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For electronic structure calculations on large systems, solving the self-consistentSiekl
equations is one of the key bottlenecks. Density matrix search methods provide an efficient linear
scaling approach for circumventing the traditio@IN°®) diagonalization procedure for solving the

SCF equations. The conjugate gradient density matrix s6@EiDMS) method is a successful
implementation of this approach. An alternative density matrix search method, QN-DMS, employs
direct inversion in the iterative subspace using a quasi-NewW@\) step to estimate the error
vector. For linear polyglycine chains of 10—100 residues, the present approach scales linearly and
is 30% faster than CG-DMS. For clusters of up to 300 water molecules, this method shows smoother
and efficient convergence, and displays nearly linear scaling.20@3 American Institute of
Physics. [DOI: 10.1063/1.1607961

I. INTRODUCTION and a new density matrix; the process is repeated until self-
Modeling and simulation methods are being applied toconsistency is achieved. The direct inversion in the iterative

H 9
systems of ever increasing size, placing greater demands GifPSPaceDIIS) techniqué® greatly reduces the number of
computational hardware and software. Advances in Computéperatlons required to reach self-consistency compared to the

technology continue to provide increasing processor Speegoothaan SCF procedure. The idea of DIIS is to optimize the

and memory size at decreasing cost. Linear scaling a|go\4ar|ables by minimizing the errors in the least-squares sense

rithms for electronic structure calculations have greatly im-Within @ subspace. Pulay’s approach uses the commutator
proved the outlook for applications @b initio calculations ~(FPS—SPF) as the error vectors and interpolation or ex-
on large systems. For biomolecules, polymers and nanostruff@polation of the Fock matricelglenoted here by C-DIIS
tures, molecular orbital calculations deal with thousands ofore recently, Kudin, Scuseria, and Cances developed the
basis functions, and any decrease in the formidable cost d&&-DIIS algorithm, which minimizes the energy by interpola-
the computations would be welcome. The rate limiting stegion of the density within the iterative subspafeThis
in Hartree—FockHF) and density functional theor¢DFT) method provides enhanced stability in solving the SCF equa-
calculations used to be the computation of two-electron intetions, but for large systems tt@(N°®) Fock matrix diagonal-
grals. Recently, the cost of forming the Coulomb matrix hagzation remains the dominant time-consuming step. Further-
been reduced to near-linear scaling for large systems by ugore, the procedure has a(N?) memory requirement
ing the fast multipole methott:* Both the “orderN ex-  Which is a stringent limitation for large systems.
change”(ONX) (Ref. 5 and “near-field-exchange(NFX) Several categories of methods have been proposed in
(Ref. 6 methods overcome the asymptaf¢N?) bottleneck literatures as alternatives to diagonalizatifor leading ref-
for the exchange matrix and achieve linear scaling in theerence, see Ref. L1 Fermi operator expansiof,™
large molecule limit. This leaves the convergence of the selfdivide-and-conquer; ™" direct minimization of the energy
consistent-fieldSCP equations as the remaining obstacle inwith respect to the densitunder the constraint that the den-
HF and DFT calculations on large systeffisr leading ref-  sity remains idempotent®'® etc. Of various implementa-
erence on the SCF scaling, see Ref. 7 tions and benchmark8;*conjugate gradient density matrix

In the traditional Roothaan SCF procedure, the densitgearch(CG-DMS) (Ref. 19 using sparse matrix techniques,
matrix is used to form the Fock matrix, and the Fock matrixdeveloped by Millam and Scuseria in 1997, appears to be
is diagonalized to yield new molecular orbital coefficientsone of the best.
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FIG. 1. Comparison of costs for the gradient, line
search, and purification for polyglycine chains.
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In the CG-DMS approach, the energy is minimized withapproach using a quasi-Newton step as the error veéQisF
respect to the density along a series of conjugate directiondIIS-DMS or QN-DMS for short This improved method is
based on the Li—Nunes—Vanderb{ltNV) (Ref. 18 func- compared to diagonalization and CG-DMS for a series of
tional using diagonally preconditioners and cubic linepolyglycine chains and water clusters.
searches. The CG-DMS method scales linearly with system
size and is cost effective in large systems. Ove@(N)
scal_lng in CPU time an_d memory is a_chleve_d for Ilnear”_ METHODOLOGY
chains such as polyglycine. For three-dimensional systems

like water clusters, CG-DMS shows linear scaling for indi- In the density matrix search methbtieach SCF cycle
vidual SCF cycles. An improvement to CG-DMS uses Pu-starts by forming the Fock matrix using the density matrix
lay’s DIIS approach to update the density matrix every DMSp from the previous cycléor the initial guess if it is the first
cycle, giving quicker and smoother convergefitén the  entry). After the first step, a C-DIIS approach can be used to
current paper, the abbreviation CG-DMS denotes the conjuextrapolate or interpolate the Fock matrix. Instead of diago-
gate gradient density matrix search method in conjunctiomalizing the Fock matrix, a series of density matrix search
with C-DIIS. Within an individual SCF cycle, a Iarge frac- steps are emp|oyed_ In QN-DMS, a set of quasi-Newton
tion of the cost is for the conjugate search step. Thus, thergteps are taken and are combined using DIIS. If the conver-
may still be room to improve the efficiency and reduce thegence criteria are not fulfilled, the calculation proceeds to the
cost of SCF convergence for large systems. next SCF cycle.

For geometry optimization, the quasi-Newton and DIIS  |n the density matrix search, an estimate of the error in a

algorithms are more efficient than conjugate gradieniminimization can be obtained from a quasi-Newton step:
methods® In the current paper, we present a density matrix

search method for SCF convergence that employs a DIIS Ax;=—H !g=e, (D)

TABLE |. Cumulative CPU timghourg and number of SCF cycles for polyglycine chains at LSDA/3-21G with threshold of 4Qu.

Diagonalization CG-DMS QN-DMS
SCF CPU SCF Total CG CPU SCF Total QN CPU Surviving
Molecule cycles time cycles iterations time Cycles iterations time elementd
10-glycine 13 0.08 8 32 0.14 7 24 0.08 67.9
20-glycine 13 0.33 8 32 0.48 8 26 0.33 54.3
30-glycine 16 0.87 9 36 0.90 8 26 0.55 38.5
40-glycine 16 1.64 9 36 1.14 8 26 0.75 29.8
50-glycine 16 2.95 9 36 161 8 26 1.01 24.9
60-glycine 16 4.96 9 36 1.96 8 26 1.23 21.2
70-glycine 17 7.82 9 36 2.25 9 28 1.55 18.3
80-glycine 19 11.85 9 36 2.63 9 28 1.84 16.2
90-glycine 21 18.84 9 36 2.95 9 28 211 14.5
100-glycine 17 19.78 9 36 3.30 9 28 2.36 13.1

8Percentage surviving elements of the uniorFoP, FP+PF, andPFP at the begining of the SCF.
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FIG. 2. Cumulative CPU time of the diagonalization,
CG-DMS, and QN-DMS methods for polyglycine
chains at LSDA/3-21Gthreshold of 108 a.u.).
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whereg; is the gradient an#ll is an approximate Hessian. In Cholesky orthonormal basis is more favorable for sparse ma-
calculating the gradient of the energy with respect to therix manipulations since forming the Cholesky decomposi-
density, one must include the idempotency constraint. Thision is O(N) scaling if S is sparse, and the resulting trans-
can be done by expressing the energy in terms of théormation matrixU as well as the resulting is also sparse.
McWeeny purified densityP=3P?—2P%. As in CG-DMS In the CG-DMS method, a very efficient preconditioner
(Ref. 19 and the atom-centered basis functions density macan be constructed from the diagonal elements of the
trix propagation(ADMP) method forab initio molecular Hessian®

dynamics®~38 the gradient is a modified LN\(Ref. 18

functional, 2B 2
Huvuy=d°E(P)/dP;,,
g=dE(P)/dP=3FP+ 3PF— 2FP?>— 2PFP—2P°F, (2) =(3-2P,,)F,,+(3-2P,,)F,,
whereF and P are the Fock and density matrices, respec- — 4(PF),,,— 4(PF) (4)
oz vy

tively, in an orthonormal basis. If the density matrix is nearly
idempotent, the diagonal elements of the gradient matrix are . . )
very close to zero. Of the various choices for the transformasince the storage a.nq computing reqUIremen.ts'for the d|.ag-
tion to an orthonormal space walin and Cholesky transfor- onal Hessian are minimal, we choose to use it in gstlmatlng
mations are the most widely used. The transformation of thd1€ error vector, Eq.l), for the DIIS procedure. Within each
density and Fock matrices from the atomic orb{aD) basis DMS iteration, the Hessian is reevaluated using the fixed

(Pao andF,o) into the orthonormal basis can be expressec@nd the newP from the previous DMS step, and subse-
as quently error vectors used in the DIIS equation are recon-

. . . structed using the saved gradients and the new Hessian.
P=UPpoU’, F=U""FpoU 7, 3 The DIIS method is employed to obtain a linear extrapo-
where U can be obtained by Cholesky decompositich ( lation and interpolation of the saved density matrices
=UTU, whereU is upper triangular*® or U= S"? for Low-
din orthonormalization(S is the overlap matrix The P*=3cP;, (5)

TABLE II. Cumulative CPU time(hours and number of SCF cycles for polyglycine chains at LSDA/6-@L@ with threshold of 10° a.u.

Diagonalization CG-DMS QN-DMS

SCF CPU SCF Total CG CPU SCF Total QN CPU Surviving
Molecule cycles time cycles iterations time Cycles iterations time element®
10-glycine 12 0.30 8 32 0.63 8 31 0.46 75.7
20-glycine 12 1.21 9 36 2.52 8 31 1.54 54.6
30-glycine 16 3.94 9 36 3.96 8 31 2.46 38.9
40-glycine 16 8.48 9 36 5.10 8 32 3.20 29.7
50-glycine 15 14.4 9 36 6.82 9 34 4.76 25.1
60-glycine 9 36 8.76 9 34 5.97 21.4

8Percentage surviving elements of the uniorFoP, FP+PF, andPFP at the begining of the SCF.
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where 2,¢c;=1, to minimize the length of the error vector. A=Ng/Tr(P), 9)
The error forP* is the linear combination of the previous
error vectors, Pi+1=APiyy. (10
e =3ce=AP. (6) Because the diagonal elements of the gradient are very close

] ) to zero, the scale factor normally falls in the range of 1.0
Since the error vectors are chosen as the quasi-Newton esti-10-7 and serves to control numerical noise. Several

mates of the change in the densky, the linear combination McWeeny purification transformatiod& P=3P2— 2P, are

of the error vectors is also the predicted change in the denépplied to restore idempotendgP=P. At the beginning of

. * .. . . . .. 2
S'ty’ATD 5 TTE fﬁemc'e?@i gre STa+nh?d lby rrt1|n|m|2|nga| b the next SCF cycle, the Fock matrix is recalculated and ex-
or |AP|? with the constraink c;= 1. This least-squares prob- trapolated using the C-DIIS method.

lem leads to the following equatibft To yield linear scaling, sparse matrix technique must be

a;g o oagk 1 c 0 used. The cost is reduced by storing and manipulating only
: c 1 : the significant elements using a set of sparse matrix cdes.
=| -1, (77 The threshold is chosen to be in the range of
A Ak 1)) S 0 10°-10 8 a.u., which has been shown to be cost effective
1 -~ 1 o ‘A 1 while still yielding microhartree accuracy in the enetgyn

wherea, = Tr(e"e)) and\ is a Lagrangian multiplier. The every SCF cycle, the Fock and density matrices have the
gi 1 N i I and th 9 t'g bp I 4 pySame form, which is chosen as the unionFofP, PF+ FP,
imension ofA is small and the equation can be solved by_ - 'orb o< in cG-DMS.

any standard method. The new density matrix is then calcu-
lated using the expression

Pi+1=P*+AP=§:CiPi+ECiQ. .
) o ) The test cases are calculated using the development ver-
The new density matrix is scaled to enforce the constraint 0jon of caussiAN series of prograf? with the addition of
the number of electrons, T#f=N,, QN-DMS algorithm presented here. All timing data are ob-
tained on an Athlon 1806 MP workstation. For all methods
considered here, an SCF convergence threshold of &Qu.

III. BENCHMARKS AND DISCUSSION

TABLE . Percentage of surviving elemefitsf the matrix for water clus-

ters at LSDA/STO-3G. for the root-mean-squarems) density change, I& a.u. for
the maximum density change, andf0a.u. for the energy
Sparsity thresholda.u) change are used. In the local density matrix search proce-
Molecule 1x10°5 1x10°6 1x10°7 1x10°8 dures(both CG-DMS and QN-DM§ the idempotency and

rms of the gradient are converged to thresholds of'@nd

E:zggzz 22:;’ g;:g gg:; gg:g 104, respectively. For the conventional SCF algorithm with

(H,0)00 35.1 57.4 79.7 94.2 diagonalization, the E-DIIS method was us8ds in previ-

(Hy0)120 28.3 48.1 69.6 87.3 ous paperé? polyglycine chains and water clusters are used

(H20)150 22.4 39.4 61.2 80.3 as test cases.

(H20)s00 13.4 24.6 39.3 55.8 In a CG-DMS iteration, calculations of the gradient, line
*Percentage surviving elements of the uniorFoP, FP+PF, andPFPat  S€arch and purification are the most expensive components.
the begining of the SCF. As shown in Fig. 1 for LSDA/3-21G calculations on polyg-
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TABLE IV. Cumulative CPU time(minutes and number of SCF cycles for water clusters at LSDA/STO-3G.
CG-DMS QN-DMS
Diagonalization 1x10752 1x10°82 1x10752 1x10°82
Total Total Total Total

SCF CPU SCF CG CPU SCF QN CPU SCF QN CPU SCF QN CPU
Molecule cycles time cycles iter. time cycles iter. time cycles iter. time cycles iter. time
(H,0)3 7 4.6 6 19 3.9 6 17 4.5 6 19 3.9 6 19 4.2
(H20)e0 8 17.1 6 24 13.3 6 17 18.5 6 19 13.0 6 19 16.1
(H20)g0 14 56.0 16 64 68.9 6 24 41.8 6 19 25.6 6 19 34.0
(H20) 120 7 48.1 10 40 68.2 7 22 71.1 6 19 42.2 6 19 56.7
(H20)150 16 155.1 19 76 183.8 7 28 121.3 6 19 58.1 6 19 85.8
(H20)200 13 233.2 7 28 129.0 7 22 180.7 6 18 94.0 6 18 140.8
(H20)250 18 479.3 8 32 197.9 7 22 274.7 6 18 140.5 6 18 220.5
(H20)300 19 693.5 7 28 235.8 7 21 364.3 6 19 196.0 6 19 318.2

&Threshold for sparse matrix manipulation, in a.u.

lycine chains, each of the components scales linear, whictwvhich employs a cubic line search, to obtain an optimal step
consequently result in overall linear scaling. QN-DMS usesn the descent direction. This can be more stable than a
the same modules to calculate the gradient and purify theimple quasi-Newton step outside the near-quadratic region.
density as the CG-DMS, but has the advantage of avoidingn our implementation, we switch to the CG-DMS method
the expensive line search. Although the QN-DMS involveswhen the density matrix generated from QN-DMS is no
the approximate Hessian and the solution of the DIIS equalonger idempotent. Among all the tests, this switch is re-
tions, the cost of these additional computations is trivialquired only in the first step for the 90 water cluster at LSDA/
compared to the line search. 6-31Qd,p).

In a few cases, when the density is far away from con-  Table | compares the costs for SCF convergence via di-
vergence or when the surface is very anharmonic and sormegonalization, CG-DMS and QN-DMS for polyglycine
elements of the Hessian are very small or negative, a simplehains at the LSDA/3-21G level of theory. In these systems,
quasi-Newton step can be too large. Such situations result ia cutoff threshold of 10° is chosen for the matrix elements,

a density that is no longer idempotent even after numeroughich leads to a very reasonable sparsity. Cumulative CPU
McWeeny purifications. If any of the diagonal elements oftimings for SCF convergence are plotted in Fig. 2. As might
the Hessian are too small or negative, the entire Hessian Ise anticipated, diagonalization becomes very expensive for
shifted so that the smallest value is greater than 0.01 a.u. THarge systems because of 1¢N?) scaling with the number
stability can be improved further by controlling the step sizeof basis functions. Both CG-DMS and QN-DMS methods
using techniques such as the rational function optimizatiorachieve overall linear scaling and are more cost effective
(RFO) (Refs. 43—4%or the trust radius modéTRM) (Refs.  than diagonalization for large systems. However, QN-DMS
35 and 46-5f) which are frequently used in geometry opti- requires fewer iterations in the density matrix search to reach
mization. Alternatively, we can use the CG-DMS method,convergence, an average of 3.3 iterations. By comparison,

500 E
u
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@ ]
S 3004
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TABLE V. Absolute deviation in energgkcal/mol) compared with SCE TIGHT for water clusters at LSDA/

STO-3G.
CG-DMS QN-DMS
Molecule Diagonalization 1x10°52 1x10762 1x10752 1x10°62
(H,0)50 0.01 0.03 0.03 0.02 0.03
(H,0)e0 0.07 0.18 0.09 0.12 0.08
(H20)00 0.93 0.41 0.11 0.03 0.03
(H30) 10 0.08 0.35 0.15 0.18 0.12
(H,0)150 2.27 0.33 0.12 0.07 0.01
(H30) 500 5.74 0.32 0.07 0.01 0.04
(H20)250 0.54 0.40 0.01 0.03 0.01
(H50)200 4.18 0.47 0.10 0.03 0.05
Ave. error 1.73 0.31 0.09 0.06 0.05

#Threshold for sparse matrix manipulation, in a.u.

the CG-DMS method does not often reach convergencéhreshold, the cutoff inevitably has a greater effect on the
within the maximum of 4 iterations allowed. Consequently,cost and scaling of the computation. Cumulative CPU tim-
SCF convergence by QN-DMS requires on average one lessgs and the number of SCF cycles for diagonalization, CG-
SCF cycles in half of the cases. DMS, and QN-DMS density matrix search with two different
Larger basis sets with polarization functions, such asutoff values are presented in Table IV for water clusters at
6-31Qd,p), have more coupling between the orbital coeffi-the LSDA/STO-3G level of theory. The number of iterations
cients and much less sparsity than STO-3G or 3-21G basi®quired to reach self-consistency in density using diagonal-
sets, which substantially increases the computational cosization varies from 7 to 19, indicating a strong dependence of
Table Il and Fig. 3 compare the three methods considerethe SCF convergence on the size and configuration of the
here for polyglycine chains at the LSDA/6-3(d3) level of  system. In contrast, QN-DMS shows almost no dependency
theory. The cost of both QN-DMS and CG-DMS increaseon the structure of the system, and converges quickly and
linearly with the chain length, and the ratio of the CPU timessmoothly compared to the other two methods. Cumulative
is very similar to that obtained at the LSDA/3-21G level of CPU times for the diagonalization, CG and QN-DMS with
theory. The overall performance of QN-DMS is about 30%10° cutoff threshold are plotted in Fig. 4. The cost of the
faster than CG-DMS on polyglycine chains. This conclusiondiagonalization method increases dramatically with the sys-
holds for HF/3-21G as well as for the LSDA/3-21G and tem size. Because of differences in the number of SCF cycles
LSDA/6-31Qd,p) results presented here. needed to reach convergence, the average cost of CG-DMS
Three-dimensional water clusters are more challengings significantly greater than QN-DMS, varying from 18% to
tests than linear polyglycine chains because they are mor&l5% for 90—300 water clusters. QN-DMS shows stable
compact and hence the matrices are less sparse. Table Ill listear-linear scaling for water clusters.
the percentage of surviving matrix elements at different spar- Some understanding of the difference in the convergence
sity thresholds for a set of water clusters. Since water clusbehavior of CG-DMS and QN-DMS can be deduced by com-
ters are much less sparse than polyglycine chains for a sanparing the SCF energies from the present DMS calculations
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TABLE VI. Cumulative CPU time(hourg and number of SCF cycles for water clusters at LSDA/6-313.

CG-DMS QN-DMS
Diagonalization 1x10°%8 1x10° % 1x10°%8 1x 108
Total Total Total Total

SCF CPU SCF CG CPU SCF QN CPU SCF QN CPU SCF QN CPU
Molecule cycles time cycles iter. time cycles iter. time cycles iter. time cycles iter. time
(H,0)3 11 0.40 10 40 0.68 8 31 0.99 8 22 0.44 7 24 0.68
(H20)e0 12 1.86 8 32 1.83 8 31 6.78 8 24 1.78 7 24 3.82
(H20)g0 14 5.13 10 40 4.43 8 32 15.6 9 27 3.77 8 27 10.1
(H20) 150 21 14.6 13 52 9.01 9 36 31.7 9 24 5.70 9 29 20.4
(H50)150 21 25.0 20 80 19.3 9 26 8.11

aThreshold for sparse matrix manipulation, in a.u.

to more tightly converged calculations using diagonalizatiorclusters, QN-DMS shows nearly linear scaling in overall cost
and convergence of 16 on the rms density difference with both the STO-3G and 6-316,p) basis sets.

(Table V). With a sparsity threshold of 183, the SCF ener-
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