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In ab initio molecular dynamics, whenever information about the potential energy surface is needed for
integrating the equations of motion, it is computed “on the fly” using electronic structure calculations. For
Born-Oppenheimer methods, the electronic structure calculations are converged, whereas in the extended
Lagrangian approach the electronic structure is propagated along with the nuclei. Some recent advances for
both approaches are discussed.
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Introduction

As discussed in numerous chapters and monographs,1-16

classical trajectories of molecules moving on potential energy
surfaces provide a wealth of information about reactivity and
dynamics. Because molecular dynamics calculations may
involve extensive sampling of initial conditions and / or long
simulation times, the molecular energy and its derivatives
need to be computed frequently during the integration of the
equations of motion. Traditionally, such studies have used
analytic potential energy surfaces fitted to experimental and
computational data. Potential energy surfaces obtained from
well parameterized molecular mechanics calculations can be
quite satisfactory for simulations near equilibrium. However,
for reactive systems, specific potential energy surfaces must
be devised for each unique system. Constructing potential
energy surfaces by fitting to experimental data and / or ab
initio molecular orbital energies can be both tedious and full
of pitfalls.17,18 Alternatively, ab initio or semi-empirical
molecular orbital calculations can be used directly to obtain
the energies and derivatives as they are needed, thus avoiding
the fitting process.19 This approach has been termed ab initio
molecular dynamics (AIMD). The calculation of trajectories
by AIMD methods is a comparatively new area19 and is
expanding rapidly as affordability of computer power
increases and more efficient software is developed. 

Direct classical trajectory calculations can be grouped into
two major categories: Born-Oppenheimer (BO) methods and
extended Lagrangian (EL) methods. For the former, the
electronic structure calculation is fully converged in the
Born-Oppenheimer (clamped nuclei) approximation, each
time that information about the potential energy surface is
needed for a given nuclear configuration. In the extended
Lagrangian approach, both the wavefunction and the nuclei
are treated as dynamic variables. With an appropriate
adjustment of the time scales for the dynamics of the
wavefunction, both can be propagated satisfactorily with
Lagrangian equations of motion, without the extra work of
converging the wavefunction at each step. The resulting

dynamics of the nuclei are comparable to that obtained with
the Born-Oppenheimer approximation but at lower cost. The
Car-Parrinello method is the archetypical example of this
approach.20 The present overview is not intended to be a
thorough review of the field, but is concerned only with
some highlights of recent contributions to the development
of AIMD methods from a chemical perspective.

Results and Discussion

Born-Oppenheimer methods. The simplest approach for
Born-Oppenheimer dynamics uses electronic structure methods
to calculate the energy and gradients directly. Methods such
as velocity Verlet, fourth order Runge-Kutta, sixth order
Adams-Moulton-Bashforth and related predictor-corrector
algorithms21 are typical gradient-based methods used to
integrate the equations of motion. Because this class of
integrators requires fairly small time steps to determine the
trajectories accurately, many thousands of electronic structure
calculations may be needed, even for fairly fast reactions.
Code for calculating classical trajectories has been incorpo-
rated into a number of widely distributed electronic structure
packages (Dalton, DMol, Gamess, Gaussian, HyperChem,
NWChem, etc.). Alternatively, a standard electronic structure
package can be called as a subroutine from a classical
trajectory code. 

Analytic second derivatives of the energy (Hessians) can
be calculated readily for a number of electronic structure
methods, including Hartree-Fock (HF), multi-configuration
SCF (MCSCF), density functional theory (DFT) and second
order Møller-Plesset perturbation theory (MP2). The gradient
and Hessian provide a local quadratic approximation to the
potential energy surface and the equations of motion can be
integrated on this local surface in closed form, allowing
significantly larger steps between electronic structure calcu-
lations than for gradient-based methods. This approach was
pioneered by Helgaker, Uggerud and Jensen in their studies
of H2 + H and CH2OH → HCO+ + H2 at the MCSCF level of
theory.22,23 Numerous systems have now been studied by
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these authors with the second order Hessian-based trajectory
integration method, including C2H6

+, H3O+ + NH3, CH2NH2
+,

NHNH2
+, NH2NH3

+ and HNO + HNO.24-30 
Figure 1 illustrates a Hessian-based predictor-corrector

method that we developed a few years ago.31-33 Given a
Hessian from an electronic structure calculation, a predictor
step is taken on the local quadratic surface. The Hessian is
then recalculated and a fifth order polynomial or a rational
function is fitted to the energies, gradients and Hessians at
the beginning and end points of this predictor step. The
Bulrisch-Stoer algorithm21 is used to re-integrate the
trajectory on the fitted surface to yield a corrector step (see
Figure 2). The process is repeated for each step. Since the
Hessian at the end of the last step is used for the next
predictor step, the electronic structure work is the same as
for the second order Hessian-based method (i.e. one Hessian
calculation per step). As shown in Figure 3, the error in the
conservation of energy for the Hessian-based predictor-
corrector method is three orders of magnitude lower than for
the second order Hessian-based method, permitting a ten-
fold increase in the step size without loss of accuracy in the
energy conservation. This means an order of magnitude
increase in the efficiency of the AIMD calculation, since the
number of electronic structure calculations for a given
trajectory is reduced by a factor of ten.

Algorithms for geometry optimization use updating formulas
to maintain and improve an estimated Hessian during an
optimization.34,35 This approach can be applied to our
Hessian-based predictor-corrector method for integrating
trajectories. We have found that Bofill’s formula36 can be
used to update the Hessian for 5-10 steps before it needs to
be recalculated. As shown in Figure 4, this speeds up the
trajectory integration by a factor of 3 or more for systems
containing 4 to 6 heavy atoms. With updating, the step size
needs to be only slightly smaller to maintain the same energy
conservation as without updating. We have used the

Hessian-based predictor-corrector method (with and without
updating) in studies of H2CO → H2 + CO, F + C2H4 →
C2H3F, C2H2O2 (glyoxal) → H2 + 2 CO & H2CO + CO,
C2N4H2 (s-tetrazine) → N2 + 2 HCN and HXCO → HX +
CO.31,37-46 

Collins has developed a novel method for growing potential
energy surfaces for dynamics by using trajectories to
determine where additional electronic structure calculations
are needed.47-53 An initial approximation to the potential
energy surface is constructed with a modest number of

Figure 1. Hessian-based predictor-corrector algorithm for integrat-
ing trajectories on the Born-Oppenheimer surface.

Figure 2. Details of the Hessian-based predictor-corrector algorithm for integrating classical trajectories.

Figure 3. Comparison of the error in the conservation of energy
versus step size for trajectories integrated with the second order
Hessian-based method (squares) and the Hessian-based predictor-
corrector method with a fifth order polynomial (circles) or a
rational function (triangles) for the corrector step (slopes of the
least squares fits in parenthesis).

Figure 4. Relative cpu times as a function of the number of updates
for Hessian-based Born-Oppenheimer trajectory calculations. 
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energy, gradient and Hessian calculations along the reaction
path. This local information is linked with distance weighted
interpolants to yield a global surface. As more trajectories
are run, some explore regions of the surface farther away
from the existing data points. Additional electronic structure
calculations are performed in these regions to improve the
accuracy of the interpolated surface. The process continues
until the desired dynamical properties become stable with
respect to improvements in the surface. This approach has
been used by Collins and co-workers to study a number of
systems, including OH + H2, N + H3

+, BH+ + H2 and triazine
dissociation.54-60

Extended Lagrangian methods. Converging wavefunc-
tions for every time step in a trajectory calculation can be
costly. Since relatively small time steps are used, the change
in the wavefunction may be small enough so that it can be
treated by suitable equations of motion. In 1985 Car and
Parrinello20 outlined such an approach for ab initio mole-
cular dynamics (for reviews, see Ref. 61-63). Use of the time
dependent Schrödinger equation was impractical, since it
would necessitate very small time steps. Instead, they
constructed an extended Lagrangian to obtain classical-like
equations of motion for the wavefunction: 

    (1)

where R, V and M  are the nuclear positions, velocities and
masses, µ is the fictitious electronic mass, r  are the elec-
tronic coordinates and Λij are Lagrangian multipliers to
ensure that the orbitals remain orthonormal. The coefficients
of the molecular orbitals, φi, are expanded in a plane wave
basis.64,65 This simplifies many of the integrals and facilitates
applications to condensed matter. However, a very large
number of plane waves is needed and the types of density
functionals that can be used easily is limited (e.g. hybrid
functionals are expensive since the Hartree-Fock exchange is
difficult to calculate). Furthermore, pseudopotentials must
be used to replace core electrons, since these cannot be
describe well by reasonable sized plane wave basis sets.
Even with these limitations, the Car-Parrinello approach and
its variants have seen extensive usage in the physics
community.66

Molecular electronic structure calculations in chemistry
are usually carried out with atom centered basis functions
(e.g. gaussians) rather than plane waves.67-70 Since atom
centered basis functions are automatically positioned where
the density is the greatest, far fewer functions are needed
than plane waves. Fast integral packages are available for
gaussian basis functions and hybrid density functionals are
handled readily. Because the density matrix becomes sparse
for large molecules, Hartree-Fock and density functional
calculations can be made to scale linearly with molecular
size.71-73 These features, coupled with the extensive experi-
ence that the chemistry community has with levels of
theory and basis sets, lead us to develop the atom-centered

density matrix propagation (ADMP) method for molecular
dynamics.74-76 

The equations for propagation of the density matrix are
simplest in an orthonormal basis. In many ways, this is
similar to density matrix search methods for calculating
electronic energies.77 In the ADMP approach, the extended
Lagrangian for the system is 

(2)

where P, W and µ are the density matrix, the density matrix
velocity and the fictitious mass matrix for the electronic
degrees of freedom. Constraints on the total number of
electrons and the idempotency are imposed using the
Lagrangian multiplier matrix Λ. The energy is calculated
using the McWeeny purification of the density,78 = 3 P2 −
2 P3. The Euler-Lagrange equations of motion are 

M  d2R/dt2 = − ∂E/∂R|P; 

µ d2P/dt2 = − [∂E/∂P|R + ΛP + PΛ − Λ] (3) 

These can be integrated using the velocity Verlet algorithm,64,79 

Pi+1 = Pi + Wi ∆t − µ−1/2 [∂E(Ri,Pi)/∂P|R + ΛiPi + PiΛi − Λi]

  × µ−1/2 ∆t2/2

Wi+1/2 = Wi − µ−1/2 [∂E(Ri,Pi)/∂P|R + ΛiPi + PiΛi − Λi]

  × µ−1/2 ∆t/2 = [Pi+1−Pi]/∆t

Wi+1 = Wi+1/2 − µ−1/2 [∂E(Ri+1,Pi+1)/∂P|R + Λi+1Pi+1 

+ Pi+1Λi+1 − Λi+1] µ−1/2 ∆t/2 (4)

A simple iterative scheme is used to determine the
Lagrangian multipliers so that Pi+1 and Wi+1 satisfy the
idempotency constraints.74,75 

Pi+1 ← Pi+1 + µ−1/2 [Pi TPi + (I−Pi)T(I−Pi)] µ−1/2 T 

= µ1/2 [ i+1−Pi+1] µ1/2

Wi+1 ← Wi+1 + µ−1/2 [Pi+1TPi+1 + (I−Pi+1)T(I−Pi+1)] µ−1/2 T

= µ1/2 [ i+1−Wi+1] µ1/2 (5) 

where i+1 = Pi+1Wi+1(I−Pi+1) + Pi+1Wi+1(I−Pi+1). In calcu-
lating ∂E/∂R|P we need to take into account that P is not
converged and that U, the transformation between the non-
orthogonal atomic orbital basis and the orthonormal basis,
depends on R. This leads to a somewhat more complicated
expression than used for gradients of converged SCF
energies.

∂E/∂R|P = Tr[U−t ∂h'/∂R|P U−1  + U−t ∂G'( )/∂R|P U−1 ]

− Tr[F ∂U/∂R U−1  +  U−t ∂Ut/∂R F] + dVNN/dR

= Tr[∂h'/∂R|P ' + ∂G'( ')/∂R|P '] 

− Tr[F' U−1 ∂U/∂R ' + ' ∂Ut/∂R U−t F'] + dVNN/dR
(6)

L = 1/2Tr V
T
MV[ ] + µΣ  ∫ ∂φi /∂t 2dr − E R,φi( )

− ΣΛi j  ∫ φi
* φjdr δ i j–( )

L = 1/2Tr V
T
MV[ ] + 1/2Tr µ1/4

Wµ1/4( )
2

[ ]

− E R,P( ) − Tr Λ PP P–( )[ ]

P̃

P̃

W̃

W̃

P̃ P̃ P̃

P̃ P̃

P̃ P̃ P̃
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where the primed quantities are integrals in the atomic
orbital basis and Ut U = S'. An important factor in the
viability of this approach is that we have been able to obtain
the derivative of the transformation matrix in closed form for
Cholesky orthonormalization.74 

(∂U/∂R U−1)µν = (U−t ∂S'/∂R U−1)µν for µ < ν,

   = 1/2 (U−t ∂S'/∂R U−1)µν for µ = ν, 

   = 0 for µ > ν.  (7)

Unlike earlier approaches to propagating Hartree-Fock and
generalized valence bond wavefunctions.80-83 the ADMP
method shows excellent energy conservation without
thermostats and does not require periodic re-convergence of
the electronic structure.

To estimate the relative timing of the BO and ADMP
methods for molecular dynamics, we considered a series of
linear hydrocarbons (see Figure 5). One Fock matrix and one
gradient evaluation per time step are needed in the ADMP
approach. This is used as the reference for all the other
methods. BO method with velocity Verlet uses approximately
the same time step as ADMP but needs an average of 10
Fock matrix evaluations to converge the wavefunction. The
Hessian-based trajectory integration methods can employ
much larger time steps and still maintain the same level of

energy conservation or better. When updating is used, the
cost of calculating the Hessian is spread out over a number
of steps thereby reducing the average cost per step. As seen
in Figure 5, this approach is most efficient for small
molecules and for cases that require more accurate dynamics.
The ADMP approach wins for larger systems and shows its
advantage even earlier for hybrid DFT methods.76

The ADMP method has some of the specific advantages
and greater flexibility when compared to the Car-Parrinello
approach. All electrons can be treated explicitly and pseudo-
potentials are not required. Any density functional, including
hybrid functionals, can be employed. Smaller fictitious
masses can be used and good adiabaticity can be maintained
without thermostats.74-76 For ionic systems, vibrational
frequencies calculated by the plane-wave Car-Parrinello
method show a disturbing dependence on the fictitious
electronic mass;84 however, the ADMP method is free from
this problem.76 The ADMP trajectories compare very well
with those computed by BO methods.74 Specifically, for
CH2O → H2 + CO and C2H2O2 → H2 + 2 CO, the ADMP
trajectories give product translational, rotational and
vibrational energy distributions that are very close to the BO
results.76 The ADMP is being extended to QM/MM treat-
ments for biological systems, and has been used to study the
solvation of excess protons in water clusters and hydroxyl-
stretch red shifts in chloride water clusters.76

Summary

Recent advances in computer hardware and software are
making the applications of ab initio molecular dynamic
increasingly more practical. Born-Oppenheimer methods
offer the advantage of propagating molecules on well defined
potential energy surfaces. Extended Lagrangian methods
yield very similar dynamics at a reduced cost. The coming
years will bring a rapid increase in the number and types of
systems that are studied with these approaches. 
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