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aDepartment of Organic Chemistry, Eötvös Loránd University, Budapest, Hungary
bDepartment of Chemistry, Wayne State University, Detroit, USA

Abstract

Geometry optimization is an essential part of quantum chemical applications. The diversity of the scaling of different

methods from linear to exponential implies that there are different requirements for a chosen optimization method. The

proposed method aims to meet two requirements, good scaling with size and reliability, which would be a good match for

redundant internal coordinate system-based optimization techniques with linear scaling coordinate transformation. The new

optimization algorithm uses screened Cholesky decomposition for coordinate transformations and an iterative subspace

optimization method. The iterative subspace appears in the course of any optimization. However, few methods are available for

using such information efficiently. The Geometry Optimization using Direct Inversion in the Iterative Subspace method is

known to have good scaling and efficiency, but poor reliability. Building a Hessian-like matrix in the iterative subspace allows

one to take advantage of the reliability offered by Rational Function Optimization, Eigenvector Following and Trust Radius

Method (TRM), but still avoid a consequent computational penalty. Also, the new approach steps away from the regular

quadratic approximation related to the Newton methods by assuming a simple linear connection between gradient and

coordinate changes.
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1. Introduction

Quantum chemical geometry optimization

methods evolved rapidly over the last three decades.

A major developmental milestone included the

analytic gradients of the potential energy and the

methods based on them, such as the quasi-Newton

methods and their modifications. Hessian update

techniques allowed information to be collected for

the potential energy surface (PES), which acceler-

ated the optimization process. The quadratic line

search (QLS) [1–5], rational function optimization

(RFO) [6], trust radius model (TRM) [1–5,7,8] and

trust radius update [1–5,7,8] made such methods

more reliable. Originally, the geometry optimization

was performed in Cartesian or in Z-matrix internal

coordinates. Redundant internal coordinates [9,10]

took precedence only in the last decade of the 20th

century. Other improvements, such as the Geometry

Optimization using Direct Inversion in the Iterative

Subspace (GDIIS) [11,12] or using natural [13] or

delocalized [14,15] internal coordinates has also

been considered. It is now commonly agreed that an

efficient optimization method [7,8] for quantum

chemical applications should use the Hessian update,

line search or GDIIS, and RFO in the framework of

redundant internal coordinates. The general use of
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such optimization techniques is, however, prevented

by the quadratic (O(N2)) scaling of their memory

usage and the regularly cubic, O(N3), scaling of

their computational demand with the number of

variables to optimize. Current advances in the

scaling of some frequently used quantum chemical

methods, like Hartree–Fock, density functional

theory or semi-empiricals, necessitate the develop-

ment of new optimization techniques to match the

required scaling with size, without compromising

traditional efficiency and reliability. Our previous

studies [16,17] revealed that the overall compu-

tational bottleneck can be reduced to an asymptotic

quadratic, O(N2), scaling using an updated inverse

technique for solving the systems of linear equations

in question for both, the coordinate transformations

and the RFO or TRM optimization step. The

updated inverse technique provides similar effi-

ciency and reliability as regular quantum chemical

optimization methods but it still needs large, O(N2),

storage of full matrices in memory. Other efforts

have been focused on achieving an overall linear,

O(N), scaling for the coordinate transformations

[18–21] to make the use of redundant internal

coordinates affordable for much larger systems. The

present paper describes an alternative way, a linear

scaling equivalent of singular value decomposition

(SVD) or generalized inverse, for solving linear

equations with non-definite sparse matrixes for the

coordinate transformations necessary in redundant

internal coordinate-based optimizations. We also

outline a new optimization technique similar to

GDIIS, which can employ a step size control in the

spirit of RFO and TRM through a generalized

Hessian built in the iterative subspace.

The regular optimization process, such as the

‘Berny’ optimization algorithm of the GAUSSIAN [22]

program contains two practically equivalent compu-

tational bottlenecks; one is the transformation of the

forces into internal coordinates and then the trans-

formation of the optimization step back to Cartesian

coordinates. The coordinate transformations are based

on the use of the Wilson B-matrix [23], which collects

the partial derivatives of the internal coordinates with

respect to Cartesians

Bi;j ¼
›qi

›xj

) dq ¼ B dx and fx ¼ Btfq ð1Þ

where q and x denote internal and Cartesian

coordinates, respectively. The optimization process

needs the transformation of forces ðfxÞ given in

Cartesian coordinates, and also the transformation of

the internal coordinate step ðDqÞ: Due to the curvi-

linear nature of the internal coordinates, the finite

internal coordinate step can be transformed by a

few iterations of solving the corresponding equations

ðDq < BDxÞ: For detailed remarks on solving such

equations, see Appendix A. In the case of constrained

optimizations, an extra projection of the forces and the

optimization step is required.

The other bottleneck arises from the computation

of the RFO or TRM step, which is in fact a Newton–

Raphson step with a modified, shifted Hessian matrix

2Df ¼ ðH þ lIÞDx ð2Þ

where H is an approximate Hessian (force constant

matrix) in the case of quasi-Newton methods. The

appropriate diagonal shift to the Hessian is defined by

the method of choice (RFO or TRM), and is usually

carried out by solving Eq. (2) for Dx each time during

the course of determining l iteratively. A practical

way of solving Eq. (2) implies the diagonalization of

the Hessian, which is a cubically scaling compu-

tational bottleneck.

2. Method

2.1. Coordinate transformations

Paizs et al. pointed out that any set of redundant

internal coordinates could be constructed from their

complete, but non-redundant, subsets as linear

combinations [20]. They also concluded that this

also applies to matrices BtB and BBt; and their rows.

The full Cholesky factorization of positive semi-

definite matrices results in zero diagonal values.

Becausse of consequent divisions by zero, the full

Cholesky factorization (regardless of the sparsity of

the matrix in question) can only be applied to positive

definite matrices. The zero (or in practice very small)

diagonal values, however, indicate rows that can be

produced as a linear combination of previously

processed rows. Removing such rows from further

examination results in the screened Cholesky factor-

ization. This creates a non-redundant set of linear
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combinations. In practice, we use a small positive

threshold value, such as 2 £ 1025, for diagonal

elements to select the rows for removal. We also

noted that the rank (number of non-zero diagonal

values) of the decomposition might change by varying

the threshold value. With proper ordering, the

screened Cholesky factors can reproduce the original

symmetric matrix accurately, although in general, the

multiplication of a vector by the ‘screened Cholesky

inverse’ of the matrix via forward–backward substi-

tution using the screened Cholesky factors does not

give the same results as multiplying by the general-

ized inverse. Nevertheless, linear equations of the

form y ¼ Ax can be solved using the screened

Cholesky factors of positive semi-definite matrices

AAt and AtA: The screened Cholesky factorization-

based equation solving method can be directly applied

to the equations arising from the coordinate trans-

formations (see Eq. (1)). The screened Cholesky

decomposition has been tested in practice and

give identical results identical to the regular general-

ized inverse-based transformations; however, its

thorough mathematical proof should be given later.

For details and the constrained optimization formulae,

see Appendix B. The main advantage of the screened

Cholesky factorization over the approximate or

shifted Cholesky decomposition is that it can

substantially reduce the required storage and compu-

tational demand for highly redundant systems.

2.2. Iterative subspace optimization

The overall efficiency of the optimization method

also depends on the choiced algorithm of choice.

Quasi-Newton related algorithms could greatly ben-

efit from using redundant internal coordinates, since a

good approximation to the PES can be used for a

much wider range than in Cartesian coordinates. The

problem is that the approximation to the PES regularly

stored in a full Hessian matrix results in at least an

O(N2) scaling computational bottleneck. A starting

guess Hessian matrix can be stored in sparse, or even

diagonal form and limited memory Hessian update

techniques have been formulated to achieve linear

scaling [24–27]. These techniques proved to be more

efficient than available alternatives, such as pure

conjugate gradient (CG)-based methods. Limited

memory update techniques, have some disadvantages,

which include the lack of convergence acceleration

via RFO/TRM type shifting to the Hessian. In

addition, they are not advised to use for transition

state optimizations. The GDIIS method is also a

possible choice to consider, since its memory and

computational demand can be easily controlled by the

number of vectors stored and used in the iterative

subspace. The reliability of the GDIIS method is

unfortunately very poor, especially for large-scale

non-linear problems, such as for the geometry

optimization of biomolecules. Our previously

described method for controlling GDIIS [12] appears

to be satisfactory, but requires an expensive compu-

tation for a reference step, which is currently RFO. It

is, however, an instructive task to find the reason for

the otherwise surprisingly good performance of the

GDIIS technique closed to convergence. The first

thing to note is that GDIIS assumes a simple linear

connection between coordinate and force (or gradient)

changes. This condition seems to be similar to the

quadratic approximation for the PES. The quadratic

approximation, however, presumes that the linear

connection is related to the second derivative, Hessian

matrix of the PES, in the form of a symmetric real

matrix:

2Df ¼ HDx ð3Þ

The GDIIS method only assumes that the force

change related to any linear combination of the

collected optimization steps (coordinate changes) can

be formed using the same combination of the

corresponding force changes:
X

giDxi ¼ Dx ,
X

giDf i ¼ Df ð4Þ

In fact, Eq. (4) states a more generic linear connection

between coordinate and force changes, which is valid

for the whole set of stored coordinate and force

changes when no redundancy occurs:

2F ¼ HGX ð5Þ

Matrices F and X collect the coordinate and

force changes, respectively. Matrix HG; expressing

the linear connection, is the generalized Hessian that is

not necessarily symmetric, not even for quadratic

PESs. For the purpose of optimization, it may serve

a similar purpose as the Hessian in the quasi-

Newton methods. Based on Eq. (5), it is also possible

to find a suitable way of obtaining HG:
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Orthonormalizing the column vectors of matrix X via

Schmidt orthogonalization results in a unitary matrix

on the right side that leads us to the expression for

obtaining HG:

2FV ¼ HGXV ¼ HGU ) 2FVUt ¼ HG ð6Þ

where matrix V orthonormalizes X: Matrix VUt is the

generalized inverse of X if no redundancy occurs. The

purpose of using Schmidt orthogonalization instead of

a generalized inverse provides higher priority for the

latest coordinate and force changes. HG is usually not

symmetric; therefore, its direct diagonalization is not

feasible. The tools of SVD can provide the singular

values and two sets of eigenvectors:

HG ¼ LLRt ð7Þ

The singular values are positive numbers by defi-

nition; however, if we change the sign of one of the

eigenvector pairs and the corresponding singular

value in order to constrain the scalar product of the

corresponding eigenvectors to be non-negative

lt
iri $ 0 ð8Þ

they may gain signs. The resulting diagonal values of

L can serve as pseudo-eigenvalues, allowing RFO/

TRM type step size control of the optimization step. It

is important to note that the latest force usually cannot

be represented in the subspace of collected force

changes. Therefore, only a part of the optimization

step can be computed using HG: The resulting step

corresponds to minimizing the force in the iterative

subspace, such as in GDIIS. The residual force then

can be used to compute the residual optimization step.

Examination of the difference between GDIIS and a

line search reveals that since the residual force is

perpendicular to the subspace of force (or error vector)

changes, the quadratic line search finds an energy

extreme and its residual force is perpendicular to the

latest step, or if it is generalized to higher dimensions

to the subspace of coordinate changes, while GDIIS

ends to minimize the force (or an arbitrary error

vector). This difference suggests that a projected

generalized Hessian for the iterative subspace should

be constructed, to serve the purpose of multidimen-

sional search (MDS) using a generalized quadratic

line search to higher dimensions:

2UUtFVUt ¼ HMDS ð9Þ

The advantage of using the projection of the force

changes into the coordinate change subspace is that

the left and right side eigenvectors of HMDS span the

same subspace. In addition, the generalized Hessian

for MDS can more sensitively detect the proximity of

higher order critical points with negative pseudo-

eigenvalues. RFO/TRM style step size controls can

also be applied to HMDS; but unfortunately, these

kinds of corrections are not capable of ensuring an

energy lowering step direction, since HMDS is

generally non-symmetric for more than one dimen-

sion. The construction of an efficient, but symmetric

Hessian for the iterative subspace is a key target for

further studies in that field.

The presented iterative subspace optimization

(ISSO) scheme produces dense Hessian matrixes in

the full space, resulting in the same computational

demand than the regular O(N3) scaling techniques.

The rank of these matrixes, however, is not larger than

the number of coordinate changes used. The common

subspace of coordinate and force changes can be

constructed reducing the required storage and com-

putational cost significantly. If the maximum number

of used vectors remains constant, then the ISSO

method requires linearly scaling storage and compu-

tational effort. The details about the construction of

the iterative subspace efficiently can be found in

Appendix C.

3. Results and discussion

The new methods presented here have been

implemented in the development version of Gaussian

[28]. The preliminary test results on storage and CPU

requirements of the coordinate transformations

(namely the computation of the Cholesky factors)

can be found in Figs. 1 and 2. Proper reordering is

essential for the efficiency of the factorization. Thus, a

divide-and-conquer-based approach will be devel-

oped for this purpose, as suggested by Nemeth et al.

[21]. Note that the factorization of Gq ¼ BBt is less

demanding than the factorization of Gx ¼ BtB in

the screened Cholesky formalism. It is not easy to

find examples to compare the performance of different

optimization algorithms on large flexible molecules

because they tend to converge to different

local minima. However, the optimization of taxol
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(113 atoms) in the UFF [29] forcefield results the

same minimum for the three selected optimization

methods used for large molecules. The results are

summarized in Table 1. The linear scaling ISSO

method uses only a diagonal updated guess Hessian

for the full space and therefore, needs substantially

more steps to converge than the controlled GDIIS.

However, it is still only a small fraction of the steps

used by the CG optimizer in Cartesian coordinates.

Further improvements are expected using a sparse

updated Hessian in the full space and implementing a

symmetric MDS Hessian for guiding the optimization

to the quadratic region of a proper critical point more

efficiently.

4. Summary

The aim of the new methods presented is to provide

efficient linear scaling optimization tools for the

emerging linear scaling quantum chemical methods,

including QM/MM and MM calculations. The use of

redundant internal coordinates allows more accurate

calculations for large molecules with the aid of ISSO

and MDS, which also opens the opportunity for the

development of transition state optimization

algorithms for large molecules. In general, the

screened Cholesky decomposition can be considered

for solving large, redundant systems of linear

equations.
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Fig. 1. Diagram for required storage (including indexing) vs.

number of atoms. The diamond fragments (3D network examples)

are clearly separated from the others, which are mostly proteins. For

the definition of Gq and Gx; see Appendix B.

Fig. 2. Diagram for required CPU time on 500 MHz Alpha

processor vs. number of atoms. The diamond fragments (3D

network examples) are clearly separated from the others, which are

mostly proteins. For the definition of Gq and Gx, see Appendix B.

Table 1

The number of optimization steps required optimizing taxol in the

UFF [29] molecular mechanics forcefield

Optimization method Number of optimization steps

Controlled GDIIS, full Hessian [12] 40

ISSO, diagonal full space Hessian 127

CG, Cartesian coordinates 1153
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Appendix A

A.1. Solving linear equations

A system of linear equations can be formulated as

y ¼ Ax; which can only be solved if the proper Py

projection does not alter y :

ðAAtÞðAAtÞ21y ¼ Py ¼ y0 ¼ Ax ðA1Þ

Otherwise, the corresponding equations with y0 can

be solved using the generalized inverse or SVD

formalism:

ðAtAÞ21Aty ¼ AtðAAtÞ21y ¼ x ðA2Þ

If matrix AtA or AAt is non-singular, then AAt ¼ LLt

or AtA ¼ KKt Cholesky decomposition is the most

efficient way of solving the equations:

ðAtAÞ2CAty ¼ x or AtðAAtÞ2Cy ¼ x ðA3Þ

The 2C superscript denotes the Cholesky inverse

which is in practice multiplication by the inverse via

forward–backward substitution using the correspond-

ing lower/upper triangular Cholesky factors. If AtA

and AAt are positive semi-definite, then incomplete,

shifted or approximate Cholesky factorization and

iterative solving is necessary. The removal of columns

of the lower and the corresponding rows of the upper

triangular factors with diagonals smaller than a small

positive 1 during the decomposition results in a non-

redundant subset:

AtA ¼ LSLt
S and AAt ¼ KSKt

S ðA4Þ

The number of remaining non-zero diagonals indi-

cates the rank of A: We found that changing 1 may

change the obtained rank if the original limit is too

large. The corresponding Cholesky inverse can be

used as a projector

AðAtAÞ21Aty ¼ Py ¼ AðAtAÞ2SAty ¼ y0 ðA5Þ

like the generalized inverse, but solving the equations

cannot be done in the usual way, since:

ðAtAÞ2SAty – x

AtðAAtÞ2Sy – x ðA6Þ

ðAtAÞ2SAty0 – x

On the other hand,

AtðAAtÞ2Sy0 ¼ x ðA7Þ

leads to the solution in the screened Cholesky

formalism:

AtðAAtÞ2SAðAtAÞ2SAty ¼ ðAtAÞ21At ¼ x ðA8Þ

which is a potential linear scaling equivalent of the

generalized inverse. The ‘screened Cholesky inverse’,

denoted by the 2S superscript, is not provided

explicitly but the multiplications with vectors can be

computed via forward–backward substitutions, like in

the case of regular Cholesky decomposition.

Appendix B

B.1. Coordinate transformations

Using the first order approximation to the connec-

tion between internal and Cartesian coordinates, one

can carry out the coordinate transformations for the

purpose of redundant internal coordinates

Bi;j ¼
›qi

›xj

) dq ¼ B dx and fx ¼ Btfq

Gq ¼ BBtðNq £ NqÞ and Gx ¼ BtBðNx £ NxÞ ðA9Þ

PS
q ¼ BG2S

x Bt and PS
x ¼ BtG2S

q B

where B is the Wilson B-matrix, q denotes internal,

while x denotes Cartesian coordinates and the 2S

subscipt indicates screened Cholesky inverse. The

equations for the internal forces, fq; and the Cartesian

coordinate step, Dx; can be solved using the screened

Cholesky decomposition:

fq ¼ BG2S
x PS

x fx ¼ G21
q Bfx ðA10Þ

dx ¼ BtG2S
q PS

q dq ¼ BtG21
q dq

The transformation of the optimization step is valid

for infinitesimally small steps only. In practice, we

iterate Dx ¼ BtG2S
q PS

qDq ¼ BtG21
q Dq until conver-

gence. Constrained optimization necessitates the

definition of the constrained B-matrix, which

has empty rows for the non-constrained internal
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coordinates, and then the related matrixes:

Gq;c ¼ BcBt
c and Gx;c ¼ Bt

cBc ðA11Þ

PS
q;c ¼ BcG2S

x;c Bt
c and PS

x;c ¼ Bt
cG2S

q;c Bc

The force transformation is straightforward

fq ¼BG2S
x ðI2PS

x;cÞP
S
x fx ¼G21

q BðI2Px;cÞfx ðA12Þ

but the step transformation has to treat optional non-

zero step in the constrained subspace

Dx<BtG2S
q ðPS

q;cDqc þðI2PS
q;cÞP

S
qDqÞ ðA13Þ

which is a little bit more complicated and can be

formulated in numerous equivalent ways.

Appendix C

C.1. Iterative subspace

Definition. W collects M of L dimensional vectors,

then a transformation matrix, V ðN £ MÞ is applied to

achieve:

ðWVÞTWV ¼ VTWTWV ¼ I ðA14Þ

The Q ¼ WV ðN £ LÞ set of vectors forms an

orthonormal basis to define a subspace. Any a vector

of that subspace (but represented in the original space)

can then be represented as p in the basis of the

subspace coordinates ðQÞ as:

p ¼ QTa ðA15Þ

In general, Eq. (A15) provides the projection of

vector a on to the subspace. The number of

dimensions for the original vectors ðW; aÞ might

be large. Therefore, their direct use might be

impractical. The necessary values can be obtained

using the O ¼WTW overlap matrix instead. It is

also practical to give any vector a as a b linear

combination of the original W vectors

a ¼ Wb ðA16Þ

then the p representation can be formed as:

pT ¼ bTOV ðA17Þ

Furthermore, all work with the represented vectors

in the subspace can be done using only N

dimensional vectors and accordingly formed

matrixes with a maximum size of N £ N: The

resulting vectors in the subspace, e.g. y; then can be

transformed back to the original space, denoted as z

z ¼ Qy ðA18Þ

because as it is defined by Eq. (A15):

QTz ¼ QTQy ¼ y ðA19Þ

For the purpose of geometry optimization, the W set

of column vectors contains the previously obtained

K coordinate and force values as

w2i21 ¼ xi; w2i ¼ f i; i [ {1;…;K} ðA20Þ

where the x and f vectors denote the coordinate

vectors and the corresponding forces (negative of

the gradient of the PES), respectively. Later, we

assume that x1 and f1 belong to the latest point. The

iterative subspace can be constructed based on

difference vectors from the optimization history.

As we noted before, it is practical to use linear

combinations of the previously defined vector set

(see Eq. (A16)), such that

xjþ12xj¼w2ðjþ1Þ212w2j21¼WvS
2j21;

fjþ12fj¼w2ðjþ1Þ2w2j¼WvS
2j;

j[{1;…;K21}

ðA21Þ

for a ‘sequential’ iterative subspace based on

optimization steps or alternatively, a ‘central’

iterative subspace can be built using differences

from the latest point:

xjþ12x1 ¼w2ðjþ1Þ212w1 ¼WvC
2j21;

f jþ12 f1 ¼w2ðjþ1Þ2w2 ¼WvC
2j;

j[{1;…;K21}

ðA22Þ

Any of the previously defined linear combination

sets can then be used to construct an orthonormal

basis via Gram–Schmidt orthogonalization, where

the necessary scalar products are taken using the O

overlap matrix instead of direct use of the original

W set, as in the following example:

ðx32x2Þ
Tðx42x3Þ¼ðvS

3Þ
TWTWvS

5 ¼ðvS
3Þ

TOvS
5

ðA23Þ

The orthogonalization results in a new set of v

vectors, collected in V; which satisfies Eq. (A14),

and therefore, the corresponding Q set of vectors
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can serve as a basis for the iterative subspace. The

iterative subspace is constructed in such a way that

any a vector needed to calculate an optimization

step can be given as a b linear combination of the

W set of vectors and its representation in the

iterative subspace can be calculated using Eq. (A17).

We note that, the p representation (see Eq. (A15))

of a general vector, a; in the iterative subspace only

represent its projection and the residuum vector, r;

can be calculated as:

r¼a2Qp¼ðI2QQTÞa ðA24Þ

If the residuum vector vanishes, then vector a can

be fully represented in the iterative subspace. In the

case of geometry optimization, the iterative sub-

space Hessian matrix is applied only to the

represented part of the actual force vector, while

its residuum is used to calculate the remaining part

of the optimization step calculated in the full space.

C.2. Hessian in the iterative subspace

Further simplifications can be applied for con-

structing the iterative subspace if we assume, accord-

ing to GDIIS, a linear relationship between the

changes in the coordinate values and the correspond-

ing changes in the forces (or gradients). The

optimization history contains stored geometries and

corresponding forces. If the assumed linearity applies

for them then at any x0 point

x0 ¼ x1 þ
XK

i¼1

Xi21

j¼1

ai;jðxi 2 xjÞ ðA25Þ

of the iterative subspace, the forces appear to be

f 0 ¼ f1 þ
XK

i¼1

Xi21

j¼1

ai;jðf i 2 f jÞ ðA26Þ

We note, that the following rearrangement of Eqs.

(A25) and (A26)

x0 ¼
XK

i¼1

bixi

f 0 ¼
XK

i¼1

bif i

ðA27Þ

leads to the following

XK

i¼1

bi ¼ 1 ðA28Þ

constraint for the b coefficients, which is a simple

result of the fact that the sum of the coefficients for

linear combinations of difference vectors is always 0.

The linearity condition can be stated in such a way

that any linear combination of coordinate changes

results in a force change that can be formed with the

identical linear combination of the respective force

changes. Also, a desired linear combination of force

changes implies the same linear combination of

coordinate changes, which is the basis of the GDIIS

method.

It is also important to note that as a consequence of

the assumed linearity, the following relationship holds

between changes in coordinates and forces

2Df ¼ HGDx ðA29Þ

where the (otherwise needless) negative sign indicates

the similarity with the quadratic approximation to the

potential PES, while the G index means ‘generic’,

stating that HG is not necessarily symmetric unlike the

force constant (or Hessian or second derivative)

matrix of the quasi-Newton methods. Further details

are discussed in the text.
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[17] Ö. Farkas, H.B. Schlegel, Journal of Chemical Physics 111

(1999) 10806–10814.

[18] B. Paizs, G. Fogarasi, P. Pulay, Journal of Chemical Physics

109 (1998) 6571–6576.

[19] K. Nemeth, O. Coulaud, G. Monard, J.G. Angyan, Journal of

Chemical Physics 113 (2000) 5598–5603.

[20] B. Paizs, J. Baker, S. Suhai, P. Pulay, Journal of Chemical

Physics 113 (2000) 6566–6572.

[21] K. Nemeth, O. Coulaud, G. Monard, J.G. Angyan, Journal of

Chemical Physics 114 (2001) 9747–9753.

[22] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A.

Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N.

Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V.

Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.

Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,

R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.

Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian,

J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E.

Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli,

J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth,

P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich,

A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D.

Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui,

A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu,

A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox,

T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.

Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W.

Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision B.01,

Gaussian, Inc., Pittsburgh, PA, 2003.

[23] E.B. Wilson, J.C. Decius, P.C. Cross, Molecular Vibrations:

The Theory of Infrared and Raman Vibrational Spectra,

Dover, New York, 1980.

[24] D.C. Liu, J. Nocedal, Mathematical Programming 45 (1989)

503–528.

[25] J. Nocedal, Mathematics of Computation 35 (1980) 773–782.

[26] R.H. Byrd, J. Nocedal, R.B. Schnabel, Mathematical Pro-

gramming 63 (1994) 129–156.

[27] R.H. Byrd, P.H. Lu, J. Nocedal, C.Y. Zhu, Siam Journal on

Scientific Computing 16 (1995) 1190–1208.

[28] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A.

Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N.

Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V.

Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.

Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,

R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.

Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian,

J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E.

Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli,

J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth,

P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich,

A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D.

Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui,

A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu,

A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox,

T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.

Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W.

Wong, C. Gonzalez, J.A. Pople, Gaussian Development

Version, Revision B.02, Gaussian, Inc., Pittsburgh, PA, 2003.

[29] A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M.

Skiff, Journal of the American Chemical Society 114 (1992)

10024–10035.
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