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For electronic structure calculations on large systems, solving the self-consistent-field~SCF!
equations is one of the key bottlenecks. Density matrix search methods provide an efficient linear
scaling approach for circumventing the traditionalO(N3) diagonalization procedure for solving the
SCF equations. The conjugate gradient density matrix search~CG-DMS! method is a successful
implementation of this approach. An alternative density matrix search method, QN–DMS, employs
direct inversion in the iterative subspace using a quasi-Newton~QN! step to estimate the error
vector. For linear polyglycine chains of 10–100 residues, the present approach scales linearly and
is 30% faster than CG-DMS. For clusters of up to 300 water molecules, this method shows smoother
and efficient convergence, and displays nearly linear scaling. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1607961#
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I. INTRODUCTION

Modeling and simulation methods are being applied
systems of ever increasing size, placing greater demand
computational hardware and software. Advances in comp
technology continue to provide increasing processor sp
and memory size at decreasing cost. Linear scaling a
rithms for electronic structure calculations have greatly i
proved the outlook for applications ofab initio calculations
on large systems. For biomolecules, polymers and nanos
tures, molecular orbital calculations deal with thousands
basis functions, and any decrease in the formidable cos
the computations would be welcome. The rate limiting s
in Hartree–Fock~HF! and density functional theory~DFT!
calculations used to be the computation of two-electron in
grals. Recently, the cost of forming the Coulomb matrix h
been reduced to near-linear scaling for large systems by
ing the fast multipole method.1–4 Both the ‘‘order-N ex-
change’’ ~ONX! ~Ref. 5! and ‘‘near-field-exchange’’~NFX!
~Ref. 6! methods overcome the asymptoticO(N2) bottleneck
for the exchange matrix and achieve linear scaling in
large molecule limit. This leaves the convergence of the s
consistent-field~SCF! equations as the remaining obstacle
HF and DFT calculations on large systems~for leading ref-
erence on the SCF scaling, see Ref. 7!.

In the traditional Roothaan SCF procedure, the den
matrix is used to form the Fock matrix, and the Fock mat
is diagonalized to yield new molecular orbital coefficien
7650021-9606/2003/119(15)/7651/8/$20.00
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and a new density matrix; the process is repeated until s
consistency is achieved. The direct inversion in the iterat
subspace~DIIS! technique8,9 greatly reduces the number o
iterations required to reach self-consistency compared to
Roothaan SCF procedure. The idea of DIIS is to optimize
variables by minimizing the errors in the least-squares se
within a subspace. Pulay’s approach uses the commut
(FPS2SPF) as the error vectors and interpolation or e
trapolation of the Fock matrices~denoted here by C-DIIS!.
More recently, Kudin, Scuseria, and Cances developed
E-DIIS algorithm, which minimizes the energy by interpol
tion of the density within the iterative subspace.10 This
method provides enhanced stability in solving the SCF eq
tions, but for large systems theO(N3) Fock matrix diagonal-
ization remains the dominant time-consuming step. Furth
more, the procedure has anO(N2) memory requirement
which is a stringent limitation for large systems.

Several categories of methods have been propose
literatures as alternatives to diagonalization~for leading ref-
erence, see Ref. 11!: Fermi operator expansion,12–14

divide-and-conquer,15–17 direct minimization of the energy
with respect to the density~under the constraint that the den
sity remains idempotent!,18,19 etc. Of various implementa
tions and benchmarks,20–34conjugate gradient density matri
search~CG-DMS! ~Ref. 19! using sparse matrix technique
developed by Millam and Scuseria in 1997, appears to
one of the best.
1 © 2003 American Institute of Physics
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FIG. 1. Comparison of costs for the gradient, lin
search, and purification for polyglycine chains.
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In the CG–DMS approach, the energy is minimized w
respect to the density along a series of conjugate direct
based on the Li–Nunes–Vanderbilt~LNV ! ~Ref. 18! func-
tional using diagonally preconditioners and cubic li
searches. The CG-DMS method scales linearly with sys
size and is cost effective in large systems. OverallO(N)
scaling in CPU time and memory is achieved for line
chains such as polyglycine. For three-dimensional syst
like water clusters, CG-DMS shows linear scaling for ind
vidual SCF cycles. An improvement to CG-DMS uses P
lay’s DIIS approach to update the density matrix every DM
cycle, giving quicker and smoother convergence.19 In the
current paper, the abbreviation CG-DMS denotes the co
gate gradient density matrix search method in conjunc
with C-DIIS. Within an individual SCF cycle, a large frac
tion of the cost is for the conjugate search step. Thus, th
may still be room to improve the efficiency and reduce
cost of SCF convergence for large systems.

For geometry optimization, the quasi-Newton and DI
algorithms are more efficient than conjugate gradi
methods.35 In the current paper, we present a density ma
search method for SCF convergence that employs a D
Downloaded 12 Nov 2003 to 141.217.26.92. Redistribution subject to A
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approach using a quasi-Newton step as the error vector~QN-
DIIS-DMS or QN-DMS for short!. This improved method is
compared to diagonalization and CG-DMS for a series
polyglycine chains and water clusters.

II. METHODOLOGY

In the density matrix search method,19 each SCF cycle
starts by forming the Fock matrixF using the density matrix
P from the previous cycle~or the initial guess if it is the first
entry!. After the first step, a C-DIIS approach can be used
extrapolate or interpolate the Fock matrix. Instead of dia
nalizing the Fock matrix, a series of density matrix sea
steps are employed. In QN-DMS, a set of quasi-New
steps are taken and are combined using DIIS. If the con
gence criteria are not fulfilled, the calculation proceeds to
next SCF cycle.

In the density matrix search, an estimate of the error i
minimization can be obtained from a quasi-Newton step:

Dxi52H21gi5ei , ~1!
TABLE I. Cumulative CPU time~hours! and number of SCF cycles for polyglycine chains at LSDA/3-21G with threshold of 1028 a.u.

Molecule

Diagonalization CG-DMS QN-DMS

Surviving
elementsa

SCF
cycles

CPU
time

SCF
cycles

Total CG
iterations

CPU
time

SCF
Cycles

Total QN
iterations

CPU
time

10-glycine 13 0.08 8 32 0.14 7 24 0.08 67.9
20-glycine 13 0.33 8 32 0.48 8 26 0.33 54.3
30-glycine 16 0.87 9 36 0.90 8 26 0.55 38.5
40-glycine 16 1.64 9 36 1.14 8 26 0.75 29.8
50-glycine 16 2.95 9 36 1.61 8 26 1.01 24.9
60-glycine 16 4.96 9 36 1.96 8 26 1.23 21.2
70-glycine 17 7.82 9 36 2.25 9 28 1.55 18.3
80-glycine 19 11.85 9 36 2.63 9 28 1.84 16.2
90-glycine 21 18.84 9 36 2.95 9 28 2.11 14.5
100-glycine 17 19.78 9 36 3.30 9 28 2.36 13.1

aPercentage surviving elements of the union ofF, P, FP1PF, andPFP at the begining of the SCF.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 2. Cumulative CPU time of the diagonalization
CG-DMS, and QN-DMS methods for polyglycine
chains at LSDA/3-21G~threshold of 1028 a.u.).
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wheregi is the gradient andH is an approximate Hessian. I
calculating the gradient of the energy with respect to
density, one must include the idempotency constraint. T
can be done by expressing the energy in terms of
McWeeny purified density,P̃53P222P3. As in CG-DMS
~Ref. 19! and the atom-centered basis functions density m
trix propagation~ADMP! method for ab initio molecular
dynamics,36–38 the gradient is a modified LNV~Ref. 18!
functional,

g5dE~P̃!/dP53FP13PF22FP222PFP22P2F, ~2!

whereF and P are the Fock and density matrices, resp
tively, in an orthonormal basis. If the density matrix is nea
idempotent, the diagonal elements of the gradient matrix
very close to zero. Of the various choices for the transform
tion to an orthonormal space, Lo¨wdin and Cholesky transfor
mations are the most widely used. The transformation of
density and Fock matrices from the atomic orbital~AO! basis
(PAO andFAO) into the orthonormal basis can be express
as

P5UPAOUT, F5U2TFAOU21, ~3!

where U can be obtained by Cholesky decompositionS
5UTU, whereU is upper triangular!,39 or U5S1/2 for Löw-
din orthonormalization ~S is the overlap matrix!. The
Downloaded 12 Nov 2003 to 141.217.26.92. Redistribution subject to A
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Cholesky orthonormal basis is more favorable for sparse
trix manipulations since forming the Cholesky decompo
tion is O(N) scaling if S is sparse, and the resulting tran
formation matrixU as well as the resultingP is also sparse.

In the CG-DMS method, a very efficient precondition
can be constructed from the diagonal elements of
Hessian19:

Hmnmn5d2E~P̃!/dPmn
2

5~322Pmm!Fnn1~322Pnn!Fmm

24~PF!mm24~PF!nn . ~4!

Since the storage and computing requirements for the d
onal Hessian are minimal, we choose to use it in estima
the error vector, Eq.~1!, for the DIIS procedure. Within each
DMS iteration, the Hessian is reevaluated using the fixeF
and the newP from the previous DMS step, and subs
quently error vectors used in the DIIS equation are rec
structed using the saved gradients and the new Hessian

The DIIS method is employed to obtain a linear extrap
lation and interpolation of the saved density matrices

P* 5SciPi , ~5!
TABLE II. Cumulative CPU time~hours! and number of SCF cycles for polyglycine chains at LSDA/6-31G~d,p! with threshold of 1028 a.u.

Molecule

Diagonalization CG-DMS QN-DMS

Surviving
elementsa

SCF
cycles

CPU
time

SCF
cycles

Total CG
iterations

CPU
time

SCF
Cycles

Total QN
iterations

CPU
time

10-glycine 12 0.30 8 32 0.63 8 31 0.46 75.7
20-glycine 12 1.21 9 36 2.52 8 31 1.54 54.6
30-glycine 16 3.94 9 36 3.96 8 31 2.46 38.9
40-glycine 16 8.48 9 36 5.10 8 32 3.20 29.7
50-glycine 15 14.4 9 36 6.82 9 34 4.76 25.1
60-glycine 9 36 8.76 9 34 5.97 21.4

aPercentage surviving elements of the union ofF, P, FP1PF, andPFP at the begining of the SCF.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 3. Cumulative CPU time of the diagonalization
CG-DMS, and QN-DMS methods for polyglycine
chains at LSDA/6-31G~d,p! ~threshold of 1028 a.u.).
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where Sci51, to minimize the length of the error vecto
The error forP* is the linear combination of the previou
error vectors,

e* 5Sciei5DP. ~6!

Since the error vectors are chosen as the quasi-Newton
mates of the change in the density,ei , the linear combination
of the error vectors is also the predicted change in the d
sity, P* . The coefficientsci are obtained by minimizinguei u2

or uDPu2 with the constraintSci51. This least-squares prob
lem leads to the following equation8,9:

S a1,1 ¯ a1,k 1

] � ] ]

ak,1 ¯ ak,k 1

1 ¯ 1 0

D S c1

]

ck

l

D 5S 0
]

0
1
D , ~7!

whereai , j5Tr(ei
Tej ) and l is a Lagrangian multiplier. The

dimension ofA is small and the equation can be solved
any standard method. The new density matrix is then ca
lated using the expression

Pi 115P* 1DP5SciPi1Sciei . ~8!

The new density matrix is scaled to enforce the constrain
the number of electrons, Tr(P)5Ne ,

TABLE III. Percentage of surviving elementsa of the matrix for water clus-
ters at LSDA/STO-3G.

Molecule

Sparsity threshold~a.u.!

131025 131026 131027 131028

(H2O)30 66.4 87.9 98.1 99.8
(H2O)60 45.2 69.9 89.6 98.3
(H2O)90 35.1 57.4 79.7 94.2
(H2O)120 28.3 48.1 69.6 87.3
(H2O)150 22.4 39.4 61.2 80.3
(H2O)300 13.4 24.6 39.3 55.8

aPercentage surviving elements of the union ofF, P, FP1PF, andPFP at
the begining of the SCF.
Downloaded 12 Nov 2003 to 141.217.26.92. Redistribution subject to A
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l5Ne /Tr~P!, ~9!

Pi 115lPi 11 . ~10!

Because the diagonal elements of the gradient are very c
to zero, the scale factorl normally falls in the range of 1.0
61027 and serves to control numerical noise. Seve
McWeeny purification transformations,40 P̃53P222P3, are
applied to restore idempotency,PP5P. At the beginning of
the next SCF cycle, the Fock matrix is recalculated and
trapolated using the C-DIIS method.

To yield linear scaling, sparse matrix technique must
used. The cost is reduced by storing and manipulating o
the significant elements using a set of sparse matrix code41

The threshold is chosen to be in the range
1025– 1028 a.u., which has been shown to be cost effect
while still yielding microhartree accuracy in the energy.19 In
every SCF cycle, the Fock and density matrices have
same form, which is chosen as the union ofF, P, PF1FP,
andPFP as in CG-DMS.

III. BENCHMARKS AND DISCUSSION

The test cases are calculated using the development
sion of GAUSSIAN series of program42 with the addition of
QN-DMS algorithm presented here. All timing data are o
tained on an Athlon 18001MP workstation. For all methods
considered here, an SCF convergence threshold of 1024 a.u.
for the root-mean-square~rms! density change, 1022 a.u. for
the maximum density change, and 1024 a.u. for the energy
change are used. In the local density matrix search pro
dures~both CG-DMS and QN-DMS!, the idempotency and
rms of the gradient are converged to thresholds of 10212 and
1024, respectively. For the conventional SCF algorithm w
diagonalization, the E-DIIS method was used.10 As in previ-
ous papers,19 polyglycine chains and water clusters are us
as test cases.

In a CG-DMS iteration, calculations of the gradient, lin
search and purification are the most expensive compone
As shown in Fig. 1 for LSDA/3-21G calculations on polyg
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE IV. Cumulative CPU time~minutes! and number of SCF cycles for water clusters at LSDA/STO-3G.

Molecule

Diagonalization

CG-DMS QN-DMS

131025 a 131028 a 131025 a 131028 a

SCF
cycles

CPU
time

SCF
cycles

Total
CG
iter.

CPU
time

SCF
cycles

Total
QN
iter.

CPU
time

SCF
cycles

Total
QN
iter.

CPU
time

SCF
cycles

Total
QN
iter.

CPU
time

(H2O)30 7 4.6 6 19 3.9 6 17 4.5 6 19 3.9 6 19 4.
(H2O)60 8 17.1 6 24 13.3 6 17 18.5 6 19 13.0 6 19 16
(H2O)90 14 56.0 16 64 68.9 6 24 41.8 6 19 25.6 6 19 34
(H2O)120 7 48.1 10 40 68.2 7 22 71.1 6 19 42.2 6 19 56
(H2O)150 16 155.1 19 76 183.8 7 28 121.3 6 19 58.1 6 19 85
(H2O)200 13 233.2 7 28 129.0 7 22 180.7 6 18 94.0 6 18 140
(H2O)250 18 479.3 8 32 197.9 7 22 274.7 6 18 140.5 6 18 220
(H2O)300 19 693.5 7 28 235.8 7 21 364.3 6 19 196.0 6 19 318

aThreshold for sparse matrix manipulation, in a.u.
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lycine chains, each of the components scales linear, w
consequently result in overall linear scaling. QN-DMS us
the same modules to calculate the gradient and purify
density as the CG-DMS, but has the advantage of avoid
the expensive line search. Although the QN-DMS involv
the approximate Hessian and the solution of the DIIS eq
tions, the cost of these additional computations is triv
compared to the line search.

In a few cases, when the density is far away from co
vergence or when the surface is very anharmonic and s
elements of the Hessian are very small or negative, a sim
quasi-Newton step can be too large. Such situations resu
a density that is no longer idempotent even after numer
McWeeny purifications. If any of the diagonal elements
the Hessian are too small or negative, the entire Hessia
shifted so that the smallest value is greater than 0.01 a.u.
stability can be improved further by controlling the step s
using techniques such as the rational function optimiza
~RFO! ~Refs. 43–45! or the trust radius model~TRM! ~Refs.
35 and 46–50!, which are frequently used in geometry op
mization. Alternatively, we can use the CG-DMS metho
Downloaded 12 Nov 2003 to 141.217.26.92. Redistribution subject to A
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which employs a cubic line search, to obtain an optimal s
in the descent direction. This can be more stable tha
simple quasi-Newton step outside the near-quadratic reg
In our implementation, we switch to the CG-DMS metho
when the density matrix generated from QN-DMS is
longer idempotent. Among all the tests, this switch is
quired only in the first step for the 90 water cluster at LSD
6-31G~d,p!.

Table I compares the costs for SCF convergence via
agonalization, CG-DMS and QN-DMS for polyglycin
chains at the LSDA/3-21G level of theory. In these system
a cutoff threshold of 1028 is chosen for the matrix elements
which leads to a very reasonable sparsity. Cumulative C
timings for SCF convergence are plotted in Fig. 2. As mig
be anticipated, diagonalization becomes very expensive
large systems because of theO(N3) scaling with the number
of basis functions. Both CG-DMS and QN-DMS metho
achieve overall linear scaling and are more cost effec
than diagonalization for large systems. However, QN-DM
requires fewer iterations in the density matrix search to re
convergence, an average of 3.3 iterations. By comparis
,
at
FIG. 4. Cumulative CPU time of the diagonalization
CG-DMS, and QN-DMS methods for water clusters
LSDA/STO-3G~threshold of 1025 a.u.).
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded 12 N
TABLE V. Absolute deviation in energy~kcal/mol! compared with SCF5TIGHT for water clusters at LSDA/
STO-3G.

Molecule Diagonalization

CG-DMS QN-DMS

131025 a 131026 a 131025 a 131026 a

(H2O)30 0.01 0.03 0.03 0.02 0.03
(H2O)60 0.07 0.18 0.09 0.12 0.08
(H2O)90 0.93 0.41 0.11 0.03 0.03
(H2O)120 0.08 0.35 0.15 0.18 0.12
(H2O)150 2.27 0.33 0.12 0.07 0.01
(H2O)200 5.74 0.32 0.07 0.01 0.04
(H2O)250 0.54 0.40 0.01 0.03 0.01
(H2O)300 4.18 0.47 0.10 0.03 0.05
Ave. error 1.73 0.31 0.09 0.06 0.05

aThreshold for sparse matrix manipulation, in a.u.
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the CG-DMS method does not often reach converge
within the maximum of 4 iterations allowed. Consequen
SCF convergence by QN-DMS requires on average one
SCF cycles in half of the cases.

Larger basis sets with polarization functions, such
6-31G~d,p!, have more coupling between the orbital coef
cients and much less sparsity than STO-3G or 3-21G b
sets, which substantially increases the computational c
Table II and Fig. 3 compare the three methods conside
here for polyglycine chains at the LSDA/6-31G~d,p! level of
theory. The cost of both QN-DMS and CG-DMS increa
linearly with the chain length, and the ratio of the CPU tim
is very similar to that obtained at the LSDA/3-21G level
theory. The overall performance of QN-DMS is about 30
faster than CG-DMS on polyglycine chains. This conclus
holds for HF/3-21G as well as for the LSDA/3-21G an
LSDA/6-31G~d,p! results presented here.

Three-dimensional water clusters are more challeng
tests than linear polyglycine chains because they are m
compact and hence the matrices are less sparse. Table II
the percentage of surviving matrix elements at different sp
sity thresholds for a set of water clusters. Since water c
ters are much less sparse than polyglycine chains for a s
ov 2003 to 141.217.26.92. Redistribution subject to A
e
,
ss

s

is
st.
d

s

n

g
re
sts
r-
s-
me

threshold, the cutoff inevitably has a greater effect on
cost and scaling of the computation. Cumulative CPU ti
ings and the number of SCF cycles for diagonalization, C
DMS, and QN-DMS density matrix search with two differe
cutoff values are presented in Table IV for water clusters
the LSDA/STO-3G level of theory. The number of iteratio
required to reach self-consistency in density using diago
ization varies from 7 to 19, indicating a strong dependence
the SCF convergence on the size and configuration of
system. In contrast, QN-DMS shows almost no depende
on the structure of the system, and converges quickly
smoothly compared to the other two methods. Cumulat
CPU times for the diagonalization, CG and QN-DMS wi
1025 cutoff threshold are plotted in Fig. 4. The cost of th
diagonalization method increases dramatically with the s
tem size. Because of differences in the number of SCF cy
needed to reach convergence, the average cost of CG-D
is significantly greater than QN-DMS, varying from 18%
215% for 90–300 water clusters. QN-DMS shows sta
near-linear scaling for water clusters.

Some understanding of the difference in the converge
behavior of CG-DMS and QN-DMS can be deduced by co
paring the SCF energies from the present DMS calculati
,
at
FIG. 5. Cumulative CPU time of the diagonalization
CG-DMS, and QN-DMS methods for water clusters
LSDA/6-31G~d,p! ~threshold of 1025 a.u.).
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE VI. Cumulative CPU time~hours! and number of SCF cycles for water clusters at LSDA/6-31G~d,p!.

Molecule

Diagonalization

CG-DMS QN-DMS

131025a 131028a 131025a 131028a

SCF
cycles

CPU
time

SCF
cycles

Total
CG
iter.

CPU
time

SCF
cycles

Total
QN
iter.

CPU
time

SCF
cycles

Total
QN
iter.

CPU
time

SCF
cycles

Total
QN
iter.

CPU
time

(H2O)30 11 0.40 10 40 0.68 8 31 0.99 8 22 0.44 7 24 0.6
(H2O)60 12 1.86 8 32 1.83 8 31 6.78 8 24 1.78 7 24 3.8
(H2O)90 14 5.13 10 40 4.43 8 32 15.6 9 27 3.77 8 27 10.1
(H2O)120 21 14.6 13 52 9.01 9 36 31.7 9 24 5.70 9 29 20.4
(H2O)150 21 25.0 20 80 19.3 9 26 8.11

aThreshold for sparse matrix manipulation, in a.u.
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to more tightly converged calculations using diagonalizat
and convergence of 1028 on the rms density differenc
~Table V!. With a sparsity threshold of 1025, the SCF ener-
gies obtained by QN-DMS are a factor of 5 closer to t
accurate energy than CG-DMS. A smaller sparsity cu
leads to a smoother energy landscape, and with a thres
of 1026 or smaller, QN-DMS and CG-DMS both converg
smoothly and accurately. This suggests that the differenc
the behavior seen with a 1025 cutoff can be attributed to the
fact that DIIS is more efficient and robust than CG for dif
cult optimization problems. The DIIS approach can
thought of a multidimensional interpolation and extrapo
tion and is better able to handle stronger coupling and an
monicity than CG methods with line searches.

Calculations on water clusters with the 6-31G~d,p! basis
set are more demanding since the increased coupling
make SCF convergence more difficult and the lower deg
of sparsity can delay the onset of linear scaling. As can
seen in Fig. 5, QN-DMS shows more nearly linear behav
than CG-DMS with a 1025 sparsity cutoff. The data in Tabl
VI indicates that QN-DMS requires substantially fewer SC
cycles and/or DMS search iterations and has a more unif
rate of convergence. Similar results are also obtained
tight SCF convergence criteria. For example, QN-DMS
;40% faster than CG-DMS for LSDA/6-31G~d,p! calcula-
tion on (H2O)90 using 1028 for convergence on the rms den
sity changes.

IV. CONCLUSION

QN-DMS is another alternative to diagonalization th
scales linearly in both CPU time and memory when used
conjunction with a linear scaling Fock matrix constructi
and sparse matrix manipulations. By employing direct inv
sion in the iterative subspace with a quasi-Newton metho
estimate the error, QN-DMS avoids the cost of the li
search and speeds up the SCF convergence compared
CG-DMS. QN-DMS shows smooth and fast convergen
and usually requires fewer SCF cycles than CG-DMS a
diagonalization methods. Both density matrix search me
ods are far cheaper than the diagonalization for large
tems. The speed of the convergence using QN-DMS is
strongly dependent on the size and configuration of the
tem. The overall cost of QN-DMS is about 30% less th
CG-DMS for polyglycine chains. In three-dimensional wa
Downloaded 12 Nov 2003 to 141.217.26.92. Redistribution subject to A
n

ff
old

in

-
r-

an
e
e
r

m
or
s

t
n

-
to

the
e
d
-

s-
ot
s-
n
r

clusters, QN-DMS shows nearly linear scaling in overall c
with both the STO-3G and 6-31G~d,p! basis sets.
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