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Abstract: The reaction path is a key concept in the theoretical description of a chemical reaction.

The intrinsic reaction coordinate is defined as the steepest descent path in mass-weighted

Cartesian coordinates that connects the transition state to reactants and products on the potential

energy surface. Recently, a new Hessian based predictor-corrector reaction path following

algorithm was presented that is comparable to a fourth-order algorithm developed earlier.

Although the method is very accurate, it is costly because second derivatives of the energy are

required at each step. In this work, the efficiency of the method is greatly enhanced by employing

Hessian updating. Three different updating schemes have been tested: Murtagh and Sargent,

Powell-symmetric Broyden, and Bofill. Bofill’s update performs the best and yields excellent

speed-up.

1. Introduction
The theoretical treatment of chemical reactions invariably
requires some sort of reaction path following calculation.
The most common use of such a calculation is to ensure
that an optimized transition state (TS) lies on a path
connecting the desired reactant and product minima on the
potential energy surface (PES). Additionally, accurate reac-
tion path following methods are needed to determine the
steepest descent path, or minimum energy path (MEP), so
that variational transition state theory (VTST) and reaction
path Hamiltonian (RPH) methods can be used to calculate
reaction rate constants.1-5 Although the steepest descent path
can be considered in any coordinate system, when mass-
weighted Cartesian coordinates are used the MEP is also
known as the intrinsic reaction coordinate (IRC).6

The IRC can be determined by starting at the TS and
following the steepest descent pathway down to the reactant
and product minima according to

wheres is the arc length along the path,x is the coordinate
vector, andg is the gradient of the PES atx. Because eq 1
is a stiff differential equation, care must be taken during the
integration. As a result, a large number of algorithms have
been developed.7-22

Numerical methods for integrating ordinary differential
equations may be classified as either explicit or implicit.
Explicit methods use information at the current point to move
to the next point, while implicit methods required derivative
information at the end point as well. For integrating eq 1,
the differential equation defining the reaction path, common
explicit algorithms include Euler’s method, the Ishida-
Morokuma-Komornicki (stabilized Euler) method,11,12Runge-
Kutta, the local quadratic approximation (LQA),15,16and the
Sun-Ruedenberg modification of LQA.18 Some of these
methods use only gradient information and are limited to
rather small step sizes; others also use second derivatives
(the Hessian). Methods that use the Hessian are more costly,
but gain additional stability that permits somewhat larger
step sizes.

Implicit methods are more difficult to implement because
the gradient and possibly higher-order derivatives are neces-
sary at the end of the step. As a result, implicit methods
generally use optimization schemes to iteratively solve for* Corresponding author e-mail: hbs@chem.wayne.edu.
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the derivatives at the end point of each step23 and thereby
tend to require multiple energy and derivative calculations
for each point on the path. However, implicit methods are
often able to take considerably larger steps allowing them
to compensate for the cost of the additional derivative
calculations. Implicit methods for IRC analysis include the
Müller-Brown method (implicit Euler),17 the second-order
method of Gonzalez and Schlegel (GS2),19,20 and higher-
order methods by the same authors.21

In recent work, we introduced a new integrator for reaction
path following.24 Our Hessian based predictor-corrector
(HPC) method provides a very accurate pathway and was
originally designed to provide a useful approach for describ-
ing the reaction path for use in kinetics calculations (e.g.,
using VTST or RPH methods). In that work, it was shown
that HPC is capable of step sizes comparable to the robust
and widely used GS2 method. An attractive feature of the
HPC integrator is that it only requires one evaluation of the
energy and derivatives per IRC step, while the GS2 method
typically requires between two and five energy and derivative
evaluations per step in order to iteratively solve for the
endpoint gradient. However, the original HPC algorithm
requires Hessians at every step making it generally more
expensive than GS2, which only requires first derivatives.
In the present paper we remove this bottleneck by applying
Hessian updating, and we show that this affords a very
efficient and accurate means for computing IRCs. The
approach here is to compute the Hessian analytically only
at the TS and to update the second derivatives for the rest
of the IRC integration. As we show below, using an
appropriate updating scheme allows HPC step sizes similar
to the popular GS2 integrator while only slightly diminishing
the accuracy of the original HPC method (using all analytic
Hessians). This indicates that the general HPC cost will be
two to five times less than for GS2, since both methods can
be used with similar step sizes and HPC with Hessian
updating requires only one energy and gradient evaluation
at each step. In this way, the HPC algorithm is not only useful
for accurate reaction path following needed for rate constant
calculations but is also efficient for those studies that require
reaction path following primarily to ensure that an optimized
TS lies on the pathway that connects the relevant reactant
and product structures on the PES.

2. Method
In this work, we incorporate standard Hessian updating
schemes into our Hessian based predictor-corrector (HPC)
reaction path following algorithm, which has been previously
described in detail.24 In this section, the HPC method is
briefly described, and the Hessian updating approaches are
discussed.

A. Hessian Based Predictor-Corrector (HPC) Method.
The HPC algorithm uses the local quadratic approximation
(LQA) method of Page and McIver15,16 for predictor steps
and a modified Bulirsch-Stoer integrator25-27 on a distance
weighted interpolant (DWI) surface28-30 for corrector steps.
In this section, both pieces of the HPC method are dis-
cussed.

The LQA integrator is based upon a second-order Taylor
series of the PES. Truncated at the quadratic term, the Taylor
series expansion of the PES aboutx0 is given by

where ∆x, g0, and H0 are the displacement vector of the
current position fromx0, the gradient, and Hessian atx0,
respectively. Taking the first derivative of eq 2 with respect
to x gives the gradient as

Substituting eq 3 into eq 1 gives

In the LQA method of Page and McIver, eq 4 is integrated
by introducing an independent parameter,t, such that

and

The solution to eq 6 is given by

where

In eq 8, U is the matrix of column eigenvectors of the
Hessian andR(t) is a diagonal matrix given by

whereλi are the eigenvalues of the Hessian.
To integrate eq 4, one must obtain a value oft such that

the desired step size (s - s0) is taken. To accomplish this,
iterations over successive Euler integrations of eq 5 are used.
The initial value for the Euler step size,δt, is estimated by

whereNEuler is the number of Euler steps to be taken. In the
present implementation,NEuler ) 5000. The numerical
integration of eq 5 can be carried out readily in the Hessian
eigenvector space

where
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t∆x + 1

2
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At the start of the integration, whenx corresponds to the
TS, the gradient is zero, and hence the transition vector must
be used in place ofg0. At the TS, the LQA step is equivalent
to the gradient extremal step, as described by Hoffman, Nord,
and Ruedenburg.31 At the end of the LQA integration, when
x approaches the minimum wells of the reactant and product,
t heads to infinity and the LQA step is equivalent to a
Newton-Raphson step, which leads to the minimum energy
structure in the local quadratic region. For this reason,
conservation of the desired step size, (s - s0), becomes
difficult in this region. Therefore, once the calculation has
moved beyond the quadratic region of the TS each LQA
step is compared to a Newton-Raphson step. When the
Newton-Raphson step is shorter than the LQA step, the
Newton-Raphson step is taken in lieu of the LQA step. This
provides convergence stability for the corrector step (see
below) when the minimum well is approached.

The Bulirsch-Stoer integrator, which is very well described
elsewhere,25-27,32 is used for the HPC corrector step. Each
Bulirsch-Stoer step is comprised of three basic components.
First, a simple gradient based integrator is used to take
multiple steps along the Bulirsch-Stoer step interval. In
general, this integrator is modified midpoint; however, in
our tests we found that the stiff character of eq 1 is greatly
magnified by modified midpoint. Therefore, our modified
version employs simple Euler integration. A detailed discus-
sion of the causes for Euler integration being more stable
than modified midpoint is available in previous work.24 The
second component of a Bulirsch-Stoer step is to describe
the solution of the Euler integration as a polynomial function
of step size and to extrapolate to a step size of zero
(corresponding to the case where an infinite number of steps
are taken). The third component consists of evaluating the
error of the extrapolation to zero step size. If the error is
too large, the process is repeated using more steps in
the Euler integration, which in turn provides one more
data set for the polynomial extrapolation. If the error is
acceptable (<1 × 10-6 amu1/2 bohr in the present case), then
the extrapolated solution is accepted and the integration is
completed.

This integrator requires a large number of function and
gradient evaluations and can be quite costly if energies and
derivatives are required from electronic structure methods.
However, in the present algorithm the Bulirsch-Stoer integra-
tion is carried out on a surface that is fitted to energy and
derivative information already available at the beginning and
end of the predictor step (LQA). Once the Bulirsch-Stoer
integration is completed and the LQA end point is corrected,
the gradient on the fitted surface is used to take the next
LQA predictor step. Since the corrected end point and
predicted end point are expected to lie within the same
quadratic region of the PES, the Hessian from the previous
predictor end point is used for the next LQA step. The
validity of this assumption has been demonstrated in previous
work.24,33,34

In the current algorithm, the Bulirsch-Stoer integration
is carried out on a DWI surface such as those described
by Collins and co-workers.30,35-37 DWI surfaces have
been used in a number of diverse applications38 and are well

suited for modeling chemical PESs.30 This fitted surface
gives the interpolated energy,EDWI, at a positionx according
to

where the summation is taken over the start (i)1) and end
(i)2) points of the predictor step, about which Taylor
expansions,{Ti}, are evaluated and added together in a
weighted fashion, defined by the weighting functions{wi}.
In the present implementation, the two Taylor expansions
are truncated at the second-order term and the weighting
functions are defined as

B. Hessian Updating Methods.To study larger and more
interesting systems with electronic structures methods, the
efficiency of the HPC algorithm must be improved. To
accomplish the same goal, Hessian updating methods have
been utilized in the past with great success with quasi-
Newton geometry optimization methods8,39-41 and ab initio
classical trajectory calculations.34 Furthermore, other reaction
path following methods have been able to make good use
of Hessian updating.9,19-21,42 These prior successes indicate
that, for HPC, Hessian updating may provide a means to
decrease computational cost, especially for applications
where Hessians are not needed for additional calculations at
each point on the path and users intend to obtain the IRC
only to ensure that an optimized TS lies on a pathway
connecting reactants to products. Nevertheless, careful
consideration must be given to the choice of updating scheme
since the updated Hessians will not only be used to propagate
the IRC via LQA, but HPC also requires Hessians to fit the
DWI surface for the modified Bulirsch-Stoer corrector
integration. A poorly updated Hessian may lead to an
inaccurate DWI surface, severely disturb the corrector
integration, and provide an inadequate gradient for the next
LQA predictor step.

For minimizations, the BFGS Hessian updating scheme
is preferred.43,44A principle reason for this preference is that
the BFGS formula maintains a Hessian that is positive
definite. This characteristic of the BFGS formula is achieved
by employing positive weights that are functions of the
current Hessian. In the case of reaction path following, the
Hessian will be negative definite in some regions (i.e., near
the TS) and the BFGS formula becomes ill-conditioned.45

As a result, Hessian updating methods that have been used
for TS optimization problems are more appropriate and have
been considered. In this work, three different Hessian
updating schemes have been incorporated with HPC to
determine which, if any, provides an acceptable integra-
tion of the IRC while affording the desired increase in
efficiency.

EDWI ) ∑
i)1

2

wiTi (13)

w1 )
|∆x2|2

|∆x1|2 + |∆x2|2
, w2 )

|∆x1|2

|∆x1|2 + |∆x2|2
(14)
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The first updating scheme used is the method of Murtagh
and Sargent (MS), which is also known as the symmetric
rank one formula (SR1). The MS update is given by

For optimization on a quadratic surface, MS updating
converges to the correct Hessian without exact line
searches.43,44 However, care must be taken to avoid MS
updating if the denominator of eq 15 becomes small.

Alternatively, the Powell-symmetric-Broyden (PSB) up-
dating method can be employed. The PSB update is

The PSB updating scheme is free from the possibility of
division by zero, unlike the MS update. Another Hessian
updating approach that also avoids the division by zero
problem of MS updating is Bofill’s formula, which combines
the MS and PSB schemes.46 Bofill’s update was devised as
an alternative updating scheme for TS optimizations and is
given by

where

An alternative form for Bofill’s update has been proposed
by Farkas and Schlegel.47,48 In their approach,φ is given by
the square root of eq 18. For HPC reaction path following,
the modified Bofill update provides similar results to the
standard Bofill method. As a result, this update is not
explicitly considered in this work.

3. Numerical Tests
The HPC algorithm and the three Hessian updating schemes
discussed above have been implemented in the development
version of GAUSSIAN 03.49 Aside from the Hessian at the
TS, which is computed analytically, all Hessians are obtained
by updating during the HPC reaction path calculation. Four
systems have been employed for testing: HCNf HNC,
CH3CH2F f CH2CH2 + HF, ClCH3 + Cl- f Cl- + CH3-
Cl, and the Diels-Alder reaction of ethene and butadiene.
Calculations on the HCN rearrangement reaction have been
carried out at the HF/STO-3G level of theory,50,51 those on
the four center elimination reaction have been carried out at
the HF/3-21G level of theory,52-54 and calculations on ClCH3
+ Cl- f Cl- + CH3Cl and the Diels-Alder reaction have
been carried out at the HF/6-31G(d) level of theory.55-59

Because the masses of the atoms that dominate the reaction
path are quite different for these four reactions, a fixed step

size in mass-weighted coordinates would correspond to
significantly different step sizes in nonmass-weighted coor-
dinates. However, the trust radii for the quadratic regions of
the four reactions should be similar when expressed in
nonmass-weighted coordinates. Therefore, we chose a step
size in nonmass-weighted coordinates at the TS, transformed
it to mass-weighted coordinates, and used it for the rest of
the path. In particular, we selected step sizes of 0.10 and
0.40 bohr for each of the four test reactions.

As an initial test for the accuracy of IRCs computed using
HPC integration with the three updating schemes described
above, we compared plots of energy vs reaction coordinate
and various internal coordinates vs reaction coordinate with
the HPC paths computed using all analytic Hessians. In these
tests, the paths were computed from the respective TSs down
to reactant and product minima, which were detected
according to one of two stopping criteria: (1) the magnitude
of the Cartesian gradient is less than 1.5× 10-4 Hartree
bohr-1 or (2) the angle between two successive steps is less
than 30°.

Visual inspection indicates that in the region near the TS
all three updating methods yield very good pathways when
compared to the path using all analytic Hessians. Near the
endpoints (i.e., the reactant and product wells), the PSB and
Bofill schemes perform well, while the MS updates result
in large deviations from the reference pathway for some
reactions. Here, we show plots for two reactions that are
representative of the set studied. Figures 1 and 2 relate to
the HCN rearrangement reaction. Figures 1(a) and 2(a) give
the (x,y) coordinates of the H atom, where the C-N center
of mass has been placed at the origin, the C-N bond has
been placed on thex-axis, the C atom has been placed on
the negative side of thex-axis, and the N atom has been
placed on the positivex-axis. Figures 1(b) and 2(b) show
the C-N bond length as a function of the reaction coordinate.
Figures 3(a) and 4(a) show energy profiles for the four center
elimination reaction, CH3CH2F f CH2CH2 + HF. Figures
1(c), 2(c), 3(b), and 4(b) show the errors in the pathways,
given by the perpendicular distance from the paths computed
with all analytic Hessians, as a function of reaction coordi-
nate.

It is clear from Figures 1 and 3 that with a step size of
0.10 bohr PSB and Bofill updating schemes both yield very
good paths. MS updating does well with the four center
elimination reaction with the smaller step size but yields long
C-N bonds for the HCN rearrangement. For the paths
integrated with a step size of 0.40 bohr, the behavior of the
three updating schemes is qualitatively similar to the results
from integration with a step size of 0.10 bohr. As one might
expect, slight deviations from the reference path for PSB
and Bofill updating with the smaller step size become
somewhat more apparent when the larger step size is used.
Nevertheless, agreement of the paths found using these two
updating schemes with the analytic Hessian pathway is still
acceptable. The errors in the MS updating paths remain small
for the four center elimination reaction but are much larger
for the HCN rearrangement. As shown in Figures 1(c) and
2(c), the errors in the MS pathways for the HCN rearrange-

∆HMS ) Hnew- Hold )
(∆g - Hold∆x)(∆g - Hold∆x)t

(∆g - Hold∆x)t∆x
(15)

∆HPSB)
(∆g - Hold∆x)∆xt + ∆x(∆g - Hold∆x)t

∆xt∆x
-

∆xt(∆g - Hold∆x)∆x∆xt

(∆xt∆x)2
(16)

∆HBofill ) φ∆HMS + (1 - φ)∆HPSB (17)

φ )
(∆xt(∆g - Hold∆x))2

∆x2(∆g - Hold∆x)2
(18)
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ment rapidly extend beyond the vertical scale of the plot as
the reactant and product valleys are approached.

For both reactions, the MS paths prematurely detect
minima wells and terminate. In the case of the HCN
rearrangement, the calculation detects the reactant well before
the H-C-N angle has reached 180°. Calculations on the
four center elimination reaction end early heading toward
the product when the larger step size is used and end early
in the reactant direction with both step sizes. We have found
that this is a common problem with MS updating, which is

clearly apparent in Figures 1-4. In all cases, the calculations
terminated according to the first stopping criteria listed
abovesthe magnitude of the Cartesian gradient is less than
1.5× 10-4 Hartree bohr-1. As mentioned earlier, the gradient
used in each HPC predictor step comes from the DWI
gradient at the end point from the previous corrector step.
Consequently, a poor Hessian can result in a local minimum
on the DWI surface and artificially cause the calculation to
complete.

The problems experienced using MS updating can be
corrected by computing analytic Hessians every few steps.

Figure 1. Reaction path for HCN f HNC with all analytic
Hessians vs all updated Hessians using a step size of 0.10
bohr. (a) Coordinates of H atom relative to the C-N center
of mass, (b) C-N bond length vs reaction coordinate, and
(c) error, given by perpendicular distance from the all analytic
Hessian path, vs reaction coordinate [HPC paths using
analytic Hessians (s), MS updated Hessians (4), PSB
updated Hessians (O), Bofill updated Hessians (×)]. Note:
plot (c) shows solid lines connecting points for MS, PSB, and
Bofill updated paths for clarity. Every third point is shown for
simplicity (for all three plots).

Figure 2. Reaction path for HCN f HNC with all analytic
Hessians vs all updated Hessians using a step size of 0.40
bohr. (a) Coordinates of H atom relative to the C-N center
of mass, (b) C-N bond length vs reaction coordinate, and
(c) error, given by perpendicular distance from the all analytic
Hessian path, vs reaction coordinate [HPC paths using
analytic Hessians (s), MS updated Hessians (4), PSB
updated Hessians (O), Bofill updated Hessians (×)]. Note:
plot (c) shows solid lines connecting points for MS, PSB, and
Bofill updated paths for clarity.

Updated Hessian Based Reaction Path Following Method J. Chem. Theory Comput., Vol. 1, No. 1, 200565



Specifically, we have found that updating at least once every
five steps provides very good agreement with the all analytic
Hessian pathways. One could also recompute the Hessian
whenever the rms change in matrix elements is larger than
a threshold.42 Both options have been included in this
implementation of the method. Nevertheless, PSB and Bofill
updating methods work well enough for the reactions
considered in this paper that no analytic Hessians are required
during the course of the IRC integration, except at the TS.

Although Figures 1-4 provide a qualitative measure of
the accuracy, a quantitative measure of the accuracy of each

updating scheme is desirable. To this end, we have computed
the perpendicular distance between points on the updated
Hessian and analytic Hessian pathways, which are reported
in Table 1.

The inferiority of MS updating is clear from the data
provided in Table 1. Indeed, for the HCN rearrangement
reaction (using the smaller step size) the errors in the paths
are roughly 2 orders of magnitude greater for MS than for
Bofill and PSB [see Figure 1(c)]. For the four center
elimination [see Figure 3(b)] and Diels-Alder reactions, all
three updating schemes essentially perform the same, while
the symmetric SN2 reaction has RMS errors in position that

Table 1. RMS Errors in Position (Å) for HPC Reaction Path Following Using MS, PSB, and Bofill Hessian Updating
Methods with ∆s ) 0.10 and 0.40 bohra

Hessian updating method

reaction step size MS PSB Bofill

HNC f HCN 0.10 3.36 × 10-2 3.35 × 10-4 3.05 × 10-4

0.40 6.96 × 10-2 1.60 × 10-2 1.05 × 10-2

CH3CH2F f CH2CH2 + HF 0.10 8.55 × 10-3 2.58 × 10-3 4.73 × 10-3

0.40 5.78 × 10-2 6.56 × 10-2 8.46 × 10-2

ClCH3 + Cl- f Cl- + CH3Cl 0.10 2.33 × 10-2 1.09 × 10-2 3.04 × 10-3

0.40 b 1.21 × 10-1 3.46 × 10-2

Diels-Alder 0.10 1.94 × 10-2 1.38 × 10-2 1.58 × 10-2

0.40 6.35 × 10-2 8.33 × 10-2 9.50 × 10-2

a ∆s ) 0.10 and 0.40 bohr correspond to 0.1082 and 0.4326 amu1/2 bohr for HNC f HCN; 0.1090 and 0.4362 amu1/2 bohr for CH3CH2F f
CH2CH2 + HF; 0.3545 and 1.4182 amu1/2 bohr for ClCH3 + Cl- f Cl- + CH3Cl; and 0.2524 and 1.0098 amu1/2 bohr for the Diels-Alder
reaction. b The integration of eq 1 failed for this calculation.

Figure 3. Reaction path for CH3CH2F f CH2CH2 + HF with
all analytic Hessians vs all updated Hessians using a step
size of 0.10 bohr. (a) Energy profile and (b) error, given by
perpendicular distance from the all analytic Hessian path, vs
reaction coordinate [HPC paths using analytic Hessians (s),
MS updated Hessians (4), PSB updated Hessians (O), Bofill
updated Hessians (×)]. Every third point is shown for simplic-
ity.

Figure 4. Reaction path for CH3CH2F f CH2CH2 + HF with
all analytic Hessians vs all updated Hessians using a step
size of 0.40 bohr. (a) Energy profile and (b) error, given by
perpendicular distance from the all analytic Hessian path, vs
reaction coordinate [HPC paths using analytic Hessians (s),
MS updated Hessians (4), PSB updated Hessians (O), Bofill
updated Hessians (×)].
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considerably larger when MS and PSB updating are used as
compared to Bofill updating for this step size. For the larger
step size, the errors from paths using all three updating
methods are much larger than the cases where the smaller
step size is employed in the integration. These differences
in errors are approximately 1 and 2 orders of magnitude.
Additionally, the superiority of PSB and Bofill updating
schemes over MS is not, in general, as clear when a larger
integration step is used. In fact, for the four center elimination
reaction the MS path is better than the PSB or Bofill paths,
although the differences in errors for each path are small.

It is worth noting that the path errors due to Hessian
updating (Table 1) are only slightly larger than the path errors
previously measured for paths using all analytic Hessians at
similar step sizes.24 This indicates that using all updated
Hessians only slightly decreases the accuracy of the IRC and
that HPC with Hessian updating is capable of integrating
the IRC using a step size that is similar to GS2. With Hessian
updating, HPC requires only one energy and one gradient
evaluation per step, making HPC very competitive with GS2
and other popular IRC integrators.

Since the data suggest that updating using Bofill’s formula
is, for most applications, superior to the other methods
considered, the Bofill updating scheme has been chosen as
the default scheme for HPC with Hessian updating. As
previously stated, the impetus for this work is to increase
the efficiency of HPC to allow its use in studies of large
and interesting systems. Therefore, the relative speed-up due
to updating (using the Bofill updating scheme) has been
investigated. Table 2 shows relative CPU times for calculat-
ing 40 steps in the forward direction and 40 steps in the
reverse direction for the HCN rearrangement, four center
elimination, symmetric SN2, and Diels-Alder reactions. The
choice of the number of steps is completely arbitrary and is
kept uniform among the reactions considered to provide for
better cost comparison and determination of basis set size
dependence. Table 2 also shows the relative cost for the
insertion of NO into a Co-CH3 σ bond, which has been
previously studied by Hall and co-workers.60-62 In this work,
we have employed the B3LYP/6-311G(d,p) level of
theory.63-66 Due to the size of this system we have only
calculated paths with 25 steps in the forward direction and
25 steps in the reverse direction.

As expected, updating the Hessian provides large decreases
in computational cost. The degree of speed-up afforded by
Hessian updating is dependent on the size of the system

studied. This is expected since the bottleneck in the all
analytic Hessian calculations is Hessian evaluation and the
bottleneck in the updated Hessian calculations is the com-
putation of the energy and gradient. Therefore, the speed-
up due to Hessian updating will depend on the differential
between the energy and Hessian calculations. For the HCN
rearrangement reaction (11 basis functions) the decrease in
cost for the calculation with all updated Hessians is roughly
34%, while using updated Hessians for the NO insertion
reactionsthe largest system studied here (388 basis func-
tions)sprovides nearly an order of magnitude speed-up.

4. Conclusions
In this paper, the efficiency of our Hessian predictor-corrector
reaction path following algorithm has been improved by
utilizing Hessian updating, making it an attractive alternative
to other commonly used IRC integrators. In every case
considered, the Hessian has been calculated analytically only
at the TS. All subsequent steps have used updated Hessians.
The relative performance of three popular Hessian updating
schemes was investigated, and it was determined that the
best method is the Bofill update. Using this updating
approach, the relative CPU speed-up for HPC calculations
on five different reactions was studied. For the smallest
system considered, HCN rearrangement, a relative speed-
up of roughly a factor of 1.3 was observed. For the largest
system studied, NO insertion into a Co-CH3 σ bond, nearly
an order of magnitude speed-up was accomplished.
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for all

updated
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HNC f HCN 11 1.00 0.66
CH3CH2F f CH2CH2 + HF 37 1.46 0.86
ClCH3 + Cl- f Cl- + CH3Cl 59 5.51 1.77
Diels-Alder 110 61.12 7.41
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a All cases start with an analytic Hessian at the transition state.
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