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Abstract: The reaction path is a key concept in the theoretical description of a chemical reaction.
The intrinsic reaction coordinate is defined as the steepest descent path in mass-weighted
Cartesian coordinates that connects the transition state to reactants and products on the potential
energy surface. Recently, a new Hessian based predictor-corrector reaction path following
algorithm was presented that is comparable to a fourth-order algorithm developed earlier.
Although the method is very accurate, it is costly because second derivatives of the energy are
required at each step. In this work, the efficiency of the method is greatly enhanced by employing
Hessian updating. Three different updating schemes have been tested: Murtagh and Sargent,
Powell-symmetric Broyden, and Bofill. Bofill's update performs the best and yields excellent
speed-up.

1. Introduction wheres is the arc length along the pathjs the coordinate
The theoretical treatment of chemical reactions invariably YEctor, andg s the gradient of the PES at Because eq 1

requires some sort of reaction path following calculation. 'S @ Stiff differential equation, care must be taken during the
The most common use of such a calculation is to ensureintegration. As a result, a large number of algorithms have
22
that an optimized transition state (TS) lies on a path been dev_elopeb“. ) ) ) ) ]
connecting the desired reactant and product minima on the Numerical methods for integrating ordinary differential
potential energy surface (PES). Additionally, accurate reac- €quations may be classified as either explicit or implicit.
tion path following methods are needed to determine the EXplicit methods use information at the current point to move
steepest descent path, or minimum energy path (MEP), sot© the next point, while implicit methods required derivative
that variational transition state theory (VTST) and reaction information at the end point as well. For integrating eq 1,
path Hamiltonian (RPH) methods can be used to calculatethe differential equation defining the reaction path, common
reaction rate constants? Although the steepest descent path €XPlicit algorithms include Euler's method, zthe Ishida-
can be considered in any coordinate system, when massMorokuma-Komomicki (stabilized Euler) methéd?Runge-
weighted Cartesian coordinates are used the MEP is alsoKUtta, the local quadratic approximation (LQA);°and the
known as the intrinsic reaction coordinate (IRC). Sun-Ruedenberg modification of LQA.Some of these
The IRC can be determined by starting at the TS and methods use only gradient information and are limited to

following the steepest descent pathway down to the reactantrather sm_aII step sizes; others also use.second derivatives
and product minima according to (the Hessian). Methods that use the Hessian are more costly,

but gain additional stability that permits somewhat larger

dx(9) - 9(x) . step S|.z.es. B _

s _|g(x)| 1) Imphqt methods are more difficult to |mplerT_1ent because
the gradient and possibly higher-order derivatives are neces-

sary at the end of the step. As a result, implicit methods
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the derivatives at the end point of each Steand thereby The LQA integrator is based upon a second-order Taylor

tend to require multiple energy and derivative calculations series of the PES. Truncated at the quadratic term, the Taylor

for each point on the path. However, implicit methods are series expansion of the PES abayts given by

often able to take considerably larger steps allowing them

to compensate for the cost of the additional derivative E(X) = E0+gotAx+1Ax‘HoAx 2)

calculations. Implicit methods for IRC analysis include the 2

Mdller-Brown method (implicit Euler}/ the second-order

method of Gonzalez and Schlegel (GSZY and higher- current position fromx,, the gradient, and Hessian %,

order methods by the same authgrs. respectively. Taking the first derivative of eq 2 with respect
In recent work, we introduced a new integrator for reaction g x gives the gradient as

path following?* Our Hessian based predictor-corrector

(HPC) method provides a very accurate pathway and was g(x) = gy + HyAX 3)

originally designed to provide a useful approach for describ-

ing the reaction path for use in kinetics calculations (e.g., Substituting eq 3 into eq 1 gives

using VTST or RPH methods). In that work, it was shown

that HPC is capable of step sizes comparable to the robust dx(s) — 9o + HoAX 4)

and widely used GS2 method. An attractive feature of the d 9o + HoAX|

HPC integrator is that it only requires one evaluation of the o

energy and derivatives per IRC step, while the GS2 method " the LQA method of Page and Mclver, eq 4 is integrated

typically requires between two and five energy and derivative PY introducing an independent parametesuch that

evaluations per step in order to iteratively solve for the ds

endpoint gradient. However, the original HPC algorithm a [Go T HoAX| )

requires Hessians at every step making it generally more

expensive than GS2, which only requires first derivatives. and

In the present paper we remove this bottleneck by applying

Hessian updating, and we show that this affords a very ax _ —[g, + HoAX] (6)

efficient and accurate means for computing IRCs. The dt 0 ¢

approach here is to compute the Hessian analytically only . L

at the TS and to update the second derivatives for the restThe solution to eq 6 is given by

of the IRC integration. As we show below, using an X(t) = X, + A(t)g, 7)

appropriate updating scheme allows HPC step sizes similar

to the popular GS2 integrator while only slightly diminishing where

the accuracy of the original HPC method (using all analytic

Hessians). This indicates that the general HPC cost will be A(t) = Ua(t)U' (8)

two to five times less than for GS2, since both methods can

be used with similar step sizes and HPC with Hessian

updating requires only one energy and gradient evaluation

at each step. In this way, the HPC algorithm is not only useful

for accurate reaction path following needed for rate constant

calculations but is also efficient for those studies that require

reaction path following primarily to ensure that an optimized

TS lies on the pathway that connects the relevant reactan

and product structures on the PES.

where AX, go, and Hp are the displacement vector of the

In eq 8, U is the matrix of column eigenvectors of the
Hessian andy(t) is a diagonal matrix given by

o (t) = (7" = 1)/, 9)

where/; are the eigenvalues of the Hessian.

i To integrate eq 4, one must obtain a valué efich that

the desired step size (- ) is taken. To accomplish this,
iterations over successive Euler integrations of eq 5 are used.
The initial value for the Euler step sizét, is estimated by

2. Method

In this work, we incorporate standard Hessian updating ot= N
schemes into our Hessian based predictor-corrector (HPC)

reaction path following algorithm, which has been previously whereNg,, is the number of Euler steps to be taken. In the
described in detai? In this section, the HPC method is present implementationNgyer = 5000. The numerical
briefly described, and the Hessian updating approaches aréntegration of eq 5 can be carried out readily in the Hessian

1 (5— %)

Euler |gO|

(10)

discussed. eigenvector space

A. Hessian Based Predictor-Corrector (HPC) Method.
The HPC algorithm uses the local quadratic approximation d_S= (zg, Zefﬂit)lIZ (11)
(LQA) method of Page and McIvEr'6 for predictor steps dt S

and a modified Bulirsch-Stoer integrator’ on a distance

weighted interpolant (DWI) surfaé&3° for corrector steps. ~ where

In this section, both pieces of the HPC method are dis- .

cussed. % =Ug (12)
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At the start of the integration, whencorresponds to the  suited for modeling chemical PES5This fitted surface
TS, the gradient is zero, and hence the transition vector mustgives the interpolated energgpw, at a positiorx according
be used in place aj,. At the TS, the LQA step is equivalent  to
to the gradient extremal step, as described by Hoffman, Nord,
and Ruedenburg. At the end of the LQA integration, when 2
X approaches the minimum wells of the reactant and product, Epwi= Y WT, (13)
t heads to infinity and the LQA step is equivalent to a 1=
Newton—Raphson step, which leads to the minimum energy
structure in the local quadratic region. For this reason, Where the summation is taken over the sta&rtl) and end
conservation of the desired step size,« ), becomes  (i=2) points of the predictor step, about which Taylor
difficult in this region. Therefore, once the calculation has expansions{Ti}, are evaluated and added together in a
moved beyond the quadratic region of the TS each LQA weighted fashion, defined by the weighting functigmeg} .
step is compared to a NewteRaphson step. When the In the present implementation, the two Taylor expansions
Newton—Raphson step is shorter than the LQA step, the are truncated at the second-order term and the weighting
Newton—Raphson step is taken in lieu of the LQA step. This functions are defined as
provides convergence stability for the corrector step (see
below) when the minimum well is approached. |Ax2|2 |Ax1|2

The Bulirsch-Stoer integrator, which is very well described Wy
elsewhere> 2732 is used for the HPC corrector step. Each
Bulirsch-Stoer step is comprised of three basic components.
First, a simple gradient based integrator is used to take B. Hessian Updating MethodsTo study larger and more
multiple steps along the Bulirsch-Stoer step interval. In interesting systems with electronic structures methods, the
general, this integrator is modified midpoint; however, in efﬁciency of the HPC a|gorithm must be improved_ To
our tests we found that the stiff character of eq 1lis greatly accompnsh the same goa|’ Hessian updating methods have
magnified by modified midpoint. Therefore, our modified peen utilized in the past with great success with quasi-
version employs simple Euler integration. A detailed discus- Newton geometry optimization methdd&-! and ab initio
sion of the causes for Euler integration being more stable ¢jassical trajectory calculatiod$Furthermore, other reaction

than modified midpoint is available in previous wafkThe path following methods have been able to make good use
second component of a Bulirsch-Stoer step is to describe ¢ yessian updating19-2142 These prior successes indicate

the solution of the Euler integration as a polynomial function o+ for HPC. Hessian updating may provide a means to

of step siz€ and to extrapolate to_ a §tep size Of Z€ro yocreage computational cost, especially for applications
(corresponding to 'ghe case where an |nf|n|te number (,)f StePS,\here Hessians are not needed for additional calculations at
are taken). The third component consists of evaluating theeaCh point on the path and users intend to obtain the IRC
error of the extrapolation. to zero step size. If the error ig only to ensure that an optimized TS lies on a pathway
100 frge: I ocess s gepeale using more Sebe Mhomectng reactas to procucs, Neverteless, caren
' consideration must be given to the choice of updating scheme

data set for the polynomial extrapolation. If the error is since the updated Hessians will not only be used to propagate
acceptable€1 x 10-¢ amu’? bohr in the present case), then ) . i .
P 1 b ) the IRC via LQA, but HPC also requires Hessians to fit the

the extrapolated solution is accepted and the integration is " .
P P 9 DWI surface for the modified Bulirsch-Stoer corrector

completed. ) . ;
F.) . . . integration. A poorly updated Hessian may lead to an

This integrator requires a large number of function and . .
inaccurate DWI surface, severely disturb the corrector

gradient evaluations and can be quite costly if energies and. . . . .
S : : integration, and provide an inadequate gradient for the next
derivatives are required from electronic structure methods. LOA predictor ste
However, in the present algorithm the Bulirsch-Stoer integra- P P-
tion is carried out on a surface that is fitted to energy and ~ For minimizations, the BFGS Hessian updating scheme
derivative information already available at the beginning and is preferred®4*A principle reason for this preference is that
end of the predictor step (LQA). Once the Bulirsch-Stoer the BFGS formula maintains a Hessian that is positive
integration is completed and the LQA end point is corrected, definite. This characteristic of the BFGS formula is achieved
the gradient on the fitted surface is used to take the nextby employing positive weights that are functions of the
LQA predictor step. Since the corrected end point and current Hessian. In the case of reaction path following, the
predicted end point are expected to lie within the same Hessian will be negative definite in some regions (i.e., near
quadratic region of the PES, the Hessian from the previousthe TS) and the BFGS formula becomes ill-conditioffed.
predictor end point is used for the next LQA step. The As a result, Hessian updating methods that have been used
validity of this assumption has been demonstrated in previousfor TS optimization problems are more appropriate and have
work 24:33:34 been considered. In this work, three different Hessian
In the current algorithm, the Bulirsch-Stoer integration updating schemes have been incorporated with HPC to
is carried out on a DWI surface such as those describeddetermine which, if any, provides an acceptable integra-
by Collins and co-worker®3537 DWI surfaces have tion of the IRC while affording the desired increase in
been used in a number of diverse applicat®dasd are well efficiency.

= y Wy = (14)
|AX,|? + |Ax,|* |AX,)? + |AX,)?
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The first updating scheme used is the method of Murtagh
and Sargent (MS), which is also known as the symmetric
rank one formula (SR1). The MS update is given by

(Ag — H"AX)(Ag — HAX)"
(Ag — HYAX)'Ax

AHMSZ Hnew_ Hold —
(15)

For optimization on a quadratic surface, MS updating
converges to the correct Hessian without exact line
searche434* However, care must be taken to avoid MS
updating if the denominator of eq 15 becomes small.
Alternatively, the Powell-symmetric-Broyden (PSB) up-
dating method can be employed. The PSB update is

AHoq = (Ag — HYAX)AX' + Ax(Ag — H*Ax)"
AX'AX
AX(Ag — HY9AX)AXAX!
(AX'AX)?

(16)

The PSB updating scheme is free from the possibility of
division by zero, unlike the MS update. Another Hessian
updating approach that also avoids the division by zero
problem of MS updating is Bofill's formula, which combines
the MS and PSB schemé&sBofill's update was devised as
an alternative updating scheme for TS optimizations and is
given by

AHgo = ¢AHys + (1 — ¢)AHpgg (17)

where

_ (AX(Ag — H“Ax))?

AX*(Ag — HYAx)? (18)
An alternative form for Bofill's update has been proposed
by Farkas and Schleg&#8In their approachg is given by
the square root of eq 18. For HPC reaction path following,
the modified Bofill update provides similar results to the
standard Bofill method. As a result, this update is not
explicitly considered in this work.

3. Numerical Tests

Hratchian and Schlegel

size in mass-weighted coordinates would correspond to
significantly different step sizes in nonmass-weighted coor-
dinates. However, the trust radii for the quadratic regions of
the four reactions should be similar when expressed in
nonmass-weighted coordinates. Therefore, we chose a step
size in nonmass-weighted coordinates at the TS, transformed
it to mass-weighted coordinates, and used it for the rest of
the path. In particular, we selected step sizes of 0.10 and
0.40 bohr for each of the four test reactions.

As an initial test for the accuracy of IRCs computed using
HPC integration with the three updating schemes described
above, we compared plots of energy vs reaction coordinate
and various internal coordinates vs reaction coordinate with
the HPC paths computed using all analytic Hessians. In these
tests, the paths were computed from the respective TSs down
to reactant and product minima, which were detected
according to one of two stopping criteria: (1) the magnitude
of the Cartesian gradient is less than k5104 Hartree
bohr? or (2) the angle between two successive steps is less
than 30.

Visual inspection indicates that in the region near the TS
all three updating methods yield very good pathways when
compared to the path using all analytic Hessians. Near the
endpoints (i.e., the reactant and product wells), the PSB and
Bofill schemes perform well, while the MS updates result
in large deviations from the reference pathway for some
reactions. Here, we show plots for two reactions that are
representative of the set studied. Figures 1 and 2 relate to
the HCN rearrangement reaction. Figures 1(a) and 2(a) give
the (ky) coordinates of the H atom, where the-N center
of mass has been placed at the origin, theNCbond has
been placed on the-axis, the C atom has been placed on
the negative side of thg-axis, and the N atom has been
placed on the positive-axis. Figures 1(b) and 2(b) show
the C-N bond length as a function of the reaction coordinate.
Figures 3(a) and 4(a) show energy profiles for the four center
elimination reaction, CkCH,F — CH,CH, + HF. Figures
1(c), 2(c), 3(b), and 4(b) show the errors in the pathways,
given by the perpendicular distance from the paths computed
with all analytic Hessians, as a function of reaction coordi-
nate.

It is clear from Figures 1 and 3 that with a step size of

The HPC algorithm and the three Hessian updating schemed-10 bohr PSB and Bofill updating schemes both yield very
discussed above have been implemented in the developmen@00d paths. MS updating does well with the four center

version of GAUSSIAN 03? Aside from the Hessian at the
TS, which is computed analytically, all Hessians are obtained
by updating during the HPC reaction path calculation. Four
systems have been employed for testing: HENHNC,
CH3;CHyF — CH,CH; + HF, CICH; + CI- — CI~ + CHs-

Cl, and the Diels-Alder reaction of ethene and butadiene.

elimination reaction with the smaller step size but yields long
C—N bonds for the HCN rearrangement. For the paths
integrated with a step size of 0.40 bohr, the behavior of the
three updating schemes is qualitatively similar to the results
from integration with a step size of 0.10 bohr. As one might
expect, slight deviations from the reference path for PSB

Calculations on the HCN rearrangement reaction have beenand Bofill updating with the smaller step size become

carried out at the HF/STO-3G level of thedfp! those on

somewhat more apparent when the larger step size is used.

the four center elimination reaction have been carried out at Nevertheless, agreement of the paths found using these two

the HF/3-21G level of theor§? 54 and calculations on CICH
+ CI= — CI~ + CHsClI and the Diels-Alder reaction have
been carried out at the HF/6-31G(d) level of the®ry?®

updating schemes with the analytic Hessian pathway is still
acceptable. The errors in the MS updating paths remain small
for the four center elimination reaction but are much larger

Because the masses of the atoms that dominate the reactiofor the HCN rearrangement. As shown in Figures 1(c) and

path are quite different for these four reactions, a fixed step

2(c), the errors in the MS pathways for the HCN rearrange-
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Figure 1. Reaction path for HCN — HNC with all analytic
Hessians vs all updated Hessians using a step size of 0.10
bohr. (a) Coordinates of H atom relative to the C—N center
of mass, (b) C—N bond length vs reaction coordinate, and
(c) error, given by perpendicular distance from the all analytic
Hessian path, vs reaction coordinate [HPC paths using
analytic Hessians (—), MS updated Hessians (»), PSB
updated Hessians (O), Bofill updated Hessians (x)]. Note:
plot (c) shows solid lines connecting points for MS, PSB, and
Bofill updated paths for clarity. Every third point is shown for
simplicity (for all three plots).

Figure 2. Reaction path for HCN — HNC with all analytic
Hessians vs all updated Hessians using a step size of 0.40
bohr. (a) Coordinates of H atom relative to the C—N center
of mass, (b) C—N bond length vs reaction coordinate, and
(c) error, given by perpendicular distance from the all analytic
Hessian path, vs reaction coordinate [HPC paths using
analytic Hessians (—), MS updated Hessians (a), PSB
updated Hessians (O), Bofill updated Hessians (x)]. Note:
plot (c) shows solid lines connecting points for MS, PSB, and
Bofill updated paths for clarity.

clearly apparent in Figures—4. In all cases, the calculations

ment rapidly extend beyond the vertical scale of the plot as terminated according to the first stopping criteria listed
the reactant and product valleys are approached. above-the magnitude of the Cartesian gradient is less than

For both reactions, the MS paths prematurely detect 1.5 x 10-# Hartree bohr. As mentioned earlier, the gradient
minima wells and terminate. In the case of the HCN used in each HPC predictor step comes from the DWI
rearrangement, the calculation detects the reactant well beforggradient at the end point from the previous corrector step.
the H-C—N angle has reached 180Calculations on the  Consequently, a poor Hessian can result in a local minimum
four center elimination reaction end early heading toward on the DWI surface and artificially cause the calculation to
the product when the larger step size is used and end earlycomplete.
in the reactant direction with both step sizes. We have found The problems experienced using MS updating can be
that this is a common problem with MS updating, which is corrected by computing analytic Hessians every few steps.
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Table 1. RMS Errors in Position (A) for HPC Reaction Path Following Using MS, PSB, and Bofill Hessian Updating
Methods with As = 0.10 and 0.40 bohr2

Hessian updating method

reaction step size MS PSB Bofill
HNC — HCN 0.10 3.36 x 1072 3.35 x 1074 3.05 x 1074
0.40 6.96 x 1072 1.60 x 1072 1.05 x 1072
CH3CHyF — CH2CH, + HF 0.10 8.55 x 1073 2.58 x 1073 4.73 x 1073
0.40 5.78 x 1072 6.56 x 1072 8.46 x 1072
CICH3 + CI~ — CI~ + CH3Cl 0.10 2.33 x 1072 1.09 x 1072 3.04 x 1073
0.40 b 121 x 10t 3.46 x 1072
Diels—Alder 0.10 1.94 x 1072 1.38 x 1072 1.58 x 1072
0.40 6.35 x 1072 8.33 x 1072 9.50 x 1072

a As = 0.10 and 0.40 bohr correspond to 0.1082 and 0.4326 amu®2 bohr for HNC — HCN; 0.1090 and 0.4362 amu®/2 bohr for CH3CH,F —
CH,CH; + HF; 0.3545 and 1.4182 amu®?2 bohr for CICHz + CI~ — CI~ + CH3Cl; and 0.2524 and 1.0098 amu2 bohr for the Diels—Alder
reaction. ? The integration of eq 1 failed for this calculation.
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Figure 3. Reaction path for CH3;CH,F — CH,CH; + HF with Figure 4. Reaction path for CH;CH,F — CH,CH; + HF with
all analytic Hessians vs all updated Hessians using a step all analytic Hessians vs all updated Hessians using a step
size of 0.10 bohr. (a) Energy profile and (b) error, given by size of 0.40 bohr. (a) Energy profile and (b) error, given by
perpendicular distance from the all analytic Hessian path, vs perpendicular distance from the all analytic Hessian path, vs
reaction coordinate [HPC paths using analytic Hessians (—), reaction coordinate [HPC paths using analytic Hessians (—),
MS updated Hessians (A), PSB updated Hessians (O), Bofill MS updated Hessians (a), PSB updated Hessians (O), Bofill
updated Hessians (x)]. Every third point is shown for simplic- updated Hessians (x)].
1ty. updating scheme is desirable. To this end, we have computed

Specifically, we have found that updating at least once everythe perpendicular distance between points on the updated
five steps provides very good agreement with the all analytic Hessian and analytic Hessian pathways, which are reported
Hessian pathways. One could also recompute the Hessiarnn Table 1.
whenever the rms change in matrix elements is larger than The inferiority of MS updating is clear from the data
a threshold? Both options have been included in this provided in Table 1. Indeed, for the HCN rearrangement
implementation of the method. Nevertheless, PSB and Bofill reaction (using the smaller step size) the errors in the paths
updating methods work well enough for the reactions are roughly 2 orders of magnitude greater for MS than for
considered in this paper that no analytic Hessians are requiredBofill and PSB [see Figure 1(c)]. For the four center
during the course of the IRC integration, except at the TS. elimination [see Figure 3(b)] and Diet\lder reactions, all
Although Figures 4 provide a qualitative measure of three updating schemes essentially perform the same, while
the accuracy, a quantitative measure of the accuracy of eachthe symmetric §2 reaction has RMS errors in position that
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Table 2. Comparison of Relative CPU Time for HPC
Calculations Using All Analytic Hessians vs Those Using
All Updated Hessians?

relative time relative time

no. of for all for all

basis analytic updated

reaction functions  Hessians Hessians

HNC — HCN 11 1.00 0.66
CH3CH3F — CH,CH;, + HF 37 1.46 0.86
CICH3 + CI= — CI~ + CH3Cl 59 5.51 1.77
Diels—Alder 110 61.12 7.41
CpCoMeNO — CpCoNMeO 388 5104.95 533.54

a All cases start with an analytic Hessian at the transition state.

J. Chem. Theory Comput., Vol. 1, No. 1, 206

studied. This is expected since the bottleneck in the all
analytic Hessian calculations is Hessian evaluation and the
bottleneck in the updated Hessian calculations is the com-
putation of the energy and gradient. Therefore, the speed-
up due to Hessian updating will depend on the differential
between the energy and Hessian calculations. For the HCN
rearrangement reaction (11 basis functions) the decrease in
cost for the calculation with all updated Hessians is roughly
34%, while using updated Hessians for the NO insertion
reaction—the largest system studied here (388 basis func-
tions)y—provides nearly an order of magnitude speed-up.

4. Conclusions

considerably larger when MS and PSB updating are used agdn this paper, the efficiency of our Hessian predictor-corrector

compared to Bofill updating for this step size. For the larger

step size, the errors from paths using all three updating
methods are much larger than the cases where the smalle
step size is employed in the integration. These differences
in errors are approximately 1 and 2 orders of magnitude.

Additionally, the superiority of PSB and Bofill updating

reaction path following algorithm has been improved by
utilizing Hessian updating, making it an attractive alternative
jo other commonly used IRC integrators. In every case
considered, the Hessian has been calculated analytically only
at the TS. All subsequent steps have used updated Hessians.
The relative performance of three popular Hessian updating

schemes over MS is not, in generaL as clear when a |argerscheme5 was inveStigated, and it was determined that the

integration step is used. In fact, for the four center elimination
reaction the MS path is better than the PSB or Bofill paths,
although the differences in errors for each path are small.
It is worth noting that the path errors due to Hessian
updating (Table 1) are only slightly larger than the path errors
previously measured for paths using all analytic Hessians at
similar step size$! This indicates that using all updated

Hessians only slightly decreases the accuracy of the IRC and

that HPC with Hessian updating is capable of integrating
the IRC using a step size that is similar to GS2. With Hessian
updating, HPC requires only one energy and one gradient
evaluation per step, making HPC very competitive with GS2
and other popular IRC integrators.

Since the data suggest that updating using Bofill's formula
is, for most applications, superior to the other methods

considered, the Bofill updating scheme has been chosen as

the default scheme for HPC with Hessian updating. As
previously stated, the impetus for this work is to increase
the efficiency of HPC to allow its use in studies of large

and interesting systems. Therefore, the relative speed-up due

to updating (using the Bofill updating scheme) has been
investigated. Table 2 shows relative CPU times for calculat-
ing 40 steps in the forward direction and 40 steps in the
reverse direction for the HCN rearrangement, four center
elimination, symmetric &, and Diels-Alder reactions. The

choice of the number of steps is completely arbitrary and is
kept uniform among the reactions considered to provide for

better cost comparison and determination of basis set size
dependence. Table 2 also shows the relative cost for the

insertion of NO into a CeCH; ¢ bond, which has been
previously studied by Hall and co-workeéfs82 In this work,

we have employed the B3LYP/6-311G(d,p) level of
theory%3-% Due to the size of this system we have only
calculated paths with 25 steps in the forward direction and
25 steps in the reverse direction.

As expected, updating the Hessian provides large decreases

in computational cost. The degree of speed-up afforded by

Hessian updating is dependent on the size of the system

best method is the Bofill update. Using this updating
approach, the relative CPU speed-up for HPC calculations
on five different reactions was studied. For the smallest
system considered, HCN rearrangement, a relative speed-
up of roughly a factor of 1.3 was observed. For the largest
system studied, NO insertion into a €6H; ¢ bond, nearly

an order of magnitude speed-up was accomplished.
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