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Central to the theoretical description of a chemical reaction is the reaction pathway. The intrinsic
reaction coordinate is defined as the steepest descent path in mass weighted Cartesian coordinates
that connects the transition state to reactants and products. In this work, a new integrator for the
steepest descent pathway is presented. This method is a Hessian based predictor–corrector
algorithm that affords pathways comparable to our previous fourth order method at the cost of a
second order approach. The proposed integrator is tested on an analytic surface, four moderately
sized chemical reactions, and one larger organometallic system. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1724823#

I. INTRODUCTION

In the theoretical study of a chemical reaction, the reac-
tion pathway plays an integral role. Typically, one employs
reaction path following calculations to ensure that a transi-
tion state~TS! found on a particular potential energy surface
~PES! lies on a pathway that connects the two intended PES
minima. Reaction pathways are also used to derive an accu-
rate description of the PES along the minimum energy path
~MEP! to compute rate constants via variational transition
state theory~VTST! or reaction path Hamiltonian~RPH!
formalisms.1–5

There are two basic varieties of reaction path proce-
dures. The first type, often referred to as pathway optimiza-
tion methods, search for a reaction path without prior knowl-
edge of the TS and are commonly used to simultaneously
find a TS and the reaction pathway. The second type begins
at a previously optimized TS and follows paths down to the
reactant and product wells. Although pathway optimization
methods have gained much attention in recent years, they
require multiple points or images along an interpolated path-
way. These images are minimized in a constrained and con-
certed way, and thus usually require a large number of en-
ergy and derivative calculations. A recent implementation of
nudged elastic band methods in Gaussian-basedab initio
electronic structure codes required between 50 and 201 gra-
dient calculations~with a relatively low density of images! to
describe the isomerization reaction of HCN→HNC.6 Obvi-
ously, these approaches are particularly ill suited for those
cases where a very accurate path is needed in the area near
the TS, as with VTST and RPH, for even modest sized sys-
tems. In this work, we focus our discussion exclusively on
the second type of reaction path algorithm—those that begin
at a user supplied TS and trace the two pathways~forward
and reverse! that lead to reactants and products.

Beginning at a first-order saddle point on the PES, which

corresponds to a TS, the reaction pathway can be determined
by following the steepest descent path downhill in both di-
rections. The steepest descent pathway is given by the differ-
ential equation

dx~s!

ds
52

g~x!

ug~x!u
, ~1!

wheres is the arc length along the path,x is the vector of
Cartesian coordinates, andg is the PES gradient atx. Some
care must be taken when integrating the steepest descent
pathway as Eq.~1! corresponds to a stiff differential equa-
tion. Although a steepest descent path can be obtained in any
coordinate system, when mass-weighted Cartesian coordi-
nates are used the steepest descent path is known as the
intrinsic reaction coordinate~IRC!.7

A multitude of approaches to reaction path following are
present in the literature and have been extensively
reviewed.8–23 In general, a reaction path following algorithm
may be classified as either explicit or implicit. Explicit meth-
ods take each step using derivative information only at the
starting point; implicit methods take each step using deriva-
tive information at both the starting and end points. Common
explicit algorithms include Euler’s method, the Ishida–
Morokuma–Komornicki ~stabilized Euler! method,12,13

Runge–Kutta,14,15 the local quadratic approximation
~LQA!,16,17 and the Sun–Ruedenberg modification of
LQA.19 Some of these methods require only gradient infor-
mation and are limited to rather small step sizes, while others
also use second derivatives~the Hessian!. Methods that use
the Hessian are more costly, but gain additional stability al-
lowing for somewhat larger step sizes.

Implicit methods for differential equations are more dif-
ficult to implement because the gradient, and possibly higher
order derivatives, are necessary at the end of the step. Since
these methods generally require the use of optimization
schemes at each step to iteratively solve for the derivatives at
the end point,24 they tend to require multiple energy and
derivative calculations for each step. However, implicit
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methods are often able to take considerably larger steps than
explicit methods allowing them to compensate for these ad-
ditional derivative calculations. Implicit methods for IRC
analysis include the Mu¨ller–Brown ~implicit Euler!
method,18 the second order Gonzalez and Schlegel~implicit
trapezoid! method,20,21 and higher order methods by the
same authors.22

In this paper, we introduce a new explicit integration
scheme to solve Eq.~1!. This new approach uses a Hessian
based predictor-corrector~HPC! integrator that aims to solve
the pathway with a high degree of accuracy. The present
algorithm has been designed with the hope of developing an
approach that is well suited for use in VTST and RPH cal-
culations where an accurate description of the reaction path
is essential. Since analytic Hessians are necessary at points
along the path for computing path curvatures, coupling ma-
trix elements and projected frequencies for VTST and RPH
calculations, our method makes use of second derivatives at
each step.

II. METHOD

The present algorithm makes use of a Hessian based
predictor–corrector integrator. Related algorithms25,26 have
been found to be quite efficient for integratingab initio clas-
sical trajectory calculations. The LQA integrator of Page and
McIver16 is used for the predictor steps, and a modified
Bulirsch–Stoer integrator27–29 is used on a fitted distance
weighted interpolant~DWI! surface30–32 for the corrector
steps. The fitted surface is a two point DWI surface that
employs positions, energies, gradients, and Hessians at the
start and end points from the predictor integration. After each
corrector integration is complete, the DWI gradient at the
corrected end point and the Hessian from the predicted end
point are used for the next LQA step. In this way, each step
along the reaction path requires only one computation of the
energy and its first and second derivatives. Thus, the correc-
tor step adds no additional electronic structure calculations to
a standard LQA calculation.

A. Local quadratic approximation
for the predictor step

The LQA integrator is based upon a second order Taylor
series of the PES, and was introduced by Page and
McIver.16,17Truncated at the quadratic term, the Taylor series
expansion of the PES aboutx0 is given by

E~x!5E01g0
t Dx1 1

2 DxtH0Dx, ~2!

where Dx, g0 , and H0 are the displacement vector of the
current position fromx0 , the gradient, and Hessian atx0 ,
respectively. Taking the first derivative of Eq.~2! with re-
spect toDx gives the gradient as

g„x…5g01H0Dx. ~3!

Substituting Eq.~3! into Eq. ~1! gives

dx~s!

ds
52

g01H0Dx

ug01H0Dxu
. ~4!

In the LQA method of Page and McIver, Eq.~4! is inte-
grated by introducing an independent parameter,t, such that

ds

dt
5ug01H0Dxu ~5!

and

dx

dt
52@g01H0Dx#. ~6!

The solution to Eq.~6! is given by

x~ t !5x01A~ t !g0 , ~7!

where

A~ t !5Ua~ t !Ut. ~8!

In Eq. ~8!, U is the matrix of column eigenvectors of the
Hessian anda(t) is a diagonal matrix given by

a i i ~ t !5~e2l i t21!/l i , ~9!

wherel i are the eigenvalues of the Hessian.
In order to integrate Eq.~4!, one must obtain a value of

t such that the user’s desired step size (s2s0) is taken. To
accomplish this, iterations over successive Euler integrations
of Eq. ~5! are used. The initial value for the Euler step size,
dt, is estimated by

dt5
1

NEuler

~s2s0!

ug0u
, ~10!

whereNEuler is the number of Euler steps to be taken. In the
present implementation,NEuler55000. The numerical inte-
gration of Eq.~5! can be carried out readily in the Hessian
eigenvector space,

ds

dt
5S (

i
g0i8

2e22l i tD 1/2

~11!

where

g085Utg0 . ~12!

At the start of the integration, whenx corresponds to the
TS, the gradient is zero and hence the transition vector must
be used in place ofg0 . At the TS, the LQA step is equivalent
to the gradient extremal step, as described by Hoffman,
Nord, and Ruedenburg.33 At the end of the LQA integration,
when x approaches the minimum wells of the reactant and
product,t heads to infinity and the LQA step is equivalent to
a Newton–Raphson step, which leads to the minimum en-
ergy structure in the local quadratic region. For this reason,
conservation of the desired step size, (s2s0), becomes dif-
ficult in this region.

B. Modified Bulirsch–Stoer algorithm
for the corrector step

The Bulirsch–Stoer integrator is very well described
elsewhere.24,27–29,34Here, we provide only an overview of
the method and discuss modifications made to the standard
algorithm.

Each Bulirsch–Stoer step is comprised of three basic
components. First, a simple gradient based integrator is used
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to take multiple steps along the Bulirsch–Stoer step interval.
In general, this integrator is modified midpoint; however, in
our tests we found that the stiff character of Eq.~1! is greatly
magnified by the modified midpoint method~see below!.
This result is consistent with data previously presented by
Melissas and co-workers.35 Therefore, our modified version
employs simple Euler integration. At the TS, where the mag-
nitude of the gradient is zero, the step direction is taken to be
parallel to the transition vector. The second component of a
Bulirsch–Stoer step is to describe the solution of the Euler
integration as a polynomial function of step size and to ex-
trapolate to a step size of zero~corresponding to the case
where an infinite number of steps are taken!. The third com-
ponent consists of evaluating the error of the extrapolation. If
the error is too large, the process is repeated using more steps
in the Euler integration, which in turn provides one more
data set for the polynomial extrapolation. If the error is ac-
ceptable (,131026 a.u. in the present case!, then the ex-
trapolated solution to Eq.~1! is accepted, the integration is
considered complete, and the next predictor step is taken
using the corrected position and gradient.

It should be noted that a semi-implicit Bulirsch–Stoer
methodology has been described for handling stiff differen-
tial equations that are difficult for the standard integrator to
propagate. This semi-implicit form requires first derivatives
of the right-hand side of Eq.~1! at every step in the integra-
tion; however, in the present form of the DWI surface such
derivatives are not trustworthy and the use of the semi-
implicit Bulirsch–Stoer integrator is unfeasible.

C. Euler versus modified midpoint integration
in the corrector step

To gain some understanding of the difficulties encoun-
tered by the standard Bulrisch–Stoer integrator, we explored
the cause of the instability of modified midpoint integration
of Eq. ~1!.

It is quite surprising that simple Euler integration is able
to accurately integrate Eq.~1! while modified midpoint is
not, given the higher formal order of the modified midpoint
algorithm. The root of this counterintuitive result is assumed
to be the stiff nature of Eq.~1!. A stiff differential equation,
as described by Gear,24 results when the rates of decay of
coupled equations are significantly different. In the case of
Eq. ~1!, the rate of decay of the true solution~i.e., the IRC! is
in competition with the rate of decay of the error in the path
that arises when the current point lies off of the pathway.
This second numerical solution to Eq.~1! produces a path-
way that runs perpendicular to the true IRC. In practice, the
solution that one obtains will result from a linear combina-
tion of these two solutions. The degree of influence on the
integration by the second~erroneous! solution is chiefly de-
pendent upon the deviation of the current point from the true
solution and the ratio of the magnitude of the force constant
in the direction perpendicular to the IRC and the magnitude
of the force parallel to the IRC.

To illustrate this point we begin by studying the forms of
the two integrators considered. Given a differential equation

dy

dx
5 f ~x,y! , ~13!

the Euler integrator solves for each successive point,yi , ac-
cording to

yi5yi 211Dx• f ~x,yi !. ~14!

Modified midpoint integration begins by computing

y15y01Dx• f ~x,y0!. ~15!

Subsequent steps are given by a leapfrog method,

yn5yn2212Dx• f ~x,yn21!. ~16!

To investigate the relative stability@i.e., the ability of the
method to follow the true IRC as opposed to the erroneous
pathway arising from the stiff nature of Eq.~1!# of each
integrator, we have considered a simple two-dimensional
harmonic trough potential,

E~x,y!52ax1by2. ~17!

For this surface, the first and second derivatives are given by

g5~2a,by!, H5F0 0

0 bG . ~18!

Euler integration of Eq.~1! gives each point in the path,
(xi ,yi) according to

xi5xi 212Ds
2a

Aa21~byi 21!2
,

yi5yi 212Ds
byi 21

Aa21~byi 21!2
. ~19!

Modified midpoint integration gives the first step as

x15x02Ds
2a

Aa21~by0!2
, y15y02Ds

by0

Aa21~by0!2

~20!

and subsequent steps as

xi5xi 2222Ds
2a

Aa21~byi 21!2
,

yi5yi 2222Ds
byi 21

Aa21~byi 21!2
. ~21!

Integration results using both methods on the two-
dimensional harmonic trough potential for arbitrary values
for a, b, and step size are shown in Fig. 1. Figure 1~b! also
pictorially describes the leapfrog nature of the modified mid-
point steps for findingxi for i .1 @Eq. ~21!#.

To determine the critical step size that results in continu-
ous oscillation across the true IRC, we begin by letting the
initial point have a lateral error such thaty0.0. Euler inte-
gration of the harmonic trough potential develops continuous
oscillation of the integrated pathway when a step is taken
that crosses the IRC and goes to a point on the opposite side
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of the path that has equal or greater lateral error,2yi

>yi 21 for yi 21.0. Solving for the step size that yields os-
cillation gives

Ds>2Aa2

b2 1yi 21
2 . ~22!

The leapfrog character of modified midpoint integration will
cause oscillation when the integrator simply crosses the IRC,
yi,0. On the first step, the step size that will yield oscilla-
tion is

Ds.Aa2

b2 1y0
2. ~23!

For subsequent steps~i.e., xi 22→xi), the step size that will
yield oscillation is

Ds.
yi 22

2yi 21
Aa2

b2 1yi 21
2 . ~24!

This analysis shows, that given a step size,Ds, and
small lateral error the modified midpoint integrator is much
more likely than the Euler integrator to fall into an erroneous
solution to Eq.~1! and to produce continuous and/or growing
oscillations perpendicular to the IRC.

D. Distance weighted interpolants

The modified Bulirsch–Stoer integrator requires a large
number of energy and gradient evaluations and can be quite

costly if energies and derivatives are required from electronic
structure methods. However, in the present algorithm the
Bulirsch–Stoer integration is carried out on a surface that is
fitted to energy and derivative information already available
from the predictor step~LQA!. Once the Bulirsch–Stoer in-
tegration is completed and the LQA end point is corrected,
the gradient on the fitted surface is used to take the next LQA
predictor step. Since the corrected end point and predicted
end point are expected to lie within the same quadratic re-
gion of the PES, the Hessian from the previous predictor end
point is used for the next LQA step. The validity of this
assumption has been demonstrated in previous work on the
integration ofab initio classical trajectories using a Hessian
based predictor–corrector algorithm.25,26

In the current algorithm, the Bulirsch–Stoer integration
is carried out on a DWI surface, such as those described by
Collins and co-workers.32,36–38DWI surfaces have been used
in conjunction with a number of varying applications.39 Fur-
thermore, DWI surfaces have been used in multiple dynam-
ics applications and are very well suited for modeling chemi-
cal PESs~see Ref. 28 for an overview!. The general DWI
surface gives the interpolated energy,EDWI , according to

EDWI5(
i 51

n

wiTi , ~25!

where the summation is taken over a collection ofn points
on the PES about whichn Taylor series are evaluated and
added together in a weighted fashion, which is defined by the
weighting functionswi . In the present implementation, we
consider the case wheren52, corresponding to the predictor
step’s starting point and end point.

The Taylor expansions used in Eq.~25! have been trun-
cated after second order terms giving

Ti~Dxi !5Ei1gi
tDxi1

1
2 Dxi

tH iDxi , ~26!

where

Dxi5x2xi . ~27!

The weighting functions used have the form

wi5
1

uDxi u2 S (
j 51

n
1

uDxj u2
D 21

. ~28!

Algebraic simplification provides a more computationally
convenient form for Eq.~28! that prevents division by zero.

w15
uDx2u2

uDx1u21uDx2u2 , w25
uDx1u2

uDx1u21uDx2u2 . ~29!

DWI energy and gradient calculations requireO(N2) op-
erations. However, in the context of semi empirical,ab initio,
and post SCF methods, where the calculation of the potential
energy and formation of PES derivatives will be the compu-
tational bottleneck, these calculations are essentially free.
The prognosis, though, will not be so favorable when mo-
lecular mechanics PESs are utilized. Approaches to make the
present algorithm more efficient for use with molecular me-
chanics and QM/MM methods, for instance sparse methods,
will be considered in future work.

FIG. 1. Reaction path following on the harmonic trough potential,E(x,y)
52ax1by2, using~a! Euler integration and~b! modified midpoint. Path-
ways are started from a position displaced from the path in the vertical
direction byDy. The leapfrog character of modified midpoint is shown with
dotted lines connectingxi andxi 22 .
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III. APPLICATIONS

The present algorithm has been tested on one analytic
surface and implemented in the development version of
GAUSSIAN 0340 for testing on five chemical PESs. The ana-
lytic potential considered is the Mu¨ller–Brown ~MB! sur-
face. The five chemical systems studied are HCN→HNC, a
Diels–Alder reaction, CH3CH2F→CH2CH21HF, Cl2

1CH3Cl→ClCH31Cl2, and a metallacycle formation reac-
tion. For integrations on chemical systems, 1 a.u. along the
path corresponds to a step size of 1 bohr amu1/2.

A. Mü ller–Brown surface

The MB surface18 provides an excellent test case for
reaction path following methods. The MB surface is given by

E~x,y!5( Ai exp@ai~xi2xi
0!21bi~xi2xi

0!~yi2yi
0!

1ci~yi2yi
0!2#, ~30!

whereA5$2200,2100,2170,15),x05$1,0,20.5,21%, y0

5$0,0.5,1.5,1%, a5$21,21,26.5,0.7%, b5$0,0,11,0.6%,
and c5$210,210,26.5,0.7%. Figure 2 shows the contour
plot of this surface and the reaction pathway~shown as a
solid line!, which was computed using Euler integration with
a small step size~0.0001!. The TS is at (20.822, 0.624! and
the minimum considered here is at (20.558, 1.442!. Because
the reaction path is curved, this surface is challenging to
reaction path following integrators when large step sizes are
used. As a result, this surface has often been used to test new
methods.

Figure 2~a! shows LQA pathways using step sizes rang-
ing from 0.05 to 0.20. The smallest step size yields a path-
way that follows the true reaction path very well. However,
at a step size of 0.10 the LQA path begins to deviate from the
true path at the sharp curve. The rms perpendicular distance
between this pathway and the Euler path is 0.0043. Using a
step size of 0.20~largest step size considered here!, the LQA
path takes the reaction path curve very wide and the rms
perpendicular distance to the Euler pathway is 0.018. Al-
though the LQA path rejoins the true path soon after the
curve, it fails to accurately describe the reaction path near the
TS, where it is most necessary for applications using VTST
or RPH.

Figure 2~b! shows pathways computed on the same sur-
face with the same step sizes using the HPC algorithm pre-
sented for the first time in this work. As with the LQA path-
ways, the HPC pathways do an excellent job of following the
true reaction pathway when small steps are taken. Unlike
LQA, though, the HPC integrator is also capable of follow-
ing the true reaction path when larger step sizes are used.
Indeed, with a step size of 0.20 the rms perpendicular dis-
tance between the HPC and Euler paths is 0.0038, nearly five
times smaller than that for the corresponding LQA pathway.
Thus, the HPC method provides an excellent description of
the reaction path around the curve and satisfies the require-
ment of providing accurate integration of Eq.~1! near the TS.

B. HCN\HNC

The isomerization reaction of HCN is also often used to
test new transition state searching and reaction path follow-
ing algorithms. The present method was tested using this
reaction’s PES computed at the HF/STO-3G level of theory.
The HPC paths were computed with several step sizes up to
0.400 a.u. All of the HPC pathways are superimposable and
essentially identical. We have compared the HPC pathway
computed with the largest step of 0.400 a.u. to the LQA
pathway computed with a step size of 0.100 a.u., by calcu-
lating the perpendicular distance between the paths. A step
size of 0.100 a.u. appears to be a practical upper limit for the
LQA integrator.17 The rms and maximum absolute perpen-
dicular distance between the 0.400 a.u. step size HPC path

FIG. 2. Reaction path following on the Mu¨ller–Brown surface. Shown are
contour diagrams of the surface and~a! LQA pathways and~b! HPC path-
ways using different step sizes.
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and the 0.100 a.u. LQA path are reported in Table I. Table I
also includes data for two other reactions~see below for
discussion!. As compared to the LQA pathway, the HPC in-
tegrator produces an identical plot~rms distance ,5
31024 bohr) even though a much larger step size is used.
These data indicate the present method’s stability and effi-
ciency.

C. Diels–Alder reaction

The reaction of butadiene with ethene, the prototypical
Diels–Alder reaction, has also been used to test the HPC
method. Calculations were carried out at the AM1 level of
theory. HPC calculations were carried out using step sizes up
to 0.400 a.u. As before, the paths are all identical. We have
tested the accuracy of the HPC method by measuring the
perpendicular distance between the 0.400 a.u. HPC and
0.100 a.u. LQA paths. Table I shows that the HPC integrator
does an excellent job of following the pathway, even with a
large step size. Specifically, the rms perpendicular distance
between these two pathways is 7.8631024 bohr.

D. CH3CH2F\CH2CH2¿HF

The reaction of CH3CH2F→CH2CH21HF is a standard
four center elimination process, which has been studied by
Kato and Morokuma41 and has been used in previous tests of
reaction path following algorithms.Ab initio calculations
were carried out at the HF/3-21G level of theory. Again, the
HPC pathway was integrated with step sizes up to 0.400 a.u.,
and a LQA pathway was computed using a step size of 0.100
a.u. Table I shows the ability of the HPC integrator to accu-
rately follow the IRC pathway. With a large step size~0.400
a.u.!, the HPC pathway still follows the 0.100 a.u. LQA path-
way very well, and the rms distance between these two paths
is 9.7331024 bohr.

E. ClÀ¿CH3Cl\ClCH3¿ClÀ

Calculations at the HF/6-31G~d! level of theory were
employed to study the symmetricSN2 reaction of chloride
with methyl chloride. This reaction is a good test case for
reaction path following methods as it has been shown to be
difficult to compute a highly accurate pathway in the area
very near the TS.42 The TS structure has significantly shorter
C–H bonds. As a result, the symmetric C–H stretch fre-
quency is strongly coupled to the reaction coordinate and the
projected frequency associated with this normal mode is very
sensitive to the quality of the steepest decent pathway inte-
gration. Very small deviations from the true IRC can produce
erratic behavior from this frequency. As the previous work

suggested,42 we imposed very tight optimization criteria on
the TS ~i.e., rms gradient,1026 a.u., maximum gradient
component,231026, rms displacement,431026 a.u. or
rad, maximum displacement component,631026 a.u. or
rad!. LQA and HPC integrations have been carried out using
a step size of 0.010 a.u.

The projected symmetric C–H stretching frequencies for
ca. 0.25 a.u. along the reaction coordinate are shown in Fig.
3. This plot should be smooth; however, the symmetric C–H
stretch mode frequencies resulting from the LQA pathway
have a deep minimum at 0.01 a.u. Following this minimum,
the LQA path slowly recovers over subsequent steps. These
errors are the direct result of slight displacements in the LQA
pathway from the true reaction path in this region due to
strong coupling of the reaction coordinate and this stretching
mode near the TS.

The HPC pathway, on the other hand, corrects the errors
in the LQA pathway, and the symmetric C–H stretch mode
frequencies computed using the HPC pathway provide the
expected smooth curve. Aside from a very shallow dip in the
symmetric C–H stretch frequency at the first step, the HPC
pathway provides an excellent description of the IRC and
produces the expected smooth curve shown in Fig. 3. The
predictor–corrector combination of methods in the present
case offers a very stable integrator that is equivalent to the
Gonzalez–Schlegel fourth order integrator.22 The higher or-
der method is better able to deal with the difficulties associ-
ated with the Eq.~1! stiff behavior near the TS.

F. Nickel metallacycle formation reaction

We have studied the ability of the HPC integrator to
follow the reaction pathway of the oxidative cyclization step
of a proposed mechanism for a nickel catalyzed three com-
ponent addition reaction. This reaction has been studied ex-
tensively experimentally by Montgomery and co-workers,43

and has recently been further investigated in a combined ex-
perimental and computational work.44 The energy profile as a
function of reaction coordinate using LQA and HPC is
shown in Fig. 4. For both integrators a step size of 0.100 a.u.
has been used. This process has a very late TS. Therefore, we
have chosen to follow the pathway from the TS to the reac-
tant well only. As shown in the figure, the LQA integrator
takes a bad first step and heads up in energy. This indicates

TABLE I. Perpendicular distances between LQA (Ds50.10 a.u.) and HPC
(Ds50.40 a.u.) pathways for three reactions: HCN→HNC, the Diels–
Alder reaction, and CH3CH2F→CH2CH21HF.

Reaction rms distance maxudistanceu

HCN→HNC 4.6731024 9.1631024

Diels–Alder 7.8631024 1.6831023

CH3CH2F→CH2CH21HF 9.7331024 4.5131023

FIG. 3. Projected symmetric C–H stretch frequency vs reaction coordinate
using the LQA and HPC integration methods. The structure of the transition
state is also shown.
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that the reaction path is strongly curved at the TS. The HPC
integrator is able to correct this poor step and continue down
the path. This example displays HPC’s ability to follow path-
ways involving large systems and to overcome significant
errors in the predictor step.

IV. CONCLUSIONS

We have introduced a new Hessian based predictor–
corrector ~HPC! method for reaction path following. The
HPC algorithm has been tested on the Mu¨ller–Brown surface
as well as various chemical reactions. Additionally, we have
studied theSN2 reaction of chloride plus methyl chloride to
demonstrate the ability of HPC to provide an accurate reac-
tion path description that affords the expected smooth curve
of the symmetric C–H stretch projected frequency as a func-
tion of reaction coordinate. This result is in contrast with that
provided by a local quadratic approximation~LQA! pathway,
which shows an erroneous sharp minimum in the curve.

ACKNOWLEDGMENTS

The authors extend thanks to S. Beier and J. L. Sonnen-
berg for helpful discussions. H.P.H. thanks the Institute for
Scientific Computing at Wayne State University for support
provided by a NSF–IGERT Fellowship. This work was sup-
ported by a grant from the NSF~CHE 0131157!.

1D. G. Truhlar and B. C. Garrett, Annu. Rev. Phys. Chem.35, 159 ~1984!.
2D. G. Truhlar, B. C. Garrett, and S. J. Klippenstein, J. Phys. Chem.100,
12771~1996!.

3B. C. Garrett and D. G. Truhlar, inEncyclopedia of Computational Chem-
istry, edited by P. v. R. Schleyer, N. L. Allinger, P. A. Kollman, T. Clark,
H. F. Schaefer III, J. Gasteiger, and P. R. Schreiner~Wiley, Chichester,
1998!, Vol. 2, p. 3094.

4W. H. Miller, N. C. Handy, and J. E. Adams, J. Chem. Phys.72, 99 ~1980!.

5E. Kraka, inEncyclopedia of Computational Chemistry, edited by P. v. R.
Schleyer, N. L. Allinger, P. A. Kollman, T. Clark, H. F. Schaefer III, J.
Gasteiger, and P. R. Schreiner~Wiley, Chichester, 1998!, Vol. 2, p. 2437.

6D. R. Alfonso and K. D. Jordan, J. Comput. Chem.24, 990 ~2003!.
7K. Fukui, Acc. Chem. Res.14, 363 ~1981!.
8M. L. McKee and M. Page, Rev. Comput. Chem.4, 35 ~1993!.
9H. B. Schlegel, inModern Electronic Structure Theory, edited by D. R.
Yarkony ~World Scientific, Singapore, 1995!.

10H. B. Schlegel, inEncyclopedia of Computational Chemistry, edited by P.
v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F.
Schaefer III, and P. R. Schreiner~Wiley, Chichester, 1998!, pp. 2432.

11M. A. Collins, Adv. Chem. Phys.93, 389 ~1996!.
12M. W. Schmidt, M. S. Gordon, and M. Dupuis, J. Am. Chem. Soc.107,

2585 ~1985!.
13K. Ishida, K. Morokuma, and A. Komornicki, J. Chem. Phys.66, 2153

~1977!.
14K. K. Baldridge, M. S. Gordon, R. Steckler, and D. G. Truhlar, J. Phys.

Chem.93, 5107~1989!.
15B. C. Garrett, M. J. Redmon, R. Steckler, D. G. Truhlar, K. K. Baldridge,

D. Bartol, M. W. Schidt, and M. S. Gordon, J. Phys. Chem.92, 1476
~1988!.

16M. Page and J. M. McIver, J. Chem. Phys.88, 922 ~1988!.
17M. Page, C. Doubleday, and J. W. McIver, J. Chem. Phys.93, 5634

~1990!.
18K. Müller and L. D. Brown, Theor. Chim. Acta53, 75 ~1979!.
19J. Q. Sun and K. Ruedenberg, J. Chem. Phys.99, 5269~1993!.
20C. Gonzalez and H. B. Schlegel, J. Chem. Phys.90, 2154~1989!.
21C. Gonzalez and H. B. Schlegel, J. Phys. Chem.94, 5523~1990!.
22C. Gonzalez and H. B. Schlegel, J. Chem. Phys.95, 5853~1991!.
23H. B. Schlegel, J. Comput. Chem.24, 1514~2003!.
24C. W. Gear,Numerical Initial Value Problems in Ordinary Differential

Equations~Prentice-Hall, Englewood Cliffs, NJ, 1971!.
25V. Bakken, J. M. Millam, and H. B. Schlegel, J. Chem. Phys.111, 8773

~1999!.
26J. M. Millam, V. Bakken, W. Chen, W. L. Hase, and H. B. Schlegel, J.

Chem. Phys.111, 3800~1999!.
27R. Bulirsch and J. Stoer, Numer. Math.6, 413 ~1964!.
28R. Bulirsch and J. Stoer, Numer. Math.8, 1 ~1966!.
29R. Bulirsch and J. Stoer, Numer. Math.8, 93 ~1966B!.
30R. Farwig, Math. Comput.46, 577 ~1986!.
31R. Farwig, inAlgorithms for Approximation, edited by J. Mason and M.

Cox ~Clarendon, Oxford, 1987!, p. 194.
32M. A. Collins, Theor. Chem. Acc.108, 313 ~2002!.
33D. K. Hoffman, R. S. Nord, and K. Ruedenberg, Theor. Chim. Acta69,

265 ~1986!.
34W. H. Press,Numerical Recipes in FORTRAN 77: The Art of Scientific

Computing, 2nd ed.~Cambridge University Press, Cambridge, 1996!.
35V. S. Melissas, D. G. Truhlar, and B. C. Garrett, J. Chem. Phys.96, 5758

~1992!.
36R. P. A. Bettens and M. A. Collins, J. Chem. Phys.111, 816 ~1999!.
37K. C. Thompson, M. J. T. Jordan, and M. A. Collins, J. Chem. Phys.108,

564 ~1998!.
38J. Ischtwan and M. A. Collins, J. Chem. Phys.100, 8080~1994!.
39P. Lancaster and K. Salkauskas,Curve and Surface Fitting: An Introduc-

tion ~Academic, London, 1986!.
40M. J. Frisch, G. W. Trucks, H. B. Schlegelet al., Gaussian 03, Develop-

ment Version, Revision B.04, Gaussian, Inc., Pittsburgh, PA, 2003.
41S. Kato and K. Morokuma, J. Chem. Phys.73, 3900~1980!.
42A. G. Baboul and H. B. Schlegel, J. Chem. Phys.107, 9413~1997!.
43J. Montgomery, Acc. Chem. Res.33, 467 ~2000!.
44H. P. Hratchian, S. K. Chowdhury, V. M. Gutie´rrez-Garcia, H. B. Schlegel,

and J. Montgomery~unpublished!.
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using the LQA and HPC integration methods. The structure of the transition
state is also shown.
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