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Geometry optimization of large QM/MM systems is usually carried out by alternating
a second-order optimization of the QM region using internal coordinates (‘macro-iterations’),
and a first-order optimization of the MM region using Cartesian coordinates (‘micro-

iterations’), until self-consistency. However, the neglect of explicit coupling between the
two regions (the Hessian elements that couple the QM coordinates with the MM coordinates)
often interferes with a smooth convergence, while the Hessian update procedure can be

unstable due to the presence of multiple minima in the MM region. A new geometry opti-
mization scheme for QM/MM methods is proposed that addresses these problems.
This scheme explicitly includes the coupling between the two regions in the QM optimization
step, which makes it quadratic in the full space of coordinates. Analytical second derivatives

are used for the MM contributions, with O(N) memory and CPU requirements (where N is the
total number of atoms) by employing direct and fast multipole methods. The explicit coupling
improves the convergence behaviour, while the Hessian update is stable since it no longer

involves MM contributions. Examples show that the new procedure performs significantly
better than the standard methods.

1. Introduction

Geometry optimization is an integral part of studies

employing electronic structure methods, because the
location of minima and saddle points is essential for
the understanding of reaction mechanisms [1]. The
most sophisticated geometry optimization methods

have computational cost for each iteration that
scales cubically with the size of the system, while the
simpler optimization methods scale linearly, but may
require many more cycles to converge. This implies

that there is a trade-off between the cost of the
geometry optimization and the cost of the required
energy and derivatives calculations, which means that
the choice of geometry optimization method depends
on the size of the system and the computational

method employed. In practice, the cubic-scaling opti-
mization methods are used for small or medium sized

systems treated with expensive computational methods,

while the less-expensive methods are used for large

systems treated with semi-empirical or molecular

mechanics methods.
For QM/MM methods, geometry optimization

methods have been developed that do not belong in

the categories above [2–8]. These methods exploit

particular features of QM/MM schemes, such as the

large difference in computational cost between QM

and MM methods and the nature of the coupling

between the regions. The key concept is to use different

types of optimizers for the QM region and for the MM

region. First, the MM region is fully minimized, while

keeping the QM region fixed, using an optimization

scheme appropriate for large systems treated with

inexpensive computational methods. This is followed

by a single geometry step in only the QM region, using

an optimization scheme that is appropriate for small

systems treated with expensive methods. These two

steps are alternated until both regions are converged.*Corresponding author. Email: thom@gaussian.com
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The single step in the QM region is referred to as macro-
iteration, and the full minimization in the MM region
is referred to as micro-iteration.
Despite the apparent success of such QM/MM

optimization methods, there are significant draw-
backs caused by the particular Hessian update and the
neglect of second-order coupling between the regions.
This results in a strongly compromised convergence
behaviour. In the remainder of this Introduction we
will review hybrid methods, conventional geometry
optimization schemes, and QM/MM geometry opti-
mization schemes, allowing us to identify problems.
In section 2 we present our improved QM/MM geom-
etry optimization scheme, of which the incorporation
into the Gaussian suite of programs [9] is discussed
in section 3. In section 4 we apply the method to several
small systems, as well as a large biochemical system.

1.1. Hybrid methods

Hybrid methods combine two or more computational
levels in one calculation, and allow the accurate study
of the chemistry of very large systems. Examples of such
techniques are the QM/MM methods [10–12], which
combine a quantum mechanical (QM) method with
a molecular mechanics (MM) method, and the more
general ONIOM scheme [4, 13–26], which can combine
any number of molecular orbital (MO) methods, as well
as MM methods. The region of the system where the
chemical process takes place, for example bond breaking
and formation, is treated with an appropriately accurate
method, while the remainder of the system is treated at
the lower level. The successes of hybrid methods in the
study of chemical problems have been subject of several
reviews [27–34]. A variety of QM/MM methods have
been reported in recent years, which differ in the details,
but are conceptually quite similar. In the present work
we will outline our geometry optimization methods
using the ONIOM(QM:MM) framework, but it should
be noted that they are easily adapted to other QM/MM
implementations.
In a two-layer ONIOM(QM:MM) calculation, the

total energy of the system is obtained from three
independent calculations.

EONIOMðQM:MMÞ ¼ E real,MM þ Emodel,QM � Emodel,MM

ð1Þ

The ‘real’ system contains all the atoms, and is calcu-
lated only at the MM level. The ‘model’ system contains
the part of the system that is treated at the QM level.
Both QM and MM calculations need to be carried
out for the model system. Unlike most other QM/MM

schemes the ONIOM energy is defined as an extrapo-
lation, which allows for combinations of QM with QM,
as well as QM with MM.

When there is covalent bonding between the QM and
MM regions, we saturate the dangling bonds with link
atoms. The model system now includes both the QM
layer and the link atoms. The latter are usually hydrogen
atoms, but can be any atom that mimics the substituent
group. The position of a link atom is obtained by scaling
the distance between the centre to which it is connected,
and the atom that it substitutes [15]. Because the
positions of the atoms in the model system are defined
in terms of the atoms in the real system, the potential
energy surface, and therefore geometry optimization, is
well defined. The ONIOM gradient is obtained from:

g ONIOM ¼
@EONIOM

@x
¼

@Ereal,MM

@x

þ
@Emodel,QM

@xm
J�

@Emodel,MM

@xm
J

¼
@E real,MM

@x
þ
@Emodel,QM

@x
�
@Emodel,MM

@x

ð2Þ

The Jacobian J converts the coordinate system for
the model system xm to the coordinate system for the
real system x. Other properties can be expressed in a
similar fashion. In the current work the Hessian plays
a central role. Because the Jacobian J does not depend
on x, there are no first-order terms in the expression
for the ONIOM Hessian.

HONIOM ¼ Hreal,MM þHmodel,QM �Hmodel,MM ð3Þ

where

Hmodel,level ¼
@2Emodel,level

@x@x
¼ Jt

@2Emodel,level

@xm@xm
J ð4Þ

Besides allowing for QM/QM combinations and
three or more layers, there are several differences
between ONIOM and other QM/MM methods. First,
many QM/MM schemes use frozen orbitals instead
of link atoms to treat the boundary [35–37]. Through
the required parameterization and the use of p and d
orbitals, frozen orbitals can describe a more accurate
charge density than hydrogen link atoms. The number
of studies that directly compare link atom methods
with frozen orbital methods is limited [37, 38], but
it seems generally accepted that the latter can provide
a better description of the boundary. However, one of
the attractive features of the link atom scheme is exactly
that it does not require parameterization, which ensures
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that any electronic structure method can be used in the
ONIOM scheme without additional work. It is for
this generality that we have not implemented frozen
orbitals in our scheme. It must be noted that also the
‘character’ of link atoms can be adjusted by changing its
electro-negativity using a shift operator [39], or adjust-
ment of the parameters if a semi-empirical method is
used [40]. Besides frozen orbitals and link atoms, which
are used by the majority of QM/MM schemes, some
implementations use other techniques, such as pseudo
potentials [41, 42].
Second, in the standard ONIOM(QM:MM) scheme,

the coupling between the two regions is treated com-
pletely by molecular mechanics calculations. This is
usually referred to as ‘mechanical embedding’. Many
other QM/MM schemes employ ‘electronic embedding’,
which includes the charge distribution of the MM region
in the QM wave function optimization [43]. Electronic
embedding allows for polarization of the wave function,
and provides a more accurate description of the electro-
static interaction between the two regions. Although
we have extended the basic ONIOM scheme to include
electronic embedding [18, 23], we will only consider
mechanical embedding in the present paper. In the
discussion section, we comment on the generalization
of our new geometry optimization scheme to other
types of QM/MM embedding.

1.2. First- and second-order geometry
optimization methods

Most geometry optimization schemes are either first
order or second order. In first-order schemes, the
gradient is used to determine the next point along the
optimization path. The simplest example is steepest
descent (SD), in which a step is taken in the direction of
the negative of the gradient. Other first-order schemes,
such as conjugate gradient (CG), also use information
obtained along the optimization path. The computa-
tional cost to determine the step scales more or less
linearly with the size of the system, which makes first-
order schemes the method of choice for large systems
studied with inexpensive computational methods that
evaluate the energy and gradient with linear cost as well,
usually empirical or semi-empirical methods.
Second-order schemes use gradient (g) as well as

Hessian (H) information to determine the step. Assume
a second-order truncation of the potential surface.

Eðqþ�qÞ � EðqÞ þ g�qþ
1

2
�qtH�q ð5Þ

The Newton–Raphson (NR) equations determine the
direction and magnitude of the step �q by requiring

the gradient to become zero in the second-order
approximation of the surface:

�q ¼ �H�1g ð6Þ

The analytical evaluation of the Hessian is expensive
for accurate computational methods. Therefore, second-
order optimizers usually employ a Hessian update
mechanism. This does require an initial guess for the
Hessian, which can be obtained analytically, at a lower
(less expensive) computational level, or empirically.

However, NR optimization leads to a saddle point
if the Hessian is not positive definite. It is also prone
to ‘overstep’ the minimum on flat potential surfaces, or
take steps that are too large when the optimization is
far from convergence. These problems are addressed by
the rational function optimization (RFO) method [44],
which controls the step size, and always takes a step
downhill, even when the Hessian is not positive definite.
Close to convergence, RFO takes steps similar to NR,
while far from convergence the steps are similar to
those in SD schemes. For minimizations, �q is obtained
from the eigenvector with the lowest eigenvalue of the
augmented Hessian:

H g

gt 0

" #
�q

1

" #
¼ �

�q

1

" #
ð7Þ

The second-order methods perform generally much
better than first-order methods. However, from
equations (6) and (7), it follows that storage and either
diagonalization or inversion of the Hessian (or augmen-
ted Hessian) is required. This is trivial for small systems,
but becomes a bottleneck for systems of thousands
or tens of thousands of atoms. A variety of direct
methods have been developed that make this part of the
scheme scale more favourable, such as Hessian update
mechanisms that do not require full storage [45–54],
and fast methods for solving the linear equations [55].
Despite these developments, the geometry optimization
of very large systems is still usually carried out with
first-order methods.

1.3. Coordinate systems

In electronic structure methods, the nuclear derivatives
of the energy are evaluated in the Cartesian coordi-
nate space. Cartesian coordinates, however, are strongly
coupled, and the rate of convergence is improved by
carrying out the geometry optimization in redundant
internal coordinates [56–62]. In our program we use
simple redundant coordinates, which consist of all
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the bond stretches, angle bends, and dihedral angles that
are present in the system. To carry out an optimization
in redundant internals, the derivatives of the energy need
to be transformed to the internal coordinate space, while
the resulting geometry displacement needs to be trans-
formed back to Cartesian coordinates. The formalism
and notation in reference [59] will be followed in the
present work.
The internal redundant and Cartesian coordinates

are contained in vectors q and x, respectively. The trans-
formation of the gradient vector in internal coordinates
g¼ @E/@q to the gradient vector in Cartesian coordinates
G¼ @E/@x, can be written as

g ¼ Btg ð8Þ

B is the Wilson B matrix [63], which contains the relation
between the Cartesian and internal displacements.
B is sparse and trivial to compute:

Bij ¼
@qi
@xj

ð9Þ

For the transformation of the Cartesian gradient to
internal coordinate gradient, we need @xi/@qi, which
is obtained using the generalized inverse G�

¼ (BBt)�:

g ¼ G�Bg ð10Þ

The evaluation of G� represents the computational
bottleneck in this scheme. The computational cost
for the inversion scales cubically with the number of
variables, which causes the geometry optimization in
redundant internals to be impractical for large systems.
Although methods have been proposed to alleviate
this bottleneck [6, 55, 64–70], optimization in Cartesian
coordinates seems still the best choice for very large sys-
tems treated with inexpensive computational methods.
The infinitesimal displacement from internal coordi-

nates to Cartesian coordinates can be written as

dq ¼ Bd x ð11Þ

Since the transformation is curvilinear for finite
displacements, the geometry displacement needs to be
obtained by iteratively solving equation (11).
In second-order schemes that use analytical second

derivatives, the Hessian needs to be transformed as well.
By differentiating equation (8), we obtain H¼BtHBþ

B0tg, which we can use for the expression of the Hessian
in internal coordinates:

H ¼ G�BðH � B0tgÞðG�BÞt ð12Þ

B0 denotes the derivative of the B matrix, with ele-
ments defined as B0

ijk ¼ @qi=@xi@xk, and can be computed
analytically. The gradient contribution B0tg contains
the second-order relation between the infinitesimal
displacement of internal coordinates and Cartesian
coordinates.

Finally, we need to modify the gradient and Hessian
to account for possible constraints and the redundancies
in the coordinate system. The constraints and redun-
dancies are projected from the gradient and Hessian
using projector P, and assigned large eigenvalues �.
Note that the number of coordinates in the geometry
optimization is not reduced. Other implementations may
define a new coordinate system that explicitly excludes
the redundancies and constrained variables, and use
that for the geometry optimization.

~g ¼ Pg ð13Þ

~H ¼ PHPþ �ð1� PÞ ð14Þ

The second-order RFO optimization in redundant
internal coordinates with an updated Hessian is the
most commonly used scheme for relatively small
systems. However, for large systems typically encoun-
tered in fields such as material science and biochemistry,
the bottlenecks discussed in the previous paragraphs
prohibit the use of these schemes. First, the evaluation
and storage of the Hessian, whether analytical or
updated, scales at least quadratically with the size of
the system. Second, the evaluation of G� scales cubically
in CPU, while the storage is quadratic. The solution
of the RFO or NR equations scales cubically in CPU
as well.

1.4. QM/MM geometry optimization

For QM/MM optimizations, the bottlenecks related
to the coordinate transformation and the solution of the
RFO equations can be avoided by employing a hybrid
first/second-order scheme [2–8]. As mentioned earlier,
this procedure alternates micro-iterations in the MM
region with a macro-iteration of the QM region, until
both regions are converged. For the micro-iterations,
we use a simple, first-order method in Cartesian
coordinates, avoiding the need for coordinate trans-
formations and matrix inversions or diagonalizations.
Because the QM region is kept fixed, only energy
and gradient evaluations at the MM level of theory
are needed. Note that during the micro-iterations, we
use the QM/MM gradient as defined in equation (2),
and therefore optimize on the ‘true QM/MM potential
surface’. In the subsequent macro-iteration, after the
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MM region is fully minimized, we carry out a single
geometry optimization step in the QM region. For this

step we use a second-order procedure in redundant
internal coordinates, and keep the MM region fixed.
The alternating macro-step and micro-optimization
is repeated until all forces are zero. Separating the
optimizations in this manner avoids the bottlenecks

associated with each optimization scheme.
Note that the QM step is formally a step in the full

QM/MM (mixed internal/Cartesian) coordinate space,
with the assumptions that there is no coupling between
the regions, and that the forces in the MM region

are converged to zero before the macro-step and that
after the macro-step the MM coordinates rearrange
to the condition of zero forces on these atoms. The
NR and RFO equations then hold, and yield zero or
undefined displacement for the MM region:

�q
QM
NR

�qMM
NR

2
4

3
5 ¼ �

HQM 0

0 1

2
4

3
5

�1
gQM

0

2
4

3
5

¼ �
ðHQMÞ

�1 0

0 1

2
4

3
5 gQM

0

2
4

3
5

ð15Þ

�q
QM
NR ¼ �ðHQMÞ

�1gQM; �qMM
NR ¼ 0 ð16Þ

HQM 0 gQM

0 1 0

ðgQMÞ
t 0t 0

2
664

3
775

�q
QM
RFO

�qMM
RFO

1

2
664

3
775 ¼ �

�q
QM
RFO

�qMM
RFO

1

2
664

3
775 ð17Þ

HQM gQM

ðgQMÞ
t 0

" #
�q

QM
RFO

1

" #
¼ �

�q
QM
RFO

1

" #
ð18Þ

However, there are several problems with the standard

macro/micro-iteration scheme as outlined above. First,
the Hessian that is updated corresponds to the full
QM/MM energy, and uses the QM/MM gradients,
but involves only the redundant internal variables. Thus

the Hessian is well defined, but the standard update
procedures are not. As an illustration, consider the
following situation: During the optimization process,
the MM region (or more precisely, the region that is

not described by the internal coordinates), finds a lower
minimum. This switch may change forces on an internal
coordinate. Now in the Hessian update algorithm,
it is assumed that a change in these forces is always

the result of a change in the internal coordinates.

The consequence is that spurious force constants are

introduced. In fact, this problem can corrupt the

Hessian so badly that it has a completely wrong

curvature, and re-initializing the Hessian is the only

way to continue the geometry optimization. One can use

update schemes that force the Hessian to be positive

definite to avoid this problem to some extent, but

this is done at the expense of accuracy in the Hessian

and still leads to poor convergence. The second problem

in the standard micro-iteration scheme involves the

neglect of coupling between the QM region and the MM

region. This follows from the structure of the Hessian

in equations (15) and (17), and clearly compromises

the convergence behaviour, often leading to oscillations

in the macro and micro-steps. Third, for equations

(15)–(18) to hold, the forces of the MM region must be

zero, which requires very tight convergence criteria for

the optimization of the MM region. For these reasons,

the convergence behaviour of the standard macro/

micro-iteration scheme is not as good as one usually

experiences with conventional second-order methods.

The overall performance is still improved compared

to the alternative of using a conventional first-order

optimization scheme, but it is clear that there is much

room for improvement.
Addressing the problems outlined in the previous

paragraphs, we can define a set of requirements for

a stable and practical QM/MM macro optimization

step. First, the Hessian update must be well defined.

Second, we need to include the coupling between the

MM and QM regions. This coupling will be completely

described by MM contributions, preferably analytically

and exact. To make the scheme feasible for systems with

very large MM regions, the inclusion of the coupling

must scale linearly in both memory and CPU. Third,

we want to be able to incorporate all the techniques

common in regular second-order optimization schemes,

such as trust radius update mechanisms and linear

searches, and to apply these to a full step involving

all the coordinates.

2. Methods

As outlined in the previous paragraphs, common

QM/MM geometry optimization schemes do not include

second-order coupling between QM coordinates and

MM coordinates, and suffer from a numerically instable

Hessian update. In this section we outline the methods

that allow us to explicitly include the coupling between

the QM region and the MM region, and carry out

a numerically stable Hessian update. In our method
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we solve the RFO equations for the full QM/MM space
of coordinates.

HONIOM gONIOM

ðgONIOMÞ
t 0

" #
�qONIOM

1

" #

¼

HQM Hcoupling gQM

Hcoupling HMM gMM

ðgQMÞ
t

ðgMMÞ
t 0

2
64

3
75

�qQM

�qMM

1

2
64

3
75

¼ �

�qQM

�qMM

1

2
64

3
75

ð19Þ

Because we want our method to be applicable to
very large systems, we cannot assume that the complete
Hessian can be stored in memory, nor can we perform
operations with cost scaling quadratically or cubically
with the size of the system. We therefore employ direct
methods. We use the iterative Davidson diagonaliza-
tion algorithm to solve the RFO equations [71]. The
algorithm uses the matrix only as an operator in forming
products with vectors, and hence does not require
storage of the Hessian, but only of a few vectors.
Below we outline how we can evaluate the Hessian
vector product with O(N) scaling in both memory and
CPU time. For the QM contribution to the QM/MM
Hessian (resulting from Hmodel,QM in equation (3)) we
can use either an update mechanism, or we can calculate
the contribution analytically. For the MM contribu-
tions, resulting from Hreal,MM and Hreal,MM, we always
use analytically evaluated second derivatives. This
implies that both HMM and Hcoupling in equation (19)
are included analytically, because these blocks do not
have contributions from Hmodel,QM. As coordinate
system, we continue to use redundant internal coordi-
nates for the QM region and Cartesian coordinates
for the MM region. In addition, we allow parts of the
MM region to be defined as rigid fragments. After we
outline the techniques that make solving equation (19)
feasible, we give details about our implementation.

2.1. Coordinate system

The system is divided up into several parts, which are
each treated with a different type of coordinate in
the geometry optimization. Region I includes the atoms
that are treated with redundant internal coordinates.
This region is usually identical to the QM/MM model
system (or QM region), but may be larger. In this
text, for simplicity, we assume the QM region and
the link atoms to be treated with redundant internals.

The second region C consists of the MM atoms that
are optimized with Cartesian coordinates. Third, we
allow groups of MM atoms to maintain their relative
position during the optimization, i.e. we treat them
as rigid fragments. For clarity we include only two
fragments in our equations, K and L. Last, the system
can contain a frozen MM region, denoted by F.
The total Cartesian coordinate vector can be written in
terms of the different regions.

xt ¼ ½xtI xtC xtK xtL xtF� ð20Þ

The vector that contains the coordinates for the geome-
try optimization can be written in terms of the different
types of variables.

qt ¼ ½qtI qtC qtI0 qtK qtL� ð21Þ

qI are the redundant internal coordinates that describe
region I, and qC the Cartesian coordinates that describe
region C. qK describe the rotation and translation
of rigid fragment K, and qI0 describe in the same way
the rotation and translation of the internal coordinate
region. We assume that the rigid fragments have at least
three atoms, and are not linear. We need to include qI0

in the geometry optimization because the energy of the
region described by internal coordinates is not invariant
to translation and rotation if there are frozen atoms
in the MM region.

The qI coordinates are the same as in conventional
geometry optimization discussed in section, and the
qC coordinates are identical to xC. We now define
the coordinates used for the rigid fragments. The
position and orientation of a fragment are described
by three translational ðqK ’Þ and three rotational ðqK � Þ

coordinates:

qtK ¼ ½qtK’ qtK� � ¼ ½’Kx ’Ky ’Kz �Kx �Ky �Kz � ð22Þ

The Cartesian coordinates of centre i, xK,i ¼

½xK,i yK,i zK,i�
t in this rigid fragment are related to

the translational and rotational coordinates by

xK,iðqKÞ ¼ OK þ S’
KqK’ þ TxTyTz½xK,ið0Þ �OK� ð23Þ

O is the origin (usually the centre of mass) of the rigid
fragment, and xKi

ð0Þ denotes the initial Cartesian
coordinates of the rigid fragment. The rotation matrices
T contain the variables qtK� ¼ ½�Kx �Ky �Kz �:

Txð�Kx Þ ¼

1 0 0

0 cosðsK� �
K
x Þ sinðsK� �

K
x Þ

0 � sinðsK� �
K
x Þ cosðsK� �

K
x Þ

2
64

3
75 ð24Þ
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The translational and rotational variables can be scaled,
with factors s’K and sK� respectively, to make the gradi-
ents of similar order of magnitude as the internal and
Cartesian coordinates. The values of the scaling factors
depend on the internal geometry of the fragment. In our
current implementation we do not scale the translational
variables, and use sK� ¼ ð

P
i xK,ið0Þ �OKj
�� Þ

�1=2 for the
rotational variables. This ensures stability for both small
and very large rigid fragments.

2.2. Transformation of the gradient

For the transformation of the gradient in Cartesian
coordinates, g, to the gradient in coordinates for the
geometry optimizer, g, we define the matrix D:

g ¼
@x

@q
g ¼ Dg ð25Þ

D is sparse because only the Cartesian coordinates
of a certain region affect the geometry optimization
variables for the same region. The non-zero blocks are
as follows. A coordinate that appears as a Cartesian
coordinate in the geometry optimization does not need
to be transformed, thus:

DCC ¼
@xC
@qC

¼ 1 ð26Þ

For the internal coordinate region, we use the
same transformation matrices as in the conventional
redundant internal optimizer:

DII ¼
@xI
@qI

¼ G�B ð27Þ

For the rigid fragments, the D-matrix elements involving
translational coordinates, can be written as:

@xK,i,x
@’Kx

¼
@xK,i,y
@’Ky

¼
@xK,i,z
@’Kz

¼ sK’ ð28Þ

The elements that involve rotational elements can be
written as

@xKi

@�Ky
¼ Tx Ty

@�Ky
Tz½xKi

ð0Þ �OK� ð29Þ

with

@Ty

@�Ky
¼

�sK� sinðsK� �
K
y Þ 0 sK� cosðsK� �

K
y Þ

0 0 0

�sK� cosðsK� �
K
y Þ 0 �sK� sinðsK� �

K
y Þ

2
64

3
75 ð30Þ

The rotation matrices and their derivatives need
to be evaluated only once for each rigid fragment.
The D-matrix elements for translation and rotation
derivatives of the internal redundant region, @xI/@qI0,
are obtained in the same way as the rigid fragments.
Provided the number of redundant internal coordinates
is small, the transformation of the gradient only requires
CPU time and memory that scales linearly with the
size of the system.

2.3. Transformation of the Hessian

We can write the transformation of the Hessian to the
optimization coordinate space in two ways.

H ¼
@2E

@q @q
¼ DHDt �D

XNq

i

@E

@qi

@2qi
@x@x

" #
Dt ð31Þ

H ¼
@2E

@q @q
¼

@ðDgÞ

@q
¼ DHDt þ

XNx

i

@E

@xi

@2xi
@q@q

ð32Þ

Equation (31) is equivalent to equation (12), while
equation (32) is obtained by differentiating equation (25).
H and H are the Hessian matrix in Cartesian
coordinates and geometry optimization coordinates,
respectively, and the DHDt term in equations (31)
and (32) is evaluated with the same D-matrix as the
gradient. Nx and Nq are the number of Cartesian
coordinates and geometry optimization coordinates,
respectively.

For the ‘gradient contribution’
PNx

i ð@E=@xiÞ
ð@2xi=@q @qÞ, we can either use the second r.h.s. term
of equation (31), or the term in equation (32). We use
both alternatives, depending on the part of the matrix
that is being evaluated. Because @2x/@q @q is in fact a
derivative of the D-matrix, it is sparse, and the non-zero
blocks are as follows. The contribution from the internal
redundant coordinates is evaluated in the same way
as the standard geometry optimizer discussed in the
introduction.

XNx

i

@E

@xi

@2xi
@qI@qI

¼ �DII

XNqI

i

@E

@qIi

@2qIi
@xI@xI

" #
Dt

II ð33Þ

For the gradient contributions related to the rigid
blocks, only

XNx

i

@E

@xi

@2xi
@q

K� @qK�
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is not zero. These contributions can be efficiently
evaluated by identifying the non-zero elements of the
derivative D-matrix:

@xKi

@�Ky @�Ky
¼ Tx Ty

@�Ky @�Ky
Tz xKi

ð0Þ �OK

h i
ð34Þ

@xKi

@�Ky @�Kz
¼ Tx Ty

@�Ky

Tz

@�Kz
xKi

ð0Þ �OK

h i
ð35Þ

with

@2T�Kx

@�Kx @�
K
x

¼

0 0 0

0 � sK�
� �2

cosðsK� �
K
x Þ � sK�

� �2
sinðsK� �

K
x Þ

0 sK�
� �2

sinðsK� �
K
x Þ � sK�

� �2
cosðsK� �

K
x Þ

2
664

3
775
ð36Þ

The number of non-zero contributions scale linearly
with the number of atoms in rigid fragments. Last, the
gradient contribution related to the coupling between
the rotational coordinates for the internal coordinate
region, and redundant internal coordinates, can be
written as:

XNx

i

@E

@xi

@2xi
@q

I�
@qI

¼
XNxI

i

@E

@xIi

@

@q
I�

@xIi
@qI

� �
ð37Þ

We recognize @xIi /@qI as the elements of the D-matrix
that involve internal coordinates (equation (29)). We
can take the derivative of those D-matrix elements with
respect to the rotational angle in the same way as the
Cartesian coordinates (expression 29), for example:

@2xIi
@�Iy@qIj

¼ T�Ix
@T�Iy

@�Iy
T�Iz

@xIi
@qIj

� �
ð38Þ

2.3. QM/MM Hessian-vector product

To solve the RFO equations iteratively without stor-
age of the Hessian, we need to evaluate the product
of the Hessian with a vector V. Here, we explicitly
write the Hessian-vector product in terms of the
ONIOM contributions.

HV ¼ Hreal,MMVþHmodel,MMV�Hmodel,QMV ð39Þ

We assume that the model system is relatively small, and
thatHmodel,MMV and Hmodel,QMV can easily be evaluated
by forming Hmodel in memory. For the Hmodel,QMV term
we can then either use an analytically evaluated Hessian
or an approximate (updated) Hessian. If we use the

latter, the update is carried out with the gradients from

the QM model system, gI¼ @Emodel,QM/@qI, since it is

Hmodel,QM that is being estimated, and not HONIOM.

The MM contributions to HONIOM in equation (3) are

always evaluated analytically.
It is clear that the only remaining bottleneck in

the Hessian vector product, and therefore in our entire

optimization scheme, comes from H
real,MM. This con-

tribution can be expressed in the Hessian matrix

in Cartesian coordinates and the gradient contribution:

Hreal,MMV ¼ DHreal,MMDt
� �

Vþ
XNx

i

@E real,M

@xi

@2xi
@q@q

" #
V

ð40Þ

Because of the sparseness of the gradient contribution,

the second term of equation (40) can be evaluated

without significant CPU or memory requirements.

That leaves the contribution of the Hessian matrix in

Cartesian coordinates. We can rewrite [DH
real,MMDt]V

to indicate the order in which the multiplications are

processed.

DHreal,MMDt
� �

V ¼ D Hreal,MMV0
� �

ð41Þ

with

V0 ¼ DtV ð42Þ

The transformation of V to V0 is trivial due to the

sparseness of D, and the problem is reduced to

the product of the Cartesian Hessian with vector V0

(with the product vector, again trivially, multiplied

with D). In Appendix A we outline the methods that

we developed to evaluate H
real,MMV0, which are O(N)

in both memory and CPU time.
Finally, for the optimization we need to account for

the redundancies and constraints from equations (13)

and (14). The projections do not complicate the scheme

outlined in this section. The only non-zero block of (1-P)

in equations (13) and (14) involves pairs of model system

internal coordinates.

3. Implementation

We implemented our methods in a development version

of the Gaussian package for electronic structure calcula-

tions [9]. As outlined in the beginning of this section,

we solve equation (19) using O(N) methods. We can

either use an analytical or an updated QM contribution
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to the Hessian. When possible, we carried over the
features of the conventional (Berny [72]) optimizer to
our new quadratically coupled QM/MM optimizer.
For example, constraints can be placed on redundant
internal coordinates, and the initial Hessian can be
improved by numerical differentiation of the forces
corresponding to select coordinates. We implemented
the standard trust-region update mechanism, and
included line searches in the full QM/MM coordinate
space to improve the RFO steps [72]. In the calculation
of the MM energy and gradient, we use the ‘fast multiple
method’ (FMM) for the electrostatic interaction [73–76].
The evaluation of the bonded interactions is O(N).
The Van der Waals interaction can be made O(N) for
very large systems using a boxing scheme similar to that
in FMM, but for the size of system used in the examples
here, a simple quadratic algorithm has modest cost
compared to other terms.
After the quadratic macro step, we still carry

out micro-iterations. Although this is not strictly neces-
sary for the algorithm, it will reduce the number of
macro-steps, and therefore the number of QM energy
and gradient evaluations. However, there is no longer
a presumption in the macro-step that the forces on the
MM atoms are exactly zero, and we can consequently
use less tight convergence criteria in the micro-iterations,
which reduces the number of micro-iteration steps.
(In the examples that follow this section, however, we
use always the full convergence criteria, in order to be
able to compare only the different macro steps in
the standard and new scheme). In fact, the quadratic
macro-step includes (quadratic) displacements of the
MM atoms, which further reduces the number of cycles
in the subsequent micro-iterations. Of course, we could
also carry out the micro-iterations in the MM region
using the same quadratic scheme as developed for
the macro-step, simply by freezing the QM atoms and
removing all the contributions involving the internal
coordinate space. Although this drastically reduces

the number of micro-iterations, each cycle involves

the evaluation of many Hessian-vector products, and the

result is an increase in overall CPU time compared

to the first-order micro-iterations.
Last, we have implemented a simple form of par-

allelization. The most time consuming parts of the
algorithm is the evaluation of the product of the Hessian

with a vector. From equation (53) in Appendix A we can

see that for each vector, there are three independent

contributions that need to be evaluated using FMM.

Since there are usually several Hessian vector products

required for each cycle of the Davidson diagonalization,

in addition to the Van der Waals and non-bonded

contributions, we can distribute these tasks over several

processors.

4. Results

4.1. Small systems

We applied our new optimization scheme to the set of

small systems reported in our earlier work on the

standard micro-iteration scheme [19]. These systems

are small enough to be optimized with a conventional

scheme, so that we can assess the performance gain of

the standard micro-iterations scheme over conventional

optimization schemes, as well as our new scheme with

the coupled macro-step. We show the results in table 1.

We used the same micro-iterations convergence criteria

in the coupled macro-step calculations and the standard

micro-iterations calculations, so that the performance
gain only reflects the improvement in the macro-step.

From the results it is clear that the new coupled scheme

always performs better than the standard micro-

iteration scheme. Because for small systems like these

the standard micro-iteration scheme is already very

efficient, the performance gain of the new scheme is

only moderate.

Table 1. Number of macro-steps in the different types of optimization schemes.a

Water dimer Hexaphenylethane Organometallic Phosphasilene Carbene

Model system monomer ethane see ref. [19] H2Si¼PH see ref. [19]
High level HF/6-31G(d) AM1 B3LYP/LANL2DZ AM1 AM1

Low level UFFb UFFb UFFb UFFb UFFb

Conventional 54c 12c 11 18 16c

Standard macro/micro scheme 7c 10c 6 6 9c

Coupled macro-step with micro-iterations 5c 9c 4 4 8c

aSee reference [19] for the structures; the water dimer optimizations started from the B3LYP/6-31G(d) geometry, hexaphenylethane
from the AM1 geometry, and the other examples from the level indicated but without QEq charges.
bCharges obtained using QEq scheme.
cTight convergence criteria.
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4.2. Protein minimizations

To test our method for a larger system, we minimized

the bacteriorhodopsin (bR) protein. The full protein

contains about 3500 atoms, and has a retinal chromo-

phore in the centre linked via a protonated Schiff

base. The chromophore (37 atoms) was treated with

HF/6-31G(d), and the protein environment with the

Amber force field [77]. For details on the preparation

of the system see [18]. The geometry optimizations

were started from the X-ray structure [78], with the

MM region pre-optimized. We carried out two sets

of optimizations. The first has most of the protein

environment frozen, and only the atoms within 6 Å

of the chromophore are relaxed (341 atoms in total).

In the second set, we allow the full system to relax.
In figure 1, we show the energy profiles along the

geometry optimization for the system with most of the

protein frozen. The new scheme clearly has a smoother

behaviour in the initial part of the minimization than

the standard micro-iteration scheme. The erratic steps of

the standard scheme are the result of the initial Hessian

not including any information about the coupling,

although this does develop after a while. The stan-

dard scheme cannot explicitly include coupling between

the regions, as the new scheme does, but it can include

this information implicitly. In the final stages of the

optimization, the new scheme converges fast, while the

standard scheme needs many more steps to converge

the forces and displacements.
Figure 2 shows the energy profiles of the mini-

mizations of the fully relaxed system. The new micro-

iteration scheme converges rapidly and smoothly, while

the standard scheme again has several erratic steps in
the initial phase of the optimization. Towards the end
of the profile, the ill-defined update mechanism corrupts
the Hessian, which then has the wrong curvature.
Several bad steps are taken, and in fact the optimization
never converges. Finally, we see that the standard scheme
yields a lower energy than the new scheme. This is
the result of the new scheme ‘carefully’ converging to
local minimum that is close by. The standard scheme
takes several bad steps initially, which shake up the
system allowing the MM region to find a different,
energetically lower local minimum. This illustrates the
general problem of geometry optimization of very large
systems. Both the quadratically coupled scheme and the
standard scheme find a nearby local minimum, and
neither is a method for the search of global minima.
If a reaction mechanism is being studied, one must
ensure that the stationary points correspond to the same
valley on the potential surface. If the global minimum
is required, a method such as simulated annealing
must be used, in combination of a local optimization
method such as the one presented here.

5. Discussion and conclusions

Our examples show that introducing coupling between
the QM region and the MM region in the macro-step,
significantly improves the convergence behaviour of
the micro-iterations optimization scheme. This reduces
the number of QM energy and gradient evaluations that
are needed, which improves the overall efficiency of
the calculation. However, despite the O(N) techniques

−836.08

−836.06

−836.04

−836.02

−836.00

−835.98

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Standard
New

Optimization step

Figure 1. Energy profiles for the minimization of bR with
most of the protein frozen, both with the standard and the
new micro-iteration schemes.

−839.82

−839.80

−839.78

−839.76

−839.74

−839.72
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4

Figure 2. Energy profiles for the minimization of bR with
the full protein relaxed, both with the standard and the new
micro-iteration schemes.
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that we developed, the calculation of the macro-step

can be computationally costly, and the method is most

suitable for QM/MM schemes with relatively expensive

QM methods.
At the core of our new optimization scheme is

the O(N) technology to evaluate the product of the

ONIOMHessian with a vector. In the current scheme we

used this technology for a RFO macro-step, but it can be

used for other optimization schemes as well. For a NR

macro-step we would have to use a direct method for the

inversion of the ONIOM Hessian, which again requires

Hessian vector products [79, 80]. The scheme can also

be extended to the search for saddle point structures

on the potential surface [81], which will be the topic of

a subsequent paper.
Finally, we need to comment on the applicability

of our optimization method to other QM/MM schemes.

First, we outlined our methods within the ONIOM

extrapolation framework, separating the QM/MM

Hessian into three components (equation (3)).

Although most other QM/MM methods are presented

as a summation scheme, they can easily be recast as an

extrapolation scheme like ONIOM. Second, our O(N )

scheme for the Hessian vector evaluation assumes a

charge distribution that interacts through sijQiQj/rij
potential functions. Several molecular mechanics

force fields, however, employ functions that our FMM

implementation currently cannot handle. For example

MMFF94 [82] uses buffered interactions of the form

SijQiQj/(rijþ�), and MM3 [83] includes bond dipoles.

Either the FMM must be extended for these types

of interactions, which would require only minor mod-

ifications for the bond dipoles, or the force field must

be re-parameterized for sijQiQj/rij potential functions.

Third, many QM/MM schemes use electronic embed-

ding, in which the charge distribution of the MM region

is incorporated in the QM Hamiltonian [18, 23, 43].

This introduces direct coupling between the coordinates

of the MM centres and the wave function, and the

H
model,QM Hessian elements that involve ‘inactive MM

atoms’ will no longer be zero. In other words, Hmodel,QM

becomes a full matrix and the evaluation of it requires

the solution of the coupled perturbed Hartree–Fock

(CPHF) equations for all the QM and MM centers.

This is currently not feasible for very large systems, and

the scheme as presented in this paper cannot be applied.
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Appendix A. Product of the Cartesian MM Hessian

with a vector

For the coupled macro step, we need the product of
the MM Hessian in Cartesian coordinates, H

real,MM,
with a vector. In this section we describe how we obtain
this product with O(N) scaling for both memory and
CPU. In the most common MM force fields, there
are three types of terms that we need to distinguish:
the bonded terms, the Van der Waals terms, and the
electrostatic terms. The bonded terms usually consist
of bond stretches, angle bends, dihedral deformations,
and out-of-plane bends. We evaluate the contribution
of the bonded terms to the Hessian-vector product
on-the-fly, thus without storing the Hessian elements.
The computational cost will scale linearly because the
number of terms scales linearly with the size of
the system and each term involves no more than 12
Cartesian coordinates. The number of Van der Waals
terms, on the other hand, scales quadratically with the
size of the system. However, the interaction between
two particles drops sharply with increasing distance,
due to the r�6, r�12, or exp(�r) factors in the expression,
and linear scaling even with high numerical accuracy
can be achieved using a distance cut-off for the Hessian
vector product. Because the second derivative terms
have r�8 factors, for a given accuracy significantly
smaller cut-off distances and boxes can be used than
in the evaluation of the energy and gradient. We
evaluate the contributions on-the-fly, and apply the
cut-off through a boxing algorithm similar to that used
in the ‘fast multipole method’ [73–76]. The evaluation
of the Van der Waals contribution to the Hessian vector
product then scales linearly with the size of the system,
and requires only O(N) intermediate storage. The
last type of contribution, the electrostatic interaction,
is long range, and therefore high numerical accuracy
cannot be achieved with a simple distance based cut-off.
In the remainder of this section we will describe the
techniques we developed to evaluate this contribution
via extensions to the fast multipole method.

In a MM calculation, the electrostatic interaction
is evaluated as a collection of point charges.

EQ ¼
XN
i

Xi�1

j

sijQiQj

xj � xi
�� �� ð43Þ

sij is a scale factor that reduces the interaction between
two charges when they are close together, based on
the connectivity. Typically, interactions between centres
that are one or two bonds separated are scaled to zero
(s¼ 0). Three bond separated interactions are scaled
between zero and one (s¼ a), depending on the force
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field, and interactions between charges separated more

than three bonds are fully included (s¼ 1). We rewrite

equation (43)

EQ ¼
XN
i

Xi�1

j

QiQj

xj � xi
�� ���XN

i

Xi�1

j

ð1� sijÞQiQj

xj � xi
�� �� ð44Þ

Because sij differs from 1 only for atoms i and j con-

nected by bonding interactions, the number of non-zero

contributions to the second r.h.s. term of equation (44)

scales linearly with the size of the system. The corre-

sponding contributions to the Hessian-vector product

can be evaluated in a similar manner as the bonded

terms, and we are now concerned with the unscaled

interaction of a collection of point charges.

EQ0

¼
XN
i

Xi�1

j

QiQj

xj � xi
�� �� ð45Þ

We distinguish (block) diagonal and off-diagonal

elements of the Hessian in Cartesian coordinates.

H
Q0

i,�,i0,� ¼
@2EQ0

@xi,�@xi0,�
¼ QiQi0

@2

@xi,�@xi0,�

1

xi0 � xij j
ð46Þ

H
Q0

i,�,i,� ¼
@2EQ0

@xi,�@xi,�
¼ Qi

XN
j6¼i

Qj
@2

@xi,�@xi,�

1

xj � xi
�� �� ð47Þ

� and � denote the axes and i and j the centres. � and �
can be the same axis, but i and i0 denote explicitly

different centres. In our algorithm, we need the product

W of the Hessian HQ0

with a (displacement) vector V.

W ¼ HQ0

V ð48Þ

We write W in terms of diagonal and off-diagonal

elements of the Hessian.

Wi,�¼ HQ0

V
� �

i,�
¼

X3
�

XN
j

H
Q0

i,�,j,�Vj,�

¼
X3
�

XN
j

@2EQ0

@xi,�@xj,�
Vj,�

¼
X3
�

Qi

XN
j6¼i

QjVj,�

@2

@xi,�@xj,�

1

xj � xi
�� ��

þ
X3
�

QiVi,�

XN
j6¼i

Qj
@2

@xi,�@xi,�

1

xj � xi
�� ��

ð49Þ

Using the translational invariance of the Hessian we
can rewrite W:

H
Q0

i,�,i,� ¼ �
XN
j6¼i

H
Q0

i,�,j,�Qi

XN
j6¼i

Qj
@2

@xi,�@xi,�

1

xj � xi
�� ��

¼ �Qi

XN
j 6¼i

Qj
@2

@xi,�@xj,�

1

xj � xi
�� ��

ð50Þ

Wi,� ¼ �
X3
�

Qi

XN
j6¼i

QjVj,�

@2

@xi,�@xi,�

1

xj � xi
�� ��

þ
X3
�

QiVi,�

XN
j6¼i

Qj
@2

@xi,�@xi,�

1

xj � xi
�� ��

ð51Þ

In expression 51, we can recognize terms that resemble
sums of electric field gradients:

@2V iðQ1 . . .QNÞ

@�@�
¼

XN
j6¼i

Qj
@2

@xi,�@xi,�

1

xj � xi
�� �� ð52Þ

We use this to write W in terms of electric field gradients
(EFG) V i. This involves the EFG from the original
charge distribution Q, and three contributions from
the integration of the charges Q with the elements of V.

Wi,�

¼Qi

X3
�

Vi,�

@2V iðQ1 . . .QNÞ

@�@�
�
@2V iðQ1V1,� . . .QNVN,� Þ

@�@�

� �

ð53Þ

The terms in equation (53) can each be evaluated using
the fast multiple method (FMM), which scales linearly
with the number of particles in both memory and CPU.
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