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Central to the theoretical description of a chemical reaction is the reaction pathway. The intrinsic
reaction coordinate is defined as the steepest descent path in mass weighted Cartesian coordinates
that connects the transition state to reactants and products. In this work, a new integrator for the
steepest descent pathway is presented. This method is a Hessian based predictor—corrector
algorithm that affords pathways comparable to our previous fourth order method at the cost of a
second order approach. The proposed integrator is tested on an analytic surface, four moderately
sized chemical reactions, and one larger organometallic syste00@ American Institute of
Physics. [DOI: 10.1063/1.1724823

I. INTRODUCTION corresponds to a TS, the reaction pathway can be determined
by following the steepest descent path downhill in both di-

~Inthe theoretical study of a chemical reaction, the reacrections. The steepest descent pathway is given by the differ-
tion pathway plays an integral role. Typically, one employsential equation

reaction path following calculations to ensure that a transi-
tion state(TS) found on a particular potential energy surface dx(s) a(x)
(PES lies on a pathway that connects the two intended PES ~§g~ — lgx)[’ @)
minima. Reaction pathways are also used to derive an accu-
rate description of the PES along the minimum energy patiivheres is the arc length along the patk,is the vector of
(MEP) to compute rate constants via variational transitionCartesian coordinates, amgds the PES gradient at Some
state theory(VTST) or reaction path HamiltoniaiRPH)  care must be taken when integrating the steepest descent
formalisms! pathway as Eq(1) corresponds to a stiff differential equa-
There are two basic varieties of reaction path procetion. Although a steepest descent path can be obtained in any
dures. The first type, often referred to as pathway optimizacoordinate system, when mass-weighted Cartesian coordi-
tion methods, search for a reaction path without prior knowl-nates are used the steepest descent path is known as the
edge of the TS and are commonly used to simultaneouslintrinsic reaction coordinatdRC).’
find a TS and the reaction pathway. The second type begins A multitude of approaches to reaction path following are
at a previously optimized TS and follows paths down to thepresent in the literature and have been extensively
reactant and product wells. Although pathway optimizationreviewed®23In general, a reaction path following algorithm
methods have gained much attention in recent years, theyay be classified as either explicit or implicit. Explicit meth-
require multiple points or images along an interpolated pathods take each step using derivative information only at the
way. These images are minimized in a constrained and corstarting point; implicit methods take each step using deriva-
certed way, and thus usually require a large number of entive information at both the starting and end points. Common
ergy and derivative calculations. A recent implementation ofexplicit algorithms include Euler’s method, the Ishida—
nudged elastic band methods in Gaussian-bagednitio  Morokuma—Komornicki (stabilized Euler method!213
electronic structure codes required between 50 and 201 gr&unge—Kuttd*!® the local quadratic approximation
dient calculationgwith a relatively low density of imageso  (LQA),'®Y” and the Sun—Ruedenberg modification of
describe the isomerization reaction of HGNHNC.® Obvi- LQA.® Some of these methods require only gradient infor-
ously, these approaches are particularly ill suited for thosenation and are limited to rather small step sizes, while others
cases where a very accurate path is needed in the area neg@go use second derivativéihe Hessian Methods that use
the TS, as with VTST and RPH, for even modest sized systhe Hessian are more costly, but gain additional stability al-
tems. In this work, we focus our discussion exclusively onjowing for somewhat larger step sizes.
the second type of reaction path algorithm—those that begin  Implicit methods for differential equations are more dif-
at a user supplied TS and trace the two pathw@gsvard  ficult to implement because the gradient, and possibly higher
and reversgthat lead to reactants and products. order derivatives, are necessary at the end of the step. Since
Beginning at a first-order saddle point on the PES, whichthese methods generally require the use of optimization
schemes at each step to iteratively solve for the derivatives at

. 4 . .
dAuthor to whom correspondence should be addressed; Electronic mair-:he_ enq point, ther tend to require multiple energy and
hbs@chem.wayne.edu derivative calculations for each step. However, implicit
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methods are often able to take considerably larger steps than In the LQA method of Page and Mclver, E@) is inte-
explicit methods allowing them to compensate for these adgrated by introducing an independent parametesuch that
ditional derivative calculations. Implicit methods for IRC
analysis include the Mler—Brown (implicit Euler) — =|go+ HoAX| (5)
method!® the second order Gonzalez and Schiggeplicit dt
trapezoid method?®?!
same author&

In this paper, we introduce a new explicit integration %:_[g + HoAX] (6)
scheme to solve Eq1). This new approach uses a Hessian t 0T
based predictor-correctoHPC) integrator that aims to solve The solution to Eq(6) is given by
the pathway with a high degree of accuracy. The present
algorithm has been designed with the hope of developing an X() =Xt A(t)go, @)
approach that is well suited for use in VTST and RPH calyhere
culations where an accurate description of the reaction path .
is essential. Since analytic Hessians are necessary at points A =Ua(U. ®
along the path for computing path curvatures, coupling matn Eq. (8), U is the matrix of column eigenvectors of the
trix elements and projected frequencies for VTST and RPHHessian and(t) is a diagonal matrix given by
calculations, our method makes use of second derivatives at

and higher order methods by the and

each step. a;(t)=(e M'=1)/\;, 9
where)\; are the eigenvalues of the Hessian.
In order to integrate Eq4), one must obtain a value of
Il. METHOD t such that the user’s desired step sige-§;) is taken. To

accomplish this, iterations over successive Euler integrations
The present algorithm makes use of a Hessian baseef Eq. (5) are used. The initial value for the Euler step size,
predictor—corrector integrator. Related algoritiif§ have ot is estimated by

been found to be quite efficient for integratiag initio clas- 1 (s—sy)
sical trajectory calculations. The LQA integrator of Page and  6t= N |—| (10
Mclver'® is used for the predictor steps, and a modified Euler 190

Bulirsch—Stoer integratéf—>° is used on a fitted distance whereNg,, is the number of Euler steps to be taken. In the
weighted interpolan(DWI) surfacé®—3? for the corrector present implementatior\ge=5000. The numerical inte-
steps. The fitted surface is a two point DWI surface thatgration of Eq.(5) can be carried out readily in the Hessian
employs positions, energies, gradients, and Hessians at tleéggenvector space,

start and end points from the predictor integration. After each ds U2

corrector integration is complete, the DWI gradient at the _:(2 géiZe—ZMt> (12)
corrected end point and the Hessian from the predicted end dt i

point are used for the next LQA step. In this way, each stepynere

along the reaction path requires only one computation of the

energy and its first and second derivatives. Thus, the correc- 9o=U'go- (12)
tor step adds no additional electronic structure calculations to At the start of the integration, whencorresponds to the

a standard LQA calculation. TS, the gradient is zero and hence the transition vector must
A. Local quadratic approximation be used in place dj,. At the TS, the LQA step is equivalent
for the predictor step to the gradient extr?gal step, as described by Hoffman,
. . Nord, and Ruedenburg.At the end of the LQA integration,
_The LQA integrator is based upon a second order Taylo hen x approaches the minimum wells of the reactant and
Seres 1‘3f17the PES, and was mf[roduced by Page an roduct,t heads to infinity and the LQA step is equivalent to
Mclver.. ~"Truncated at the q_uad_ratlc term, the Taylor serie 2 Newton—Raphson step, which leads to the minimum en-
expansion of the PES abou{ is given by ergy structure in the local quadratic region. For this reason,
E(x) = Eg+ ghAx+ L AXHoAX, ) c?onsefrvat?on of. the desired step size;-6y), becomes dif-
ficult in this region.
where AX, ¢y, andHgy are the displacement vector of the
current position fromx,, the gradient, and Hessian %,
respectively. Taking the first derivative of E(2) with re-
spect toAx gives the gradient as

B. Modified Bulirsch—Stoer algorithm
for the corrector step

The Bulirsch—Stoer integrator is very well described

9(x)=go+ HoAX. 3 elsewheré*?’-2%3Here, we provide only an overview of
Substituting Eq(3) into Eq. (1) gives the method and discuss modifications made to the standard
algorithm.
dx(s) _ GotHoAX 7 Each Bulirsch—Stoer step is comprised of three basic
ds |do+ HoAX| components. First, a simple gradient based integrator is used
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to take multiple steps along the Bulirsch—Stoer step interval.  dy

In general, this integrator is modified midpoint; however, in g, =f(X.y), (13
our tests we found that the stiff character of Eb.is greatly

magnified by the modified midpoint methddee below.  the Euler integrator solves for each successive pgjntac-
This result is consistent with data previously presented byording to

Melissas and co-workerS.Therefore, our modified version

employs simple Euler integration. At the TS, where the mag- 7 =Yi-1tAX-f(Xyi).

nitude of the gradient is zero, the step direction is taken to b&1odified midpoint integration begins by computing
parallel to the transition vector. The second component of a

Bulirsch—Stoer step is to describe the solution of the Euler  Y1= Yot AX-f(X,yo). (19
integration as a polynomial function of step size and to exg
trapolate to a step size of zefoorresponding to the case
where an infinite number of steps are takérhe third com- Yn=Yn_2+2AX-f(X,¥n_1). (16
ponent consists of evaluating the error of the extrapolation. If

the error is too large, the process is repeated using more steps 1© investigate the relative stabilify.e., the ability of the
in the Euler integration, which in turn provides one morememOd to follow the true IRC as opposed to the erroneous

data set for the polynomial extrapolation. If the error is ac-Pathway arising from the stiff nature of E¢L)] of each

ceptable €1x 1078 a.u. in the present casehen the ex- integrator, we have considered a simple two-dimensional

trapolated solution to Eq(1) is accepted, the integration is N&rmonic trough potential,
considered complete, and the next predictor step is taken g(x y)= —ax+by?. (17)
using the corrected position and gradient.

It should be noted that a semi-implicit Bulirsch—Stoer For this surface, the first and second derivatives are given by
methodology has been described for handling stiff differen- 0 0
tial equations that are difficult for the standard integrator to g—(_g py), H= }
propagate. This semi-implicit form requires first derivatives 0 b
qf the rlght-han_d side of Eq1) at every step in the integra- Euler integration of Eq(1) gives each point in the path,
tion; however, in the present form of the DWI surface such(xl 3y according to
derivatives are not trustworthy and the use of the semi- Y
implicit Bulirsch—Stoer integrator is unfeasible.

(14)

ubsequent steps are given by a leapfrog method,

(18)

VaZ+(by,_1)?’

Xi:Xi_l_AS

- e . by; 1
Q. Euler versus modified midpoint integration yi:yi—l_AS;- (19
in the corrector step vas+(by;_1)

To gain some understanding of the difficulties encoun-\odified midpoint integration gives the first step as
tered by the standard Bulrisch—Stoer integrator, we explored

the cause of the instability of modified midpoint integration A —-a A byo
Of Eq (1) X]_:XO_ S—a2+ b = y].: yO_ S—a2+ b >
It is quite surprising that simple Euler integration is able (bYo) ( y%)zo)

to accurately integrate Eql) while modified midpoint is

not, given the higher formal order of the modified midpoint and subsequent steps as
algorithm. The root of this counterintuitive result is assumed

to be the stiff nature of Eq.l). A stiff differential equation, X=X _,—2AS —a

as described by Ge#t results when the rates of decay of Lo VaZ+ (by,_1)?’
coupled equations are significantly different. In the case of

Eqg. (1), the rate of decay of the true solutidre., the IRQ is by,_1
in competition with the rate of decay of the error in the path Yi=VYi-2—24s a2+ (by, 1)2' (22)
-

that arises when the current point lies off of the pathway.

This second numerical solution to E() produces a path- Integration results using both methods on the two-

way that runs perpendicular to the true IRC. In practice, thedimensional harmonic trough potential for arbitrary values

solution that one obtains will result from a linear combina-for a, b, and step size are shown in Fig. 1. Figu(b)lalso

tion of these two solutions. The degree of influence on thepictorially describes the leapfrog nature of the modified mid-

integration by the secon@rroneous solution is chiefly de- point steps for finding; for i>1 [Eq. (21)].

pendent upon the deviation of the current point from the true  To determine the critical step size that results in continu-

solution and the ratio of the magnitude of the force constanbus oscillation across the true IRC, we begin by letting the

in the direction perpendicular to the IRC and the magnitudenitial point have a lateral error such thgi>0. Euler inte-

of the force parallel to the IRC. gration of the harmonic trough potential develops continuous
To illustrate this point we begin by studying the forms of oscillation of the integrated pathway when a step is taken

the two integrators considered. Given a differential equatiorthat crosses the IRC and goes to a point on the opposite side
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y costly if energies and derivatives are required from electronic
structure methods. However, in the present algorithm the
Bulirsch—Stoer integration is carried out on a surface that is
fitted to energy and derivative information already available
from the predictor stefLQA). Once the Bulirsch—Stoer in-
e 8 tegration is completed and the LQA end point is corrected,
the gradient on the fitted surface is used to take the next LQA
predictor step. Since the corrected end point and predicted
end point are expected to lie within the same quadratic re-
gion of the PES, the Hessian from the previous predictor end
point is used for the next LQA step. The validity of this
@ assumption has been demonstrated in previous work on the
integration ofab initio classical trajectories using a Hessian
based predictor—corrector algoritHfit®
In the current algorithm, the Bulirsch—Stoer integration
is carried out on a DWI surface, such as those described by
Collins and co-workerd23¢-38pwI surfaces have been used
in conjunction with a number of varying applicatiotfsFur-
thermore, DWI surfaces have been used in multiple dynam-
ics applications and are very well suited for modeling chemi-
cal PESs(see Ref. 28 for an overviewThe general DWI
surface gives the interpolated energy,,,, according to

® Epwi=2>, WiT;, (25
i=1
FIG. 1. Reaction path following on the harmonic trough potentk,y) ) ) ) )
= —ax+by?, using(a) Euler integration andb) modified midpoint. Path- ~ where the summation is taken over a collectiomgboints
ways are started from a position displaced from the path in the verticabn the PES about which Taylor series are evaluated and
dotted lines connecting, andx;_. L. . ' .
weighting functionsw; . In the present implementation, we
consider the case whene=2, corresponding to the predictor

of the path that has equal or greater lateral erreyy;  SteP'S starting point and end point.

>y,_, for y,_,>0. Solving for the step size that yields os-  1he Taylor expansions used in ES) have been trun-
cillation gives cated after second order terms giving
[a? Ti(AX)=E;+gAx+ 3 AX'H;Ax; 26
ASZZ F+y|271 (22) I( I) I gl 1 2 (| I ( )
where

The leapfrog character of modified midpoint integration will Ax = x— 5
cause oscillation when the integrator simply crosses the IRC, Xi= X=X (27)

yi<0. On the first step, the step size that will yield oscilla- The weighting functions used have the form
tion is

1 (& 1\t
a’ Wi = ) . 28
As> [ +yE 23 v Py 8

Algebraic simplification provides a more computationally
convenient form for Eq(28) that prevents division by zero.

For subsequent stegse., x;_»—X;), the step size that will
yield oscillation is

Yiea [a® w :% w :% (29
As= oy, V2 i (24 AP+ [AX[PT TR [Ax [P [Axg]*
This analysis shows, that given a step sis, and DWI energy and gradient calculations requdéN?) op-

small lateral error the modified midpoint integrator is mucherations. However, in the context of semi empiriedd,initio,
more likely than the Euler integrator to fall into an erroneousand post SCF methods, where the calculation of the potential
solution to Eq(1) and to produce continuous and/or growing €nergy and formation of PES derivatives will be the compu-
oscillations perpendicular to the IRC. tational bottleneck, these calculations are essentially free.
The prognosis, though, will not be so favorable when mo-
lecular mechanics PESs are utilized. Approaches to make the
present algorithm more efficient for use with molecular me-

The modified Bulirsch—Stoer integrator requires a largechanics and QM/MM methods, for instance sparse methods,
number of energy and gradient evaluations and can be quitsill be considered in future work.

D. Distance weighted interpolants
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IIl. APPLICATIONS — Euler Path /

< Laa(005a.u)
A LeAa©.10au) £

&5

surface and implemented in the development version of e
GAUssIAN 04 for testing on five chemical PESs. The ana- O LaaE.15au) -
lytic potential considered is the Mar—Brown (MB) sur- 107 X LQA©20aw | &
face. The five chemical systems studied are HENNC, a / W
Diels—Alder reaction, CKCH,F—CH,CH,+HF, CI &
+ CH;Cl— CICH;+ CI™, and a metallacycle formation reac- &
tion. For integrations on chemical systems, 1 a.u. along the 1 ,"
path corresponds to a step size of 1 bohrHmu X 4
A. Mtiller—Brown surface c““

The MB surfac&® provides an excellent test case for 08 2

reaction path following methods. The MB surface is given by N
0.6 ; /
(@)

E(x,y)=2 A expa(xi—x)2+bi(x—x))(y;i—y?) e . L

The present algorithm has been tested on one analyticl'4

+ei(yi—yD)?l, (30)

— Euler Path ) 5

whereA={— 200~ 100, 170,15),x°={1,0~ 0.5 1}, y°  1.4| < HPC(0.05au) il
={0,0.5,1.5,}, a={-1,-1,-6.5,0.2, b={0,0,11,0.6, A HPC (0.10a.u) &
and c={—10,-10,-6.5,0.%. Figure 2 shows the contour O HPC (0.15a.u) &
plot of this surface and the reaction pathwahown as a  , , X HPC (0.20 a.u) :,:,""
solid line), which was computed using Euler integration with / -
a small step siz€0.000). The TS is at (- 0.822, 0.62%4and oo
the minimum considered here is at 0.558, 1.442 Because &
the reaction path is curved, this surface is challenging to 1 ’j"
reaction path following integrators when large step sizes are ,’
used. As a result, this surface has often been used to test ney &
methods. 0.8 &
Figure Za) shows LQA pathways using step sizes rang- S
ing from 0.05 to 0.20. The smallest step size yields a path- “\-.\
way that follows the true reaction path very well. However, S
at a step size of 0.10 the LQA path begins to deviate from the 0.6 g
true path at the sharp curve. The rms perpendicular distance (b)
between this pathway and the Euler path is 0.0043. Using a _\1’2\ _‘1 —ol 5 —oK p —o‘ .

step size of 0.2Qlargest step size considered hetbe LQA
path takes the reaction path curve very wide and the rmBIG. 2. Reaction path following on the Mer—Brown surface. Shown are
perpendicular distance to the Euler pathway is 0.018. Al<ontour diagrams of the surface af@l LQA pathways andb) HPC path-
. ways using different step sizes.
though the LQA path rejoins the true path soon after the
curve, it fails to accurately describe the reaction path near the
grshvg:?re it is most necessary for applications using VTSTB. HCN— HNC
Figure 2b) shows pathways computed on the same sur-  The isomerization reaction of HCN is also often used to
face with the same step sizes using the HPC algorithm preest new transition state searching and reaction path follow-
sented for the first time in this work. As with the LQA path- ing algorithms. The present method was tested using this
ways, the HPC pathways do an excellent job of following thereaction’s PES computed at the HF/STO-3G level of theory.
true reaction pathway when small steps are taken. Unlikdhe HPC paths were computed with several step sizes up to
LQA, though, the HPC integrator is also capable of follow-0.400 a.u. All of the HPC pathways are superimposable and
ing the true reaction path when larger step sizes are usedssentially identical. We have compared the HPC pathway
Indeed, with a step size of 0.20 the rms perpendicular dissomputed with the largest step of 0.400 a.u. to the LQA
tance between the HPC and Euler paths is 0.0038, nearly fiygathway computed with a step size of 0.100 a.u., by calcu-
times smaller than that for the corresponding LQA pathwaylating the perpendicular distance between the paths. A step
Thus, the HPC method provides an excellent description ofize of 0.100 a.u. appears to be a practical upper limit for the
the reaction path around the curve and satisfies the requir&QA integrator:’ The rms and maximum absolute perpen-
ment of providing accurate integration of Ed) near the TS.  dicular distance between the 0.400 a.u. step size HPC path
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TABLE |. Perpendicular distances between LQAS=0.10 a.u.) and HPC H
(As=0.40 a.u.) pathways for three reactions: HGININC, the Diels— - |
Alder reaction, and CECH,F— CH,CH,+ HF. £ 2:::: T Cl----C----Cl
Reaction rms distance madtistancé g 34237 4 HH

= 342361 — - LOA(0.010 a.u)
HCN—HNC 4.67x10°* 9.16x10°* 5 34235 \, ——HPC (0.010a.)
Diels—Alder 7.86¢10" 4 1.68x10°3 2 342344 e
CH3CH,F— CH,CH, + HF 9.73x1074 451x10°° g 34233 1

£ 34232

& 34231 1

:'5: 3423 r Y Y Y v ]
and the 0.100 a.u. LQA path are reported in Table I. Table | 0 0.05 0.1 0.15 0.2 0.25 0.3
also includes data for two other reactiofsmee below for Reaction Coordinate (a.u.)

discussion As compared_ to the LQA pathway, the HPC in- g 3. Projected symmetric C—H stretch frequency vs reaction coordinate
tegrator produces an identical plgrms distance <5 using the LQA and HPC integration methods. The structure of the transition

X 10 * bohr) even though a much larger step size is usecstate is also shown.
These data indicate the present method’s stability and effi-

ciency. suggested? we imposed very tight optimization criteria on

_ _ the TS (i.e., rms gradient<10 ® a.u., maximum gradient
C. Diels—Alder reaction component<2x 108, rms displacement 4x 1076 a.u. or

The reaction of butadiene with ethene, the prototypicafad, maximum displacement componentx 10 ° a.u. or
Diels—Alder reaction, has also been used to test the HP¢8d. LQA and HPC integrations have been carried out using
method. Calculations were carried out at the AM1 level ofa step size of 0.010 a.u.
theory. HPC calculations were carried out using step sizes up  The projected symmetric C—H stretching frequencies for
to 0.400 a.u. As before, the paths are all identical. We havéa. 0-25 a.u. along the reaction coordinate are shown in Fig.
tested the accuracy of the HPC method by measuring thd- This plot should be smooth; however, the symmetric C—H
perpendicular distance between the 0.400 a.u. HPC an®fretch mode frequencies resulting from the LQA pathway
0.100 a.u. LQA paths. Table | shows that the HPC integratohave a deep minimum at 0.01 a.u. Following this minimum,
does an excellent job of following the pathway, even with athe LQA path slowly recovers over subsequent steps. These
large step size. Specifically, the rms perpendicular distanc@Tors are the direct result of slight displacements in the LQA

between these two pathways is 7860~ “ bohr. pathway from the true reaction path in this region due to
strong coupling of the reaction coordinate and this stretching
D. CH3CH,F—CH,CH,+HF mode near the TS.

The HPC pathway, on the other hand, corrects the errors

The reaction of CHCH,F— CH,CH,+HF is a standard in the LQA pathway, and the symmetric C—H stretch mode
four center elimination process, which has been studied bjtequencies computed using the HPC pathway provide the
Kato and Morokum@ and has been used in previous tests ofexpected smooth curve. Aside from a very shallow dip in the
reaction path following algorithmsAb initio calculations  symmetric C—H stretch frequency at the first step, the HPC
were carried out at the HF/3-21G level of theory. Again, thepathway pro\/ides an excellent description of the IRC and
HPC pathway was integrated with step sizes up to 0.400 a.Uproduces the expected smooth curve shown in Fig. 3. The
and a LQA pathway was computed using a step size of 0.10@redictor—corrector combination of methods in the present
a.u. Table | shows the ability of the HPC integrator to accu-case offers a very stable integrator that is equivalent to the
rately follow the IRC pathway. With a large step si@®400  Gonzalez—Schlegel fourth order integratdihe higher or-
a.u), the HPC pathway still follows the 0.100 a.u. LQA path- der method is better able to deal with the difficulties associ-
way very well, and the rms distance between these two pathged with the Eq(1) stiff behavior near the TS.
is 9.73< 10" bohr.

F. Nickel metallacycle formation reaction

E. CI7+CH;Cl—CICH,+CI™ We have studied the ability of the HPC integrator to

Calculations at the HF/6-31@) level of theory were follow the reaction pathway of the oxidative cyclization step
employed to study the symmetrig2 reaction of chloride of a proposed mechanism for a nickel catalyzed three com-
with methyl chloride. This reaction is a good test case forponent addition reaction. This reaction has been studied ex-
reaction path following methods as it has been shown to béensively experimentally by Montgomery and co-work&s,
difficult to compute a highly accurate pathway in the areaand has recently been further investigated in a combined ex-
very near the T$2 The TS structure has significantly shorter perimental and computational wotkThe energy profile as a
C—H bonds. As a result, the symmetric C—H stretch frefunction of reaction coordinate using LQA and HPC is
qguency is strongly coupled to the reaction coordinate and thehown in Fig. 4. For both integrators a step size of 0.100 a.u.
projected frequency associated with this normal mode is verhas been used. This process has a very late TS. Therefore, we
sensitive to the quality of the steepest decent pathway intehave chosen to follow the pathway from the TS to the reac-
gration. Very small deviations from the true IRC can producetant well only. As shown in the figure, the LQA integrator
erratic behavior from this frequency. As the previous worktakes a bad first step and heads up in energy. This indicates
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