.50 © 2006 American Chemical Society
Published on Web 05/09/2006



Each matrix element is a function of molecular geometry,
q. Good approximations forV11 andV22 are available from
molecular mechanics. However, much less is known about
the functional form of the interaction matrix element,V12.

In Warshel and Weiss’s approach,2 the interaction matrix
element V12 is chosen to reproduce the barrier height
(obtained from experiments or calculations). For cases where
greater accuracy is required, it is also desirable to match the
position and vibrational frequencies of the TS in addition to
the barrier height. The Chang-Miller approach3 describes
the interaction matrix element by a generalized Gaussian
positioned at or near the transition state

whereqTS is the transition-state geometry. The coefficients
are chosen so that the energy, gradient, and second deriva-
tives of the EVB surface match ab initio calculations at the
TS. Following Chang-Miller’s notation,3 this yields simple,
closed-form equations for parametersA, B (a vector), and
C (a matrix).

The original version of the Chang-Miller method runs
into difficulties whenC has one or more negative eigenval-
ues.12,15,18In these cases, the form ofV12

2 in eq 5 diverges
for large∆q values. The simplest solution to this problem
switches the interaction matrix element to zero in regions
where the unmodifiedV12

2 is negative or divergent.15 Another
approach is to include suitable cubic and quartic terms in
the Gaussian to control asymptotic behavior.12

In the present article, an alternative form forV12
2 is pro-

posed. Instead of using a generalized Gaussian as in eq 5, a
quadratic polynomial times a spherical Gaussian is employed.

Fitting to the energy, gradient, and Hessian at the transition
state yields the same formulas forA andB as those in the

Chang-Miller case; the expression forC is slightly different.

The exponentR is chosen to be small enough so that the
PES is smooth but not so small that the reactant and product
energies are affected significantly. One approach is to choose
R to give a good fit for the energies along the reaction path.
The form ofV12

2 in eq 7 can also be viewed as expanding
V12

2 as a linear combination of s-, p-, and d-type Gaussians.

Because the coefficients in eq 7 are linear, the procedure
can be readily generalized to include Gaussians at multiple
centers,qK. For example, one could choose to place the
Gaussian centers at the TS, reactant minimum, product
minimum, and a few points along the reaction path to either
side of the transition state. The generalized form ofV12

2 can
be written as

where NDim is 3 times the number of atoms for a Cartesian
coordinate system or the number of coordinates if internal
or redundant-internal coordinates are utilized. The Gaussian
exponents are chosen such that the fit is sufficiently smooth
for energies along the reaction path andV12

2 is acceptably
small at the reactants and products, if these are not already
included inqK. In the simplest approach, the exponents are
all equal; alternatively, if suitable criteria exist, they may
be different for different centers, or even for different
directions. TheBijK coefficients are obtained by fitting to
V12

2 and its first and second derivatives at a number of points,
qL, which can conveniently be the same asqK.

If the number of Gaussian centers is equal to the number of
points (i.e., if the number of coefficients is equal to the
number of energy values, first derivatives, and second
derivatives), this is simply the solution of a set of linear
equations.

V11 ) 〈ψ1|Ĥ|ψ1〉, V12 ) V21 ) 〈ψ1|Ĥ|ψ2〉,
V22 ) 〈ψ2|Ĥ|ψ2〉 (3)

V ) 1/2(V11 + V22) - x[1/2(V11 - V22)]
2 + V12

2 (4)

V12
2(q) ) A exp[BT‚∆q - 1/2∆qT‚C‚∆q], ∆q ) q - qTS

(5)

A ) [V11(qTS) - V(qTS)][V22(qTS) - V(qTS)] (6a)

B )
D1

[V11(qTS) - V(qTS)]
+

D2

[V22(qTS) - V(qTS)]
and

Dn )
∂Vnn(q)

∂q
|q)qTS

-
∂V(q)
∂q

|q)qTS
(6b)

C )
D1D1

T

[V11(qTS) - V(qTS)]
2

+
D2D2

T

[V22(qTS) - V(qTS)]
2

-

K1

V11(qTS) - V(qTS)
-

K2

V22(qTS) - V(qTS)
and

Kn )
∂

2Vnn(q)

∂q2 |
q)qTS

-
∂

2V(q)

∂q2 |
q)qTS

(6c)

V12
2(q) ) A[1 + BT‚∆q + 1/2∆qT‚(C + RI )‚∆q]

exp[-1/2R|∆q|2] (7)

C )
D1D2

T + D2D1
T

A
+

K1

V11(qTS) - V(qTS)
+

K2

V22(qTS) - V(qTS)
(8)

g(q,qK,0,0,R) ) exp[-1/2R|q - qK|2]
g(q,qK,i,0,R) ) (q - qK)i exp[-1/2R|q - qK|2]

g(q,qK,i,j,R) ) (q - qK)i(q - qK)j exp[-1/2R|q - qK|2] (9)

V12
2(q) ) ∑

K
∑

igjg0

NDim

BijKg(q,qK,i,j,R) (10)

V12
2(qL) ) ∑

K
∑
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NDim

BijKg(qL,qK,i,j,R)

∂V12
2(q)

∂q
|
q)qL

) ∑
K

∑
igjg0
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2V12
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∂q2
|
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K
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NDim
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∂
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DB ) F (12)
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whereD is a matrix containing the values ofg(qL,qK,i,j,R),
∂g(qL,qK,i,j,R)/∂q|q)qL, and∂2g(qL,qK,i,j,R)/∂q2|q)qL andF is
a column vector containing the values ofV12

2(qL), ∂V12
2(q)/

∂q|q)qL, and∂2V12
2(q)/∂q2|q)qL. Even with only a few expan-

sion centers, the eigenvalues ofD become very small because
of strong overlap between the Gaussians. In this case, the
coefficients can be chosen in a least-squares manner. Sim-
ilarly, if the number of Gaussian centers in the expansion is
chosen to be smaller than the number of points whereV12

2

and its derivatives are evaluated, then the coefficients can
also be obtained in a least-squares manner.

whereW is a diagonal weighting matrix. This can be solved
easily using singular value decomposition.

Examples
One-Dimensional Test CasesIntersecting Morse CurVes.A
simple one-dimensional potential energy curve can be con-
structed from two intersecting Morse curves, as shown in
Figure 1a. This resembles the potential energy along the
reaction path for hydrogen abstraction reactions, X-H + Y
f X + H-Y, and similar atom-transfer processes involving
the forming and breaking of single bonds. The parameters
for the Morse curves areDe ) 0.12 and 0.16 au with force
constants at the minima of 0.40 and 0.50 au, respectively;
the curves are displaced by 3.00 au and interact by a small

matrix element,V12
2 ) 0.010 au. The empirical valence bond

approximation to the surface is constructed from two
quadratic potentials fitted to the individual Morse functions
at their minima. As can be seen from Figure 1a, in the region
of the transition state,V11 andV22 are much higher than the
potential energy curve being modeled. Hence,V12

2 will have
to be quite large, providing a suitable challenge for the
methodology.

Starting with Warshel and Weiss’s method,2 V12
2 is set

equal to a constant. In Figure 1b, the constant is chosen to
reproduce the forward barrier height, and the curve is dis-
placed to match the energies of the reactant and TS. Note
that the resulting minima positions are shifted, the barrier
width is too small, and the reaction exothermicity is too large.
With only one parameter, fitting the potential energy curve
well is difficult.

In the Chang-Miller approach,V12
2 is represented by a

generalized Gaussian, with the parameters fitted to the tran-
sition-state energy, gradient, and Hessian. For this example,
the parameters for eq 5 areA ) 0.167,B ) 0.385, andC )
1.988. As shown in Figure 1c, this yields a significant im-
provement in fit to the potential energy curve. BecauseV12

2

is not zero at the reactant and product geometries, the minima
are slightly displaced, though not as much as in Figure 1b.
WhenV12

2 is represented by a single Gaussian times a qua-
dratic polynomial, Figure 1d, the results are similar to the
Chang-Miller approach. The Gaussian exponentR can be
varied over the range 1.5-3.0 (bracketing the Chang-Miller

Figure 1. (a) One-dimensional potential energy curve (solid line) constructed from two interacting Morse curves (chain-dot).
V11 and V22 (long dash) are quadratic functions fitted to the minima of the Morse curves, fitted using various EVB models (short
dash). (b) EVB model with constant V12

2. (c) Chang-Miller EVB model with V12
2 represented by a generalized Gaussian. (d)

EVB model with V12
2 represented by a quadratic polynomial times a Gaussian. (e) EVB model with a three-Gaussian fit.

minimize(DB - F)TW(DB - F)

DTWDB ) DTWF (13)

Empirical Valence-Bond Models J. Chem. Theory Comput., Vol. 2, No. 4, 2006907



exponent) and provides some additional flexibility in fitting
the potential. If the exponent is chosen to be too large,V12

2

is too narrow and the EVB curve no longer descends
smoothly from the transition state.

A better fit is obtained by using three Gaussians times
quadratic polynomials, for example, one at the transition
state, another halfway between the TS and the reactant, and
the third halfway between the TS and the product. Figure
1e shows that this approach produces a very good fit to the
potential energy curve for suitably chosen exponents. The
additional two Gaussians could also be placed at the minima,
but this does not yield as smooth a curve. For more difficult
cases, it could be beneficial to utilize five Gaussians: one
at the TS, one at each minimum, and one halfway between
the TS and each minimum.

Two-Dimensional Test CasesMüller-Brown Surface.The
Müller-Brown surface21 is a convenient two-dimensional
example frequently used as a test case for optimization
algorithms and reaction-path-following methods:

whereA ) {-200,-100,-170, 15),x0 ) {1, 0,-0.5,-1},
y0 ) {0, 0.5, 1.5, 1}, a ) {-1, -1, -6.5, 0.7}, b ) {0, 0,
11, 0.6}, and c ) {-10, -10, -6.5, 0.7}. As shown in
Figure 2a, the surface has three minima. The upper two
minima are connected by a rather curved reaction path and
serve as a suitable test case for the EVB model. TheV11 and
V22 potentials are chosen as quadratic functions fitted to these
two minima. Figure 2b demonstrates that the Chang-Miller
method produces a good representation of the surface when
the Gaussian forV12

2 is placed at the lowest point on the
intersection seam ofV11 andV22. Bofill et al. has used this
approach in modeling potential energy surfaces for transition-
state optimizations.15 However, placing a Gaussian for the
Chang-Miller method at the TS yields a very poor ap-
proximation of the Mu¨ller-Brown surface, as seen in Figure
2c. This is because the matrixC has one negative eigenvalue,
causingV12

2 to diverge along the corresponding direction.

If V12
2 is represented by a Gaussian times a quadratic

polynomial placed at the transition state, then a good
approximation to the Mu¨ller-Brown surface is obtained, as
shown in Figure 2d. A better fit to the ridge separating the
two minima may be constructed by placing two additional

Figure 2. (a) Müller-Brown potential. (b) Chang-Miller EVB model with the V12
2 Gaussian placed at the minimum on the

intersection seam of V11 and V22. (c) Chang-Miller EVB model with the V12
2 Gaussian at the TS. (d) EVB model with V12

2

represented by a quadratic polynomial times a Gaussian at the TS. (e) EVB model with a three-Gaussian fit. (f) EVB model with
an eight-Gaussian fit. In parts b-f, the points indicate positions of the Gaussians used to construct V12

2.

V(x,y) ) ∑ Ai exp[ai(x - xi
0)2 + bi(x - xi

0)(y - yi
0) +

ci(y - yi
0)2] (14)
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Gaussians along the ridge, Figure 2e. The surface can be
improved further by including more Gaussians, Figure 2f.

Molecular CasesHCN f HNC. The isomerization of
hydrogen cyanide is a simple unimolecular reaction often
employed to test potential energy surface exploring algo-
rithms. Because the C-N bond length changes little during
this process, the key components of the potential energy
surface can be easily visualized in two dimensions by plotting
energy as a function of the hydrogen position. In internal
coordinates involving bond lengths and angles, the reaction
path is relatively linear. However, if Cartesian coordinates
are used for the hydrogen, the reaction path is approximately
a semicircle and fitting the surface should be more chal-
lenging. In particularly, an EVB model withV11, V22, and
V12

2 in Cartesian coordinates is better suited for straight
valleys rather than curved paths.

The transition state and reaction path for the HCNf HNC
surface were calculated using the HF/3-21G level of
theory.22-26 First and second derivatives were calculated at
the transition state, the two minima, and selected points along
the reaction path as input for the EVB model. The results
are shown in Figure 3. Applying a Gaussian times a
polynomial at the transition state yields a surface with some
problems, Figure 3a. As a result of using Cartesian coordi-

nates for the EVB surface, the minima valleys do not curve
toward the transition state. The minima appear to have moved
off the C-N axis as a consequence of fitting theV12

2 only
at the transition state. When two additional Gaussians (R )
0.5) at the minima are included, Figure 3b, the energy,
gradients, and Hessians at the minima are reproduced
correctly by the EVB surface. However, the valleys still do
not properly curve toward the TS, and there are spurious
minima for bent structures. Adding two more points between
the TS and the minima, Figure 3c, corrects the curvature of
the valleys and eradicates the spurious minima. Two ad-
ditional points near the transition state serve to improve the
width of the potential energy surface through the transition
state, Figure 3d. Extra points near the minima, Figure 3e,
do not seem to provide any additional improvement.

As an alternative to Cartesian coordinates, internal coor-
dinates can be used to constructV11 andV22 and to fitV12

2.
Internal coordinates are more natural coordinates for this
surface with a curved reaction path than Cartesian coordi-
nates. To include the coordinates appropriate for both
reactants and products, a redundant internal coordinate
system consisting of R(CN), R(CH), R(NH),∠HCN, and
∠HNC was chosen. The simple Chang-Miller approach had
difficulties because of negative eigenvalues inC. A Gaussian
times a quadratic polynomial provided a very reasonable fit
to the surface, as shown in Figure 4a. Adding Gaussians near
the reactant and product minima improves the surface
somewhat, Figure 4b, primarily by providing a better fit
around the minima. With anR value of 0.8 au for all
Gaussians, the maximum error in the energy for points along
the reaction path is 0.0025 au. Including two additional points
along the reaction path on either side of the transition state
reduced this error by a factor of 10 (Figure 4c,R ) 1.5 au).

Figure 3. EVB fit to the potential energy surface for HCN f
HNC using a Gaussian times a polynomial for V12

2 in
Cartesian coordinates. The carbon is at the origin; the nitrogen
is at (1.116, 0.000), and the energy is plotted as a function of
the Cartesian coordinates of the hydrogen. The points in a-e
indicate the positions of the Gaussians used to construct V12

2.

Figure 4. EVB fit to the potential energy surface for HCN f
HNC using harmonic functions for V11 and V22 in redundant
internal coordinates (C-N stretch, C-H stretch, N-H stretch,
∠H-C-N bend, and ∠H-N-C bend) using a Gaussian times
a polynomial for V12

2 in redundant internal coordinates. The
carbon is at the origin; the nitrogen is at (1.116, 0.000), and
the energy is plotted as a function of the Cartesian coordinates
of the hydrogen. The points in a-c indicate the positions of
Gaussians used to construct V12

2.
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Further reduction in the error can be achieved by adding
more Gaussian centers at appropriate places on the surface.

As can be seen from Figures 3 and 4, the choice forV11

and V22 clearly has a profound effect on the shape of the
potential energy surface in the regions away from the reaction
path and fitting points. The simple harmonic functions used
in Figures 3 and 4 were chosen to challenge the fitting
procedure. More realistic potentials employed in molecular
mechanics force fields include anharmonic stretching and
bending potentials and nonbonded repulsions. Results em-
ploying such potentials are summarized in Figure 5 and
compared to the actual HCNf HNC surface obtained by
calculating the energy at the HF/3-21G level of theory on a
suitable grid of points depicted in Figure 5d. To represent
V11 in HCN, we employed Morse functions for the CN and
CH bond stretches, harmonic potentials for the HCN bend
and the CN-CH stretch-stretch interaction, and Lennard-
Jones potentials for the nonbonded N-H interaction (an anti-
Morse function works just as well; alternatively, a suitable
anharmonic bend could have been used). Although the N-H
nonbonded interaction would normally be covered by an-
harmonic bending terms in conventional force fields, a
Lennard-Jones potential was employed to test the robustness
of our fitting procedure. The corresponding coordinates were
used inV22 for HNC. The interaction matrix element,V12

2,
was represented by one or more Gaussians times polynomials
in Cartesian coordinates and fit to energies, Cartesian

gradients, and Cartesian Hessians at selected points along
the reaction path. A very good EVB surface is obtained with
V12

2 fit by only a single Gaussian times a quadratic
polynomial at the transition state. The minima and shape of
the reaction path are represented well. With suitably chosen
dissociation energies for the Morse, the asymptotic form of
the surface is also reproduced well. Including Gaussians at
the minima does not change the surface, but adding two
additional points between the minima and the TS improves
the EVB surface. For the EVB surfaces shown Figure 5c,
V12

2 fit by five Gaussians with an exponent of 0.7 au yields
a maximum error of 0.00013 au for the energy for points
along the reaction path.

The logical extension of the tests cases illustrated in
Figures 3-5 is the combination of anharmonic potentials
for V11 and V22 in the natural internal coordinates for the
reactants and products andV12

2 represented by a series of
Gaussians times quadratic polynomials in redundant internal
coordinates. As in the quadratic synchronous transit transi-
tion-state optimization procedures,23 these redundant internal
coordinates are best chosen as the union of the reactant and
product internal coordinates, augmented by any additional
internal coordinates required to represent interactions found
only in the reactive region of the potential energy surface.
For an improved fit toV12

2, the Gaussians at the reactants,
products, and transition states (and possible intermediates
along the reaction path) should be augmented by additional
Gaussians placed between those stationary points and the
transition states along the reaction path. Extra fitting points
can be added to represent special features such as the
tunneling region near a saddle point or extended ridges
separating reactant and product valleys. Molecular dynamics
can locate additional areas of the potential energy surface
where extra fitting points may be needed, in a manner akin
to the “GROW” procedure of Collins.27

Summary
The present work investigates some alternatives for repre-
sentingV12

2 employed in constructing EVB-type potential
energy surfaces for later use in molecular dynamics calcula-
tions of chemical reactions. The use of a Gaussian times a
quadratic polynomial forV12

2 instead of the generalized
Gaussian used in the Chang-Miller method has been
proposed. This approach overcomes the divergence difficul-
ties often encountered in practice when the generalized
Gaussian is used to fit to the energy, gradient, and Hessian
at a transition state. The approach is extended by representing
V12

2 as a linear combination of Gaussians times polynomials
at selected points anywhere on the surface. The utility of
the methodology is illustrated by applications to some simple
one- and two-dimensional model surfaces along with the
surface for the HCNf HNC isomerization reaction. A single
Gaussian times a quadratic polynomial performs as well as
the Chang-Miller approach where the latter succeeds and
gives a good fit even when Chang-Miller has divergence
difficulties. Better fits to potential energy surfaces are
obtained with a distribution of Gaussians, particularly when
the reaction path is curved or when the coordinates system
makes the fit challenging. For HCNf HNC, the effect of

Figure 5. EVB fit using anharmonic functions for V11 and V22
in nonredundant (Z-matrix) internal coordinates (Morse for
stretch, harmonic for bend, LJ for repulsion) and Gaussians
times a polynomial in Cartesian coordinates for V12

2. The
carbon is at the origin; the nitrogen is at (1.116, 0.000), and
the energy is plotted as a function of the Cartesian coordinates
of the hydrogen. The points in a-c indicate the positions of
the Gaussians used to construct V12

2. (d) The potential energy
surface for HCN f HNC calculated at RHF/3-21G.
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the coordinate system on the quality of the EVB surface was

explored. Internal coordinates performed better than Cartesian

coordinates; however, both coordinate systems could be used

to fit the potential energy along the reaction path to within

chemical accuracy with as few as five fitting points. The

quality of the surface away from the fitting points depends

on the choice ofV11 andV22. Anharmonic, internal coordinate

potentials with the proper asymptotic behavior produce a

significantly improved global surface when compared to

harmonic potentials in either Cartesian or internal coordi-

nates. There is no restriction on the coordinate system or

placement of the Gaussians representingV12
2 in the current

method, and extra points can be added to fine-tune special

features on the surface. Practical methods for the automatic

placement of the Gaussians will be explored in future

work.
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