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We present an ab initio direct Ehrenfest dynamics scheme using a three time-step integrator. The
three different time steps are implemented with nuclear velocity Verlet, nuclear-position-coupled
midpoint Fock integrator, and time-dependent Hartree-Fock with a modified midpoint and unitary
transformation algorithm. The computational cost of the ab initio direct Ehrenfest dynamics
presented here is found to be only a factor of 2—-4 larger than that of Born-Oppenheimer (BO)
dynamics. As an example, we compute the vibration of the NaCl molecule and the intramolecular
torsional motion of H,C=NHj by Ehrenfest dynamics compared with BO dynamics. For the
vibration of NaCl with an initial kinetic energy of 1.16 eV, Ehrenfest dynamics converges to BO
dynamics with the same vibrational frequency. The intramolecular rotation of H,C=NH} produces
significant electronic excitation in the Ehrenfest trajectory. The amount of nonadiabaticity,
suggested by the amplitude of the coherent progression of the excited and ground electronic states,
is observed to be directly related to the strength of the electron-nuclear coupling. Such
nonadiabaticity is seen to have a significant effect on the dynamics compared with the adiabatic

approximation. © 2005 American Institute of Physics. [DOI: 10.1063/1.2008258]

I. INTRODUCTION

Classical trajectory calculations' are often able to pro-
vide greater insight into the dynamics of reactions than do
stationary analysis of molecular properties. The Born-
Oppenheimer (BO) and extended Lagrangian (EL)
trajectorieszfé‘are founded on the assumption that a single
electronic potential surface governs the dynamics. Such adia-
batic approaches are widely used in investigations of reac-
tions on ground-state surfaces. A major limitation of adia-
batic trajectories is that they are not applicable to reactions
involving nonadiabatic electronic processes, i.e., multiple
potential-energy surfaces. Proper incorporation of the elec-
tronic response is crucial for describing a host of dynamical
processes, including laser-induced chemistry, dynamics at
metal or semiconductor surfaces, and electron transfer in mo-
lecular, biological, interfacial, or electrochemical systems.
The two most widely used approaches to account for nona-
diabatic effects are the surface-hopping method with its
many variants,”® and the Ehrenfest method implemented
here. The surface-hopping approach extends the Born-
Oppenheimer framework to the nonadiabatic regime by al-
lowing stochastic electronic transitions subject to a time- and
momenta-dependent hopping probability. A direct ab initio
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dynamics algorithm using surface hopping has been imple-
mented using complete active-space self-consistent-field
(CASSCF) wave functions.” When the system consists of
many atoms, this approach, however, becomes rather de-
manding computationally because an explicit computation of
adiabatic time-dependent excited-state wave functions is re-
quired in surface hopping.

The exact treatment of electronic nonadiabaticity can be
obtained in principle by solving the time-dependent
Schrodinger equation (TDSE) simultaneously for both elec-
trons and nuclei. However, explicit numerical integration of
the full TDSE is computationally prohibitive, except for very
small systems. An approximation to the expansion of TDSE
over all the excited states is the reduction to a single Slater
determinant, as exemplified by the time-dependent Hartree-
Fock (TDHF)*'® and time-dependent density-functional
theory (TDDFT)."" The TDHF or TDDFT avoids explicit
computations of excited states and represents the wave func-
tion as a coherent superposition state. As a result, all chemi-
cal properties such as potential, force, and electron density
are calculated as mean expectation values. The propagation
of classical trajectories for molecules represented by such a
mean potential surface is often called Ehrenfest dynamics.
Ehrenfest dynamics have been computed numerically in sev-
eral applications.s’g'12’13

The integration of the Ehrenfest dynamics by a straight-
forward single time-step method is not efficient because the
integration step size must be on the time scale of the elec-
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tronic motion, usually more than an order of magnitude
shorter than that of the nuclear motion. Micha and co-
workers have developed the relax-and-drive procedure with
different time scales to propagate the coupled electronic and
nuclear motions.'*" The relax step corresponds to an inte-
gration of the electronic TDHF equations at a fixed nuclear
position. The drive step,

AP=U-A"-U", (1)

where A’ =[{[F(t")-F(t,)],U-P(t,)-U'}dt’, comes from the
effect of the motion of the nuclei on the integration of elec-
tronic degrees of freedom. It accounts for the change of the
electron density, resulting from the change of the Fock op-
erator, and indirectly couples the electronic degrees of free-
dom with nuclear motion through the Fock operator.

In this paper, we introduce an efficient ab intio direct
Ehrenfest dynamics algorithm within the Hartree-Fock ap-
proximation. The energy, gradient, and molecular properties
are computed “on the fly.” A three-time-step integrator with
nuclear velocity Verlet, nuclear-position-coupled midpoint
Fock integrator, and time-dependent Hartree-Fock with a
modified midpoint and unitary transformation algorithm is
presented.

Il. METHODOLOGY

We use the following notations and index conventions
throughout this paper:

(1) x denotes atomic Cartesian coordinates.

(2) p denotes atomic momenta.

(3) g denotes the energy gradient (first derivative with re-
spect to nuclear coordinates).

(4)  x denotes the atomic orbital (AO) basis (real values in
this paper).

(5) ¢ denotes the molecular orbital.

(6) S denotes the overlap matrix, S,,,=(x,|x.)-

(7) P’ and P denote the complex density matrices in the
AOQ basis and orthonormal basis, respectively.

(8) h'(x) and h(x) denote the one-electron matrices calcu-
lated at atomic coordinates x,

XV> 2
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in the AO basis and orthonormal basis, respectively.
(9) G'(x,P’) and G(x,P’) denote the two-electron matrices
calculated with density P’ at atomic coordinates x,
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in the AO basis and orthonormal basis, respectively.
(10) F' and F denote the complex Fock matrices, F,

=h,:w+ G;’w(x,P’), in the AO basis and orthonormal ba-
sis, respectively.
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(11) A,B are atomic indices.
(12) w,v are atomic orbital indices.
(13) k,k+1 are time indices.

In an orthonormal basis, the TDHF equation for the den-
sity matrix can be written as

oP
i— =FP-PF. (2)
ot
In general, the basis functions are not orthonormal, hence the
overlap matrix is not the identity. This basis can always be
orthonormalized by means of Lowdin or Cholesky transfor-
mation methods. The density matrix and the Fock matrix are
transformed from the AO basis (P’ and F') into an orthonor-
mal basis (P and F) by a transformation matrix V:

P=V.-P .Vl and F=VT.F" .v. (3)

In the Lowdin orthonormalization method, V=S"2; in the
Cholesky method, the upper triangular V is obtained by the
decomposition S=VTV.

When an atom-centered basis set is used to represent the
density, additional terms arise because of the time depen-
dence of the position of the basis functions.'*!* These spu-
rious coupling terms can be eliminated through the use of
traveling atom functions, |&)=T,,(r,?)| 02131 The atom
translation factor is given by

Tm(r,t)=exp{i'hﬂ{vm(t)'r—fdt-%]}. (4)

When the nuclear velocities are small, the atom translation
factors will be near unity. As a first approximation, they are
omitted in the present study.

A. Time-dependent Hartree-Fock electronic dynamics

In a recent paper,lo we introduced the integration of the
time-dependent Hartree-Fock theory using a modified mid-
point and unitary transformation TDHF (MMUT-TDHF) al-
gorithm to study the electron optical response in intense laser
fields. A comparison with a direct numerical integration of
TDSE indicates that TDHF is capable of realistically simu-
lating some aspects of nonadiabatic electronic dynamics.

In the MMUT-TDHF algorithm, the Fock matrix at time
1, is expressed in its eigenspace,

Ci(1) - F(1) - C(1) = &(t). (5)

A unitary transformation matrix U(z;), which is written in
terms of the eigenvectors C(7;) and eigenvalues () of the
Fock matrix, is used to propagate the density matrix from
time #;_; to f,-

P =Uty) P(t,_) - U'(ty), (6)

U(t,) = expli - 2At, - F(t;)]
= C(1y) - expli - 2A1, - &(1p)] - C(1y). (7)
The MMUT-TDHF method takes into account linear changes
in the density during the time step by computing the Fock

matrix at the midpoint of the step. The time step for integrat-
ing the MMUT-TDHF equations will be denoted as At,.
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Equation (6) is exact only for a constant Fock matrix. Even if
the nuclei do not move, the Fock matrix is still time depen-
dent since the electron density P is time dependent. Because
of this, the time step A¢, has to be small enough so that the
MMUT-TDHF step is accurate. However, the integrals used
to construct the Fock matrix change very little on this time
scale and can be kept constant for several Az, time steps.

B. Nuclear-position-coupled midpoint Fock
integrator

The Fock matrix
F' =h'(x)+G'(x,P) (8)

is a function of the nuclear coordinates and electron density.
The MMUT-TDHF steps [Egs. (5)—(7)] require a reconstruc-
tion of the Fock matrix from updates of the nuclear positions
and electron density. Considering that the change of the
nuclear coordinates is much slower than the change of the
electronic wave function, it is reasonable to assume station-
ary nuclei for several MMUT-TDHEF iterations before recal-
culating the integrals with the updated nuclear coordinates.
We introduce a time step Aty,=mAt,. The Fock matrix for
the MMUT-TDHEF step is built using the integrals calculated
at the midpoint of the Aty, time step, t'+Aty,/2, and the
instantaneous electron density matrix

F'(1) = h'[x(t' + Aty /2)] + G'[x(1 + Aty /2),P' (1)].
)

This nuclear-position-coupled midpoint Fock algorithm can
be further understood in analogy to the nuclear velocity Ver-
let (Sec. II C) if we assign the Fock operator and electron
density the roles of nuclear momentum and position. In the
nuclear velocity Verlet method, the momentum at half time is
used to move nuclei from x(z;) to x(z;,,), while in the mid-
point Fock algorithm the Fock matrix constructed with
nuclear position at half time propagates the electron density
from P(t;) to P(t,,,). The time step for two consecutive up-
dates of nuclear coordinates for constructing the Fock matrix
and electron-nuclear coupling will be denoted as Aty,. The
change of nuclear position affects electronic degrees of free-
dom at a much shorter time scale than do changes in the
nuclear gradient. It will be computationally efficient to em-
bed several updates of nuclear coordinates for constructing
the Fock matrix and electron-nuclear coupling between two
consecutive calculations of the gradient, mainly because
computing the derivative of the two-electron term
dG'(x,P)/dx, is about four times as expensive as computing
just G'(P). We introduce a time step Afy=nAty, for the in-
terval between the recalculation of the energy gradient.

C. Classical nuclear dynamics and energy derivative

The classical equations of motion, M %,=—dE/dx,, can
be solved numerically with a number of standard methods. In
this paper, velocity Verlet'® is used to integrate the nuclear
motion moving on a mean potential of a superposition state,

Paltien) =palty) = %gA(tk) -Aty, (10)
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1

xA(tk+l):xA(tk)+M'Ath (11)
My

Paltirr) = Patir) = %gA(tkH) - Aty. (12)

The mean force comes from the calculation of the first
derivative of the energy with respect to nuclear coordinates,
using the TDHF-propagated wave function. Since [F,P]
#0, the derivative is different than for Born-Oppenheimer
dynamics.4

oE ﬁVNN dh, , 1 &G’ ,
Z T | e Tl p
07xA 0".xA d.xA 2 6xA p!
v av
~Tr|F'V'—P' +P'—V'F'|. (13)
XA dXA

The derivatives of the transformation matrix V must be com-
puted explicitly. In the case of the Lowdin orthonormaliza-

tion,
dv 1 £dS’ )T
— =285 5|8 —s:]|s:, 14
e Crl 1

where s; and o; are, respectively, the ith eigenvector and

eigenvalue of the overlap matrix S’; in the case of the
Cholesky transformation,”

|:d_Vv—1:| _ |:V—Td_VT:|
d.xA v dXA v

s’
=\V'—V when u < v,
d)CA v

2 d}CA
=0 when u>v. (15)

1 _TdS’ o
=—|\V'—V when u=v,
v

Note that the gradient is always real due to the fact that both
F and P are Hermitian and the basis functions are real.

D. The overall Ehrenfest integration scheme and
accuracy

The three time steps, Aty,Aty,, and Az, are associated
with nuclear velocity Verlet (Sec. II C), nuclear-position-
coupled midpoint Fock integrator (Sec. II B) and MMUT-
TDHF (Sec. IT A) integrators, respectively. The idea is to
propagate the nuclei using the velocity Verlet with steps of
Aty assuming that the change in the gradient is small during
the step. The Ary step is divided into n smaller steps Aty,.
The various integrals are recomputed for each step so that
they can be used in the construction of the Fock matrix.
Since the density changes more rapidly than do the integrals,
the Aty, step is divided into m smaller steps of At,. The
density is propagated using the MMUT-TDHF method using
steps of At,. As illustrated in Fig. 1, several midpoint Fock
steps are embedded in one nuclear velocity Verlet step. To
drive the electron density, several MMUT-TDHF steps are
carried out within one nuclear-position-coupled midpoint
Fock step.
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Nuclear velocity Verlet

- - - - = Midpoint Fock

AtNe = AtN / n, Ate = AtNe /m

Dok
=t + Aty
Calculate g(ti) at x(t) [eq. 13]
Calculate p(tx+12) and x(tx+1) [eq. 10, 11]
Doj=1,n
t' =t + (G-1) Atne
X(t' + Y2 Atne) = X(ti) + (8 + V2 Atne) pltcs12)M
Calculate h', (uv||Ac), S and V = 82
Doi=1,m
T=t'+(i-1) At
Py =V'Pm)vT
Form F' () using P'(7) and the current integrals
F(t)=V'F(x) V", U=exp(i2 At F(x))
P(t+At,) = U P(1-At,) UT
End Do
End Do
End Do

FIG. 1. Three-time-scale integration scheme for Ehrenfest dynamics.

It is instructive to examine the computational cost of the
midpoint Fock integration scheme described above. The ex-
pensive steps in Ehrenfest dynamics consist of computations
of the energy first derivative with respect to the nuclear po-
sition g(7,), the MMUT-TDHF step (Ttpyg), the two-
electron integrals (7,,), the one-electron integrals (7,), and
the overlap matrix S(7). Note that Trpyp includes the cost
of forming and diagonalizing the Fock matrix. For small- to
medium-sized systems, the CPU times are usually in the or-
der T,>Trpup=~T,,>T,.,~Ts. The cost of Ehrenfest dy-
namics using only one time step for M integration steps of
At, can be estimated as

Tenrentest = M(Ts + Tyo+ T + Trppp + Tp) - (16)

By comparison, the cost of the midpoint Fock algorithm is
approximately

t(f‘
T id-Fock-Ehrenfest = M ( L (Tg+ T, + Ty,) + Trppr
Ne
At
+—=.T, . 17
Aty g> (17)

The cost of the nuclear-position-dependent electron integra-
tion is reduced by Az,/Aty,, and the evaluation of the gradi-
ent is reduced by At,/Aty. In anticipation of applications to
larger systems, two-electron integrals are computed in a
direct'” fashion in this paper.

J. Chem. Phys. 123, 084106 (2005)

The overall accuracy of the three-time-step Ehrenfest
dynamics lies in the error of each individual integrator and
their intrinsic connections. In Ehrenfest dynamics, nuclei are
treated as classical particles and nuclear operators do not
appear in the total Hamiltonian. Therefore, the integration of
nuclear trajectory is an independent problem of solving the
Newton’s equations. A single velocity Verlet step for classi-
cal dynamics has been shown to be accurate up to the third
order (see Ref. 18 for details). Nuclear terms appear in the
electron Hamiltonian as instantaneous attractive potentials,
resulting in the general time-dependent Hartree-Fock equa-
tion for the electron wave function,

i%ﬁ“’” =Fo(x,1)

and

B+ A1) = e NF (1) (18)

Equation (18) is a general problem of factorizing exponential
operators. The midpoint Fock is equivalent to the widely
used second-order three-split-operator symmetric decompo-
sition of the time-dependent Schrédinger <equ21ti0n,19’20
the Fock operator is split into nuclear-position-dependent
and nuclear-position-independent parts. Such decomposition
is second order for a single step and has been shown to
approach a third-order accuracy with increasing number of
splitting or iterations, Aty=nAty, and n—." In this paper,
a second operator splitting is used to decompose the nuclear-
position-independent Fock operator into F and AF, where F

is a constant within Az, and updated after Az, with AF re-
sulting from the change of electron density. The modified
midpoint TDHF is applied to integrate the second level of
splitting. The MMUT-TDHF is a second-order method as
well and approaches a third-order accuracy when m— o,
where Aty,=mAt,.

Figure 2 illustrates numerical analyses of energy errors
for the midpoint Fock and MMUT-TDHEF integrators, respec-
tively. We choose the vibrational dynamics of NaCl, starting
with a converged wave function and an initial kinetic energy
of 4.6 eV, integrated up to one velocity Verlet step for this
numerical analysis. The error for the midpoint Fock algo-
rithm is an accumulative error, in reference to the BO energy
at the end of one velocity Verlet step, computed at the end of
a nuclear step Aty=0.5 fs with a constant Az,=0.0001 fs for
integrating the TDHF. Similarly, the error for the MMUT-
TDHEF is an accumulative energy error in a single nuclear
step Ary=0.5 fs, Ary,=0.25 fs. Both integrators exhibit
O(Ar*73) growth of errors with respect to the step size. At the
step-size limit, the MMUT-TDHF still introduces about
1.59 X 107* a.u. energy error [Fig. 2(b)]. This additional error
can be corrected by using multiple midpoint Fock steps
within one nuclear step. Figure 2(a) shows that the midpoint
Fock method corrects the energy error, approaching the com-
plete error correction at the step-size limit. It is clear that the
use of several midpoint Fock steps is able to reduce the over-
all energy error without introducing too much additional
computational cost.
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0.00006 (a) Midpoint Fock
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0.00004 - AE =0(at, ™)
0.00003 -
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0.00001 -
‘T 0.00000 -
= — 71 + r * 1 T+ I * T
= 000 002 004 006 008 010 0.12
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0.000164 -
(b) Modified midpoint TDHF
0.000163 -
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0.000162 - AE =0(at ")
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0.0000  0.0005 0.0010 0.0015 0.0020  0.0025
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FIG. 2. Accuracy analyses for (a) midpoint Fock (Azy=0.5fs, At,
=0.0001 fs), and (b) modified midpoint TDHF integrators (Aty
=0.5 fs, Aty,=0.25 fs).

lll. BENCHMARK AND DISCUSSION

To illustrate the implementation and properties of the
midpoint Fock Ehrenfest algorithm discussed above, we
have considered two examples: the vibration of NaCl and the
internal rotation of H,C=NHj. Electron integrals are com-
puted using the development version of the GAUSSIAN
package.21 Natural population analysis (NPA) is used to ana-
lyze atomic properties on the fly. All the timing data pre-
sented here were collected on an Intel Pentium-4 3.2-GHz
single-processor workstation.

A. The vibration of NaCl

Figure 3 illustrates the vibration of NaCl computed with
the direct Born-Oppenheimer (BO) and the midpoint Fock
Ehrenfest approaches. Calculations were carried out at the
HF or TDHF level of theory using the 3-21G all-electron
basis. The dynamics with midpoint Fock integrator are tested
using several sets of time steps. Trajectories were started at
the NaCl equilibrium geometry (Ry, ¢;=2.4210 A) with an
initial vibrational kinetic energy of 1.16 eV. It is readily ap-

\/_\/\/ BOMD A1,~0.5 fs

A1,70.5, A1, =0.05, AL =0.005 Ts

A=0.5, Af=0.1, A =0.005 fs

A0S, A8, ~0.05, AL=0.01 fs

R(Na-CI)

A,70.25, At, 0,05, A=0.005 fs

T T T T T 1
[} 50 100 150 200 250 300
Time (fs)

FIG. 3. Vibration of NaCl computed using the Born-Oppenheimer approach
and the Ehrenfest dynamics with different integration time steps (R,
=1.97 A and R,,,=3.42 A).
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—— BOMD A1,=0.5 —
004 - - - a1 =05, A1, =0.05, Ar=0.005
8054 A1, =0.5, At, =0.1, A1 =0.005

~~~~~ A1,70.5, A1, =0.05, Af.=0.01

"""" At =0.25, A, =0.05, A =0.005

Total Energy Conservation (kcal/mol)

T T T T T 1
o 50 100 180 200 250 300
Time (fs)

FIG. 4. Comparison of total-energy conservation for various sets of time
steps using the Ehrenfest dynamics.

parent from Fig. 3 that the vibrational frequencies by the
Ehrenfest approach are almost the same as the BO trajectory
with less than 0.1% difference. It also indicates that the vi-
bration of NaCl with an initial kinetic energy of 1.16 eV is
nearly adiabatic. For the ab initio Ehrenfest dynamics, the
midpoint Fock method is computationally very efficient. The
self-consistent convergence of the wave function at each step
in the BO trajectory is replaced with iterations to propagate
P according to the time-dependent Hartree-Fock theory. For
the system considered here, integrating one direct Ehrenfest
trajectory up to 300 fs with Azy=0.5, Azy,=0.05, and Az,
=0.005 fs in the “direct” fashion takes only twice as many
total iterations as converging the self-consistent field, and
therefore twice of the CPU time of one BO trajectory with
Aty=0.5 fs.

Figure 4 compares the total-energy conservation for vari-
ous sets of time steps: (a) BO trajectory with Azy=0.5 fs; (b)
Ehrenfest with Ary=0.5, Aty,=0.05, and Az,=0.005 fs; (c)
Ehrenfest with Aty=0.5, Azy,=0.1, and Az,=0.005 fs; (d)
Ehrenfest with Azy=0.5, Aty,=0.05, and Az,=0.01 fs, and
(e) Ehrenfest with Azy=0.25, Azy,=0.05, and Az,=0.005 fs.
The total energy by the Ehrenfest approach is conserved to
0.023 and 0.012 kcal/mol for (b) and (e), respectively, com-
pared with 0.013 kcal/mol for the BO trajectory with Ary
=0.5 fs (a). For an energy conservation that is comparable to
the BO trajectory, the Ehrenfest trajectory as (e) in Fig. 4 is
about four times as expensive as the BO trajectory. If the
midpoint Fock step Aty, or the MMUT-TDHF step At, is too
big as in the (c) and (d) cases, a systematic error is readily
noticeable even though the total energy is still conserved
very well over a short interval. When an appropriate set of
time steps is used as in the (b) and (e) case, the time evolu-
tion of the energy conservation by the Ehrenfest dynamics is
comparable to the Born-Oppenheimer dynamics, indicating
an excellent time reversibility.

B. The rotation of H,C=NH;

A 180° internal rotation about a covalent double bond
involves the breaking and reformation of the relatively rigid
7 bond. During the rotation, excited states often participate
in the dynamics as a result of the strong electron-nuclear
coupling. The rotational barrier of H,C=NH} is formed by
the avoided crossing of two rotational potential curves. In
many cases, such rotational potential curves may cross
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Energy (eV)

T T T — 1 > r_ Tt 1+ 1 _* T ‘*+ 1
0 20 40 60 80 100 120 140 160 180
Torsional Angle (degree)

FIG. 5. Adiabatic potential-energy curves of the ground and first excited
states of H,C=NH; computed using linear-response TDHF.

through a conical intersection. Figure 5 shows the adiabatic
potential-energy curves of the ground (S,) and first excited
states (S;) from a rigid rotation; i.e., the torsional angle is the
only geometric variable. The 7— 7 excited state is calcu-
lated using linear response TDHF.** The ground-state (S;)
potential curve corresponds to the inhomogeneous breakage
of the 7 bond, leading to the H,C*—NH, configuration at the
top of the barrier. The potential-energy surface of the first
excited state (S;) comes from the homogenous bond break-
age forming a H,C'—'N*H, diradical at the torsional angle of
90°. The smallest energy gap between two curves is about
1.6 eV.

Figure 6 illustrates the dynamics of the H,C=NH]J in-
ternal rotation about the double bond starting from the planar
equilibrium geometry and with several different torsional ki-

- —— BO Dynamics
034  e---e- Ehrenfest Dynamics

0.2
0.1

0.0

oqJ@E, =439V

=

Z 0.3
0.2
0.1

e
o
1

-0.14

Natural Charge of

e
w
1
-

0.2

0.1

J©E, =928ev

-0.1

LN SRR SR S R A R RN SR B |
0 20 40 60 80 100 120 140 160 180
Torsional Angle (degree)

FIG. 6. Dynamics of H,C=NH} internal rotation about the double bond
with different initial torsional kinetic energies.
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netic energies. The natural charges of the NH, group are
plotted as a function of the torsional angle. When excited
states participate in the dynamics, nuclear gradients often
change more drastically than for the adiabatic case. In order
to conserve the energy better, nuclear time steps have to be
smaller than those without much nonadiabaticity as in Sec.
IIT A. The total energy is conserved to better than 0.08, 0.09,
and 0.15 kcal/mol in Fig. 6(a), 6(b), and 6(b), respectively,
with Ary=0.1,Aty,=0.01, and Az,=0.001 fs. The BO trajec-
tories propagate strictly on the S, state as required by the
adiabatic BO approximation. In the avoided crossing region,
the strong electron-nuclear coupling can result in an elec-
tronic nonadiabatic transition so that molecules can be found
in the excited state. Such a phenomenon cannot be simulated
by the adiabatic BO molecular dynamics. By contrast, the
Ehrenfest dynamics implicitly incorporates the electron-
nuclear coupling, and therefore is able to account for the
nonadiabaticity in the simulation. Near the avoided crossing
region, the Ehrenfest trajectories begin to deviate from the
adiabatic behavior, apparently due to the electron-nuclear-
coupling-induced electronic transition. The resulting coher-
ent superposition of excited and ground states leads to the
oscillation of charge. The strength of the nonadiabatic behav-
ior, as indicated by the amplitude of the coherent oscillation
or deviation from the BO dynamics, depends systematically
on the initial nuclear momentum, with higher nuclear kinetic
energy resulting in a stronger nonadiabatic behavior. A more
detailed investigation of the electronic nonadiabatic behavior
will be discussed in a subsequent paper.

IV. CONCLUSION

Ehrenfest dynamics propagates classical nuclei on a
mean potential surface corresponding to an electronic super-
position state. We have developed a three-time-scale algo-
rithm with nuclear velocity Verlet, nuclear-position-coupled
midpoint Fock integrator, and time-dependent Hartree-Fock
using modified midpoint and unitary transformation for
ab initio direct Ehrenfest dynamics. In particular, the coupled
electronic and nuclear motions are propagated by the
nuclear-position-coupled midpoint Fock method.

The Ehrenfest method presented in this paper is compu-
tationally practical and able to account for nonadiabatic elec-
tronic excitations within a superposition state framework.
The computational cost of Ehrenfest dynamics is only 2—4
times of that for the BO dynamics. The energy conservation
and time reversibility are well maintained in the midpoint
Fock Ehrenfest dynamics. The algorithm introduced here can
be extended to the Ehrenfest dynamics within the time-
dependent density-functional theory (TDDFT).
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