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Abstract: Hybrid energy methods such as QM/MM and ONIOM, that combine different levels of theory into one
calculation, have been very successful in describing large systems. Geometry optimization methods can take advantage
of the partitioning of these calculations into a region treated at a quantum mechanical (QM) level of theory and the
larger, remaining region treated by an inexpensive method such as molecular mechanics (MM). A series of microit-
erations can be employed to fully optimize the MM region for each optimization step in the QM region. Cartesian
coordinates are used for the MM region and are chosen so that the internal coordinates of the QM region remain constant
during the microiterations. The coordinates of the MM region are augmented to permit rigid body translation and
rotation of the QM region. This is essential if any atoms in the MM region are constrained, but it also improves the
efficiency of unconstrained optimizations. Because of the microiterations, special care is needed for the optimization
step in the QM region so that the system remains in the same local valley during the course of the optimization. The
optimization methodology with microiterations, constraints, and step-size control are illustrated by calculations on
bacteriorhodopsin and other systems.
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Introduction

Hybrid techniques that combine two or more computational meth-
ods in one calculation allow the accurate exploration of the chem-
istry of very large systems (for reviews, see refs. 1–3). Examples
of such techniques are the QM/MM methods3–7 (for some recent
studies see refs. 8–12), which combine a quantum mechanical
(QM) method with a molecular mechanics (MM) method, and the
more general ONIOM scheme,13–19 which can combine any num-
ber of molecular orbital methods, as well as molecular mechanics
methods. The region of the system where the chemical process
takes place, for example bond breaking and formation, is treated
with an appropriately accurate method, while the remainder of the
system is treated at the lower level. QM/MM schemes in particular
have been successful for the study of enzyme reactions, treating
the active site by a high level method, often DFT, and the protein
environment by molecular mechanics.

In a two layer ONIOM calculation, the total energy of the
system is obtained from three independent calculations:

EONIOM(QM:MM) � Emodel
QM � Ereal

MM � Emodel
MM � Emodel

high � Ereal
low � Emodel

low

(1)

As described in a number of previous articles,13–19 the real system
contains all the atoms, and is calculated only at the MM level. The
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model system contains the part of the system that is treated at the
QM level, along with the link atoms that are used to cap dangling
bonds resulting from cutting covalent bonds between the QM and
the MM regions (see Fig. 1). To evaluate the ONIOM energy, both
QM and MM calculations need to be carried out for the model
system. Because the positions of the link atoms are defined in
terms of the atoms in the real system, the potential energy surface
(PES), and therefore geometry optimization, is well defined.13–19

The ONIOM gradient is obtained from

�EONIOM

�q
�

�Emodel
high

�q
� J �

�Ereal
low

�q
�

�Emodel
low

�q
� J (2)

where J is the Jacobian, which is needed to convert the coordinate
system for the model system to the coordinate system for the real
system.13–19 The Hessian and other properties can be expressed in
a similar fashion.

In this article we discuss some aspects of geometry optimiza-
tion techniques that are specifically designed for use with hybrid
methods. Initial applications of the QM/MM approach carried out
the geometry optimization of the MM and QM regions in separate
programs. Because the MM and QM regions are coupled, the
optimization must cycle between the regions until both are con-
verged. Because the MM region is often large but inexpensive to
calculate, while the QM region is small but expensive, the separate
optimization of the MM and QM regions can be more efficient
than applying a regular optimization method to the entire system.
However, completely separating optimizers for the QM and the
MM regions (i.e., no exchange of information between the two
optimizers) causes several immediate problems. First, a displace-
ment in the QM region might bring the combined system to a
different (not necessarily lower) region of the PES. Second, when
geometrical constraints are applied to the MM region, computa-
tional efficiency issues arise that can be dealt with by some
integration of the QM and MM optimizers. We address these
topics in the present article. In order to do so we will first introduce
and illustrate the “standard” microiteration scheme as imple-
mented in a number of QM/MM packages. This will be followed
by a detailed discussion of the solutions to the aforementioned
problems, including a number of illustrative examples. Although
the methods we present are generally applicable to any hybrid
method, for clarity we will discuss our work within the 2-layer
ONIOM(QM:MM) framework.

Method

The goal of an efficient geometry optimization scheme is to find
the optimized geometry with the least expenditure of computa-
tional effort. Usually, the QM calculation on the model system is
much more expensive than the MM calculation on the real system.
A heuristic approach is to minimize the number of expensive QM
energy and gradient calculations, even if this results in an in-
creased number of MM calculations on the real system. Due to the
large difference in cost for the two calculations, the overall com-
putational expense will often be lower. In practice, this goal is

accomplished through a microiteration scheme for optimizing the
MM region.

The microiteration can take advantage of the form of the
ONIOM energy and gradient [eqs. (1) and (2)]. If the coordinates
of the atoms that determine the energies of the model system are
frozen, Emodel

high and Emodel
low are constant, and the ONIOM energy

becomes a function of Ereal
low only, which can be determined by a

low level calculation on the real system. Thus we can fully
minimize the energy with respect to the coordinates in the MM
region using only real system MM calculations. This is followed
by one geometry optimization step that involves only the coordi-
nates that determine the model system, using the forces obtained
with eq. (2). Because Ereal

low depends on the coordinates of the QM
region, the MM forces may no longer be converged after the QM
step. The process of minimizing the energy for the low level by
microiteration, followed by an optimization step for model system,
is repeated until the ONIOM energy has converged to a minimum
with respect to all the coordinates.

Because the MM optimization can involve many coordinates
but the energy and gradient computations are inexpensive, the
memory usage, robustness, and generality of the optimization
method are more important than its speed. While there are prom-
ising developments in using internal coordinates for very large
systems,20–27 geometry optimization schemes in Cartesian coor-
dinates may still be the best choice for the MM region at this time.
On the other hand, for the high level calculations on the model
system, the goal is to reach the minimum in the fewest steps.
Because the microiterations ensure that the energy is a minimum
with respect to the remaining coordinates, relatively few coordi-
nates are needed to treat the QM region. For this phase of the
optimization, we can use more sophisticated techniques such as
full matrix quasi-Newton methods28,29 in redundant internal coor-
dinates.30–35

Initially such an approach was widely used out of necessity,
because the MM and QM calculations were often carried out in
separate programs. Nevertheless, the computational advantages
can be large. First, the number of QM energy and gradient calcu-
lations can be reduced dramatically. Second, because the majority
of the system is treated with Cartesian coordinates, the expensive
transformations between Cartesian and redundant internal coordi-
nate systems can be avoided for the MM region. However, some
special considerations arise for optimizations involving a series of
microiterations, and we address these in the next sections.

Microiterations without Constraints

Let the coordinates q be divided into two sets, qm for the QM
region and ql for the MM region. The ql coordinates are chosen so
that they do not involve any coordinates that define the energy of
the model system, that is, �Emodel

high /�ql � 0 and �Emodel
low /�ql � 0.

All the remaining coordinates are included in qm. This separation
ensures that the microiteration procedure handles the division
between the model and the real systems correctly. Note that the
atoms at the QM/MM boundary, which are replaced by link atoms
in the model system (see Fig. 1), must be treated in qm. Under
some circumstances, it may be desirable to include coordinates in
qm for additional atoms. Thus, qm may be somewhat larger than
the minimal set of coordinates needed to define the model system.
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During the ith outer cycle of the optimization process, the
microiterations are used to optimize the ql coordinates while the
qi

m coordinates are frozen, leading to qi
l, a local minimum in ql.

Conjugate gradient (CG) (see ref. 36 and other standard texts on
optimization) and GDIIS37–39 (geometry optimization using direct
inversion in the iterative subspace) based methods in Cartesian
coordinates are good choices for optimizing the ql coordinates.
These techniques have low memory usage and are robust, espe-
cially if combined with a good line search algorithm. Because
gradients are usually evaluated in Cartesian coordinates, no trans-
formations between coordinate systems are required.

In the CG method, the next point in an optimization is obtained
by a linear search, xi�1 � xi � �si�1, with the search direction
given by

si�1 � �gi�1 � �isi, �i � �gi�1 � gi� � gi/gi � gi (3)

where gi�1 is the gradient at the current point and s0 � 0. Note that
this algorithm requires the storage of only three vectors. In our
implementation, the length of the step in the search direction is
chosen to be equal to the step length to the minimum in the
previous linear search. A constrained quartic polynomial fitted to
the energies and gradients is used for the line search, similar to that
used in our regular gradient-based geometry optimization.40

Once two or more suitable structures have been obtained in the
microiterations, a GDIIS step37–39 can also be used to determine
the next structure:

xi�1 � �
j�i�k

i

cj�xj � H�1gj� (4)

where H is an approximate Hessian and the coefficients cj are
chosen to minimize (�jcj(H�1gj))2 subject to �jcj � 1. For
Cartesian coordinates, it is sufficient to use H � bI; we have found
b � 0.7 a.u. to be satisfactory. For internal coordinates, an
empirical estimate of a diagonal Hessian may be beneficial.41,42

The GDIIS method requires the storage of only 2k � 2 vectors if
k points are retained and a diagonal Hessian is used. In practice we
retain no more than 50 points. We note that the original imple-
mentation of the GDIIS37 method tends to converge to any nearby
critical point, and some extra care38,39 is required to ensure that it
converges to a local minimum.

Both the CG and GDIIS methods are suitable for very large
systems, because they require only a limited number of vectors and
scale as O(N) in memory and CPU time per step. With the recent
advances towards efficient, O(N) scaling internal coordinate based
optimization methods,20–27 it may be feasible to use redundant
internal coordinates instead, especially if they substantially reduce
the number of steps in the microiterations. However, the relative
time spent for the ql optimization via microiteration is nearly
always small, even with CG or GDIIS in Cartesian coordinates.

The microiteration approach has been implemented in a num-
ber of programs.9,10,13,43 As will be described in the Results and
Discussion section, we find that this method reduces the number of
QM calculations by a factor of two when compared to full opti-
mizations in redundant internal coordinates. However, the microit-

eration scheme with the coordinate separation as described in this
section is directly applicable only for mechanical embedding and
only when there are no constraints in the MM region. Extensions
to this scheme are discussed below.

Microiterations with Electronic Embedding

The separation of coordinates into qm and ql sets is most effective
for the mechanical embedding used in the ONIOM scheme (i.e.,
when the interactions between the two layers are included only via
the MM calculations). With electronic embedding, the electrostatic
interactions between the layers are included in the QM calculations
by adding the Coulombic interactions between the QM electrons
and nuclei with the partial charges in the MM region explicitly in
the quantum mechanical energy expression. This is the case in
most QM/MM implementations, allowing the QM wave function
to be polarized and providing a more accurate description of the
electrostatic interaction between the two layers. Although there are
small differences in the electronic embedding formalism in the
various QM/MM implementations, the coordinates cannot be rig-
orously separated because �Emodel

high /�ql � 0 and �Emodel
low /�ql � 0,

and consequently the microiteration scheme as outlined above is
no longer valid. To address this problem, several modified
schemes have been proposed that allow microiteration optimiza-
tions to be used with these types of QM/MM methods.9,10 Yang et
al.9 approximated the QM charge distribution by electrostatic
potential (ESP) charges, which were then used unchanged to
describe the Coulombic interaction between the two layers during
the optimization of the MM region. After the microiterations, the
QM region is fully optimized and the ESP charges are re-evalu-
ated. This sequence is repeated until convergence. However, it is
clear that in this scheme the PES used for the geometry optimiza-
tion, which includes the interaction of the QM ESP charges with
the MM partial charges for the electrostatic interaction between the
layers, is not the same as that used for the energy calculation,
which includes the interaction of the QM nuclei and electrons with
the MM partial charges. Friesner et al.10 presented a similar
scheme, but used the ESP charges for the QM region only to
describe the perturbation to the exact gradient during the microit-
erations. After these microiterations with essentially a frozen wave
function, the optimization step in the QM region is taken, and the
process is repeated. Because the perturbation goes to zero at
convergence, the optimized structure is a true critical point on the
surface for the energy calculation. However, in this approach the
MM region is not fully optimized when the QM optimization step
is taken, because formally the wave function has to be re-evaluated
after the microiterations. It is not clear how this will affect the
performance of the QM optimizer, in particular the Hessian update
mechanism. Therefore, we propose two modifications to Friesner’s
scheme. First, after the microiterations, the wave function should
be re-evaluated, followed by a new series of microiterations. Thus,
the QM wave function and MM geometry optimization are itera-
tively repeated until self-consistency. Only then do we take a QM
optimization step. Second, it is not necessary to use ESP (or other)
localized charges to represent the QM charge distribution. With
fast multipole methods,44 the electrostatic interaction with the
exact QM charge density can be incorporated efficiently. We will
detail with the investigation of these issues in a forthcoming article
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that discusses the various types of embedding applied to the
ONIOM scheme.45 Preliminary results are very promising, with
the average time per QM step only doubled with respect to opti-
mization with mechanical embedding.

Microiterations with Constraints

In the microiteration-based optimization scheme without con-
straints described above, the Cartesian coordinates of the QM
region are frozen during the microiteration phase, and the MM
region positions itself with respect to the QM region. Therefore,
the coordinate system employed for the optimization of the QM
region does not need to contain coordinates that define its absolute
position or orientation in space. If we place constraints on the
internal coordinates of the model system, the same scheme still can
be used, because the qm coordinates are held fixed during the
microiterations.

The situation is quite different if constraints are placed on the
Cartesian coordinates of some of the atoms in the MM region (e.g.,
freezing the outer layer of a protein according to a crystal struc-
ture). Now the QM region needs to move relative to the (partially
frozen) MM region, and additional coordinates are required to
facilitate this translation and orientation. One straightforward op-
tion would be to use Cartesian coordinates instead of internals for
the optimization of the QM region. However, this may reduce the
efficiency of the QM optimization significantly. A second option is
to use internal coordinates for the entire real system. If the con-
straints can be expressed in terms of mixed Cartesian and internal
coordinates, then no additional coordinates are required, but in
general it may be rather difficult to construct such a coordinate
system to fulfill the requirement that ql can be varied indepen-
dently while qm is fixed. A third option is to remove the frozen
Cartesian coordinates from the MM region and add them to the
internal coordinate system of the QM region, resulting in a differ-
ent qm � ql partitioning. However, none of these schemes are very
satisfactory, because the translation and orientation of the QM
region with respect to the MM region would be handled during the
optimization of the QM region. This may result in many extra steps
for the QM optimization, involving expensive QM energy and
gradient calculations, just to position the QM region in space.

A more efficient approach is to permit the translation and
rotation of the QM region during the microiteration phase, which
involves only inexpensive MM calculations. Because the internal
coordinates of the QM region, qm, need to held fixed during the
microiterations, only rigid body motions of the QM region are
allowed. Thus, ql must be augmented with coordinates describing
the overall translation and rotation of the QM region within the
real system. We note that such an approach can also improve the
efficiency of an unconstrained optimization by allowing rigid body
motion of the QM region during the microiterations, rather than
forcing the entire MM region to reorient itself relative to the QM
region.

Step Size Control for the QM Region

The optimization of the QM region can be carried out with any of
the usual optimization methods for small molecules. Quasi-New-
ton methods with redundant internal coordinates are particularly

efficient for such optimizations.24,28–35 The size of the optimiza-
tion steps is usually controlled with a trust radius or similar
procedure. Because of the microiterations, however, some caution
is necessary. In areas of the PES where the geometry changes
rapidly, a step forward in the QM region may go into a new valley
after the microiterations are converged. Stepping the QM region
back from this new point might not lead back to the original valley.
The result would be a type of chemical hysteresis (see Fig. 2). To
follow a valley continuously to a minimum, one needs a more
general trust region for the QM region, rather than a simple trust
radius.

We wish to test whether a displacement, �qm, yields a structure
such that the local minimum found by the next microiteration
remains in the same valley. For qi

m, qi
l is the local minimum in ql

found by the microiteration. After a step from qi
m to qi�1

m � qi
m �

�qm, let qi�1
l be the corresponding local minimum obtained by the

next microiteration, starting from qi
l. We can consider qi�1

l to be
in the same valley as qi

l, if we step back to qi
m and the microit-

eration starting from qi�1
l yields qi

l (see Fig. 2a). To be more
precise, this needs to be true for qi�1

m � qi
m � ��qm for all 0 �

� � 1. Figure 2b illustrates a situation when the reversed step does
not yield the previous point, causing discontinuity in the PES with
respect to qm.

It would be rather time consuming to test �qm for every
optimization step in the QM region. In practice, we test the
displacement only when the change in geometry produced by the
microiterations is larger than a trust radius. If �qi�1

l � qi
l� 	 �l, we

check whether qi�1
l obtained in the step forward to qi�1

m � qi
m �

�qm yields the previous qi
l when we step back to qi

m. If not, then
a sequence of microiterations minimizing ql is carried out for qi�1

m

� qi
m � ��qm incrementing � from 0 to 1. This is shown in Figure

2c and demonstrates that the new structure is in the same valley as
the old structure. However, when two valleys merge in the course
of an optimization, it is possible that stepping back may not lead
to the original valley, even with careful step size control, as shown
in Figure 2d. This situation does not affect the result of the
optimization but may cause unnecessary checking for surface
discontinuity.

Results and Discussion

Our unconstrained and constrained microiteration methods have
been implemented in the development version of the GAUSSIAN
package.43 For the QM region, we use the regular Berny optimi-
zation method, while for the MM region both the CG and GDIIS
methods, on the basis of Cartesian coordinates, are employed. The
universal force field (UFF),46 Dreiding,47 and AMBER48 force
fields are available in GAUSSIAN, as well as the QEq charge
equilibration scheme to obtain partial charges for use in the MM
calculations.49

Microiterations Versus Full Optimization

For the small to moderate size systems shown in Figure 1, we have
compared full optimizations in redundant internals with optimiza-
tions employing microiterations. The results are collected in Table
1. All of the structures are preoptimized, so that the starting
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structures are fairly close to the final equilibrium geometry. On
average, the number of QM energy and gradient calculations is
reduced by a factor of two as a result of the microiterations. If
poorer starting geometries were used, much larger differences in
the number of QM steps would be seen. Water dimer is rather
flexible, and the regular optimizer has difficulties. However, for
the optimization with microiterations, these flexible degrees of
freedom are handled in the inexpensive microiterations. The dif-
ference in the number of QM calculations required by the two
optimization schemes is quite large. Similar efficiencies can be
expected in the optimization of more general systems involving
solutes calculated by QM methods surrounded by solvent mole-
cules treated by MM. Hexaphenylethane has a very strained COC
bond, but recent calculations using the ONIOM method yield a
bond dissociation energy of 16.6 kcal/mol, suggesting that it may
be stable enough to synthesize.50 Because hexaphenylethane is
fairly rigid, it is handled well by the full redundant internal
coordinate optimizer. Many of the ligands used in organometallic
chemistry have bulky substituents, but often these do not affect the
electronic structure of the complex. The selectivity of bond acti-
vation in allyl-ammonium and iminium salts has been investigated
in a complex of Ni(PCy3) with [CH2ACHCH2HNAC(CH3)2]�.51

Here the initial structure and optimized structure are not very
different, and the typical convergence problems associated with
transition metals still exist in the model system. Therefore, the use
of microiterations only improves the efficiency moderately. Sili-
con-phosphorus double bonds are very reactive, but can be ob-
served and characterized if surrounded by sufficiently large sub-
stituents.52 Microiterations improve the efficiency of the geometry
optimization significantly because of the flexibility of the system.
The room temperature isolation of singlet carbenes is an important
milestone in the study of these important reactive intermediates.53

This has been achieved through a combination of electronic and
steric effects, as illustrated in the final example in Table 1. Again,
microiterations improve the performance of the optimizations. It
should be kept in mind, however, that all of the structures in the
table were started close to the minimum and are small enough that
microiterations are not essential. Nevertheless, the performance on
these simple examples implies that much more is to be gained for
large QM/MM systems.

Peptide Fragment

To probe the capabilities of microiterations with constraints, we
examined a small fragment (Ala39-Lys40-Lys41-Phe42) of the
bacteriorhodopsin system,54,55 which we optimized with Lys41
both protonated and unprotonated, shown in Figure 3. Crystal
structures do not contain hydrogens, and the protonation states of
titratable residues are not always clear. Because protonation can
significantly affect the geometry and relative orientation of the side
chain of a residue, this serves as a suitable test for the microitera-
tion procedure. To simulate the effect of the protein environment,
we fixed the three terminal non-H atoms at each end of the
backbone. Although these particular calculations are only con-
structed as a test for our method, optimizations in which part of the
protein is kept fixed as a simple boundary condition are quite
common in biochemical studies. The protonation site of lysine
(
CH2CH2NH2, 
CH2CH2NH3

�) was calculated at the B3LYP/

Figure 2. Behavior of microiteration-based optimizations; qi
l is the

local minimum in the MM region obtained by the microiterations on
the potential energy surface for qi

m in the QM region. (a) A step of �qm

yields qi�1
l in the same valley as qi

l. (b) A step of �qm yields qi�1
l in

a different valley; stepping back to qi
l yields a different minimum. (c)

When �qm is divided into a series of smaller steps, qi�1
l remains in the

same valley as qi
l. (d) If two valleys merge, it may not be possible to

step back into the same valley, even if smaller steps are used.

Geometry Optimization with Combined Methods. I. 765



6-31G(d) level, while the remainder of the system was treated
using the AMBER force field.48

We first optimized the unprotonated system, starting from the
X-ray coordinates. This structure was then protonated and reopti-
mized. In Figure 3 the initial and optimized structures are dis-
played in tube and wire-frame, respectively, which shows that the
QM region has moved significantly because of changes in the
interaction between the phenyl ring and the protonation site. As
described earlier, one method for performing the constrained op-
timization is to add Cartesian coordinates for the atoms in the QM
region to the redundant internal coordinates in the qm set, without
augmenting the coordinates in the microiterations phase. In this
case, the QM optimization takes care of the translation and rota-
tion, and a total of 233 QM energy � gradient calculations were
required. When we use our new approach and let the microitera-
tions handle the position of the QM region, only 9 QM energy �
gradient calculations were required.

Bacteriorhodopsin

The second example involves the full bacteriorhodopsin system.
This system is too large to be treated fully with redundant internal
coordinates, and the use of microiterations is essential. The protein
is a barrel-like structure, around 3500 atoms, with a retinal chro-
mophore in the center, as shown in Figure 4. We treated the
chromophore at the PM3 level, and the rest of the protein with
AMBER. However, in our calculations we did not include a small
fragment (residues 157 to 161) that is missing in the crystal
structure,54 nor the membrane environment. Therefore, full opti-
mization of this system may not be appropriate for the study of
bacteriorhodopsin. To address this question, we performed both
the full optimization and the optimization in which the four ter-
minal peptide residues are constrained. For details on the system
and preparation, see ref. 55.

In Figure 5 we show the deviations of both optimized structures
with respect to the crystal structure, which were obtained by
overlapping the structures by minimizing the RMS difference. We
only show the values for the C� backbone atoms in order to
minimize the noise resulting from the floppy amino acid side
chains. The peaks in the figure correspond to the loops between the
�-helices that make up the barrel, while the valleys correspond to
the center sections of the barrel components. The loops are less
tightly bound than the helices, and move more during the optimi-
zation. It is clear that the overall structure of the protein stays intact
in both optimizations. Looking closer at the plot, we see that the
loose ends of the protein move significantly in the case of the
unconstrained optimization, but this only occurs in a very localized
region. In addition, the chromophore is far away from the loops,
and we can conclude that for future studies constrained optimiza-
tions are not required.

Additional Applications

A number of studies are currently in progress that use the methods
described in the current article. In a recent communication, we
used the constraint method to study the activation of two related
enzymes, methane monooxygenase and ribonucleotide reduc-
tase.56 Optimization of the active sites alone, and the active sites
with a part of the protein environment, showed that the conforma-
tion of the reaction center does depend on the environment. In
addition, our results suggest that the protein environment drives

Table 1. Comparison of Regular and Microiteration Optimizations.a

System Water dimer Hexaphenylethane Organometallic Phosphasilene Carbene

Model system Water monomer Ethane See Figure 1 H2SiAPH See Figure 1
High level HF/6-31G(d) AM1 B3LYP/LANL2DZ AM1 AM1
Low level UFFb UFFb UFFb UFFb UFFb

Without microiterations 41c 16c 23c 34 16
With microiterations 8c 10c 18c 9 10

aSee Figure 1 for structures; water dimer started from the B3LYP/6-31G(d) geometry, hexaphenylethane from the AM1
geometry, and the rest from the level indicated but without QEq charges.
bCharges obtained using QEq scheme.
cTight convergence criteria.

Figure 3. ONIOM(B3LYP/6-31G(d):Amber) initial (tube, based on
unprotonated system) and optimized (wire-frame, protonated) geom-
etry of Ala39-Phe42 fragment of bacteriorhodopsin. The six atoms
frozen according to the crystal structure are indicated with dots.
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the reaction in the same direction for both enzymes. This work is
being extended to examine the effects of protein environments on
the activation of dioxygen and methane with electronic embedding
and to investigate different models and QM/MM partitionings. We
are also continuing the study of the effects of protein environments

on bacteriorhodopsin,55 studying the mechanism of photoisomer-
ization with most of the protein taken into account in the QM/MM
calculation. In collaboration with S. Mobashery, we are looking at
the covalent SN2 inhibition of carboxypeptidase. A (CPA)57,58 and
the carbamylation of lysine in the active site of OXA-10 	-lacta-
mase.59–62 To assure reliable energetics, the protein environments
in these systems are constrained to the X-ray structures (but care
must be taken that this does not bias the model). For the SN2
reaction between CPA and the inhibitor, the calculations show that
the protein has a substantial effect on the energy along the reaction
path, lowering the barrier and shifting the position of the transition
state significantly.63 In OXA-10, the effect of the environment on
height and position of the barrier is small, but the energetics of the
carbamylation reaction change from endothermic in the small
molecule model system to exothermic in the ONIOM calculations
of the enzyme.64

Conclusions

For hybrid techniques such as the ONIOM method, geometry
optimization can be carried out in a cost-effective manner by
taking advantage of the division of the system into a small but
expensive QM region and a large but inexpensive MM region. A
series of microiterations is used to minimize the MM region for
each step in the QM region. We have implemented an efficient
geometry optimization scheme for ONIOM calculations in the
following manner:

1. Coordinates are separated into two sets, qm for the QM region
and ql for the MM region so that �Emodel

high /�ql � 0 and �Emodel
low /

�ql � 0. Thus, only the energy and gradient of the real system
at the low level need to be calculated during the microiterations.

2. Cartesian coordinates are used for ql to avoid costly coordinate
transformations for the large MM region, and redundant inter-
nal coordinates are used for the QM region to minimize the
number of expensive QM steps needed for the optimization.

3. The MM region is augmented with coordinates to permit the
rigid body translation and rotation of the QM region. This is
essential if any of the atoms in the MM region are constrained,
but also improves the efficiency of unconstrained optimiza-
tions.

4. The step size in the QM region needs to be controlled so that the
optimization stays in the same valley during the next microit-
eration.

In the present work, we chose to illustrate the microiteration
approach within the ONIOM(QM:MM) framework, but the
method can be applied to any 2- or 3-layer ONIOM combination.
For other combinations, the difference in the computational cost of
the real and model calculations is typically not as large as for
QM/MM, and the advantage may not be as substantial. For a 3- (or
more) layer ONIOM optimization, a triply nested microiteration
scheme could be employed, though it is unlikely that this would
significantly increase the efficiency beyond the simple microitera-
tion approach. For the optimization of large QM/MM systems, it is
clear that microiteration optimization schemes are very useful, and

Figure 4. Structure of bacteriorhodopsin showing a series of � helices
(in ribbon, treated with the Amber force field) surrounding the retinal
chromophore (in tube, treated at the PM3 level).

Geometry Optimization with Combined Methods. I. 767



our new extension makes the constrained and unconstrained opti-
mization of QM/MM systems equally efficient.

Acknowledgments
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39. Farkas, Ö.; Schlegel, H. B. PCCP Phys Chem Chem Phys 2002, 4, 11.
40. Schlegel, H. B. J Comput Chem 1982, 3, 214.
41. Schlegel, H. B. Theor Chim Acta 1984, 1984, 66, 333.
42. Wittbrodt, J. M.; Schlegel, H. B. Theochem-J Mol Struct 1997, 398,

55.
43. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,

M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin,
K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Ehara, M.; Toyota, K.; Hada, M.; Fukuda, R.; Hasegawa, J.; Ishida,
M.; Nakajima, T.; Kitao, O.; Nakai, H.; Honda, Y.; Nakatsuji, H.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo,
J.; Cammi, R.; Pomelli, C.; Gomperts, R.; Stratmann, R. E.; Ochterski,
J.; Ayala, P. Y.; Morokuma, K.; Salvador, P.; Dannenberg, J. J.;
Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas,
O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.;
Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;
Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;
Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen,
W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.;
Replogle, E. S.; Pople, J. A. GAUSSIAN 99, Development Version;
Gaussian, Inc.: Pittsburgh, PA, 2002.

44. Greengard, L.; Rokhlin, V. J Comput Phys 1987, 73, 325.
45. Vreven, T.; Komaromi, I.; Dapprich, S.; Byun, K. S.; Morokuma, K.;

Frisch, M. J. In preparation.
46. Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff,

W. M. J Am Chem Soc 1992, 114, 10024.
47. Mayo, S. L.; Olafson, B. D.; Goddard, W. A. J Phys Chem 1990, 94,

8897.
48. Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.;

Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Koll-
man, P. A. J Am Chem Soc 1995, 117, 5179.

49. Rappe, A. K.; Goddard, W. A. J Phys Chem 1991, 95, 3358.
50. Vreven, T.; Morokuma, K. J Phys Chem A, to appear.
51. Torrent, M.; Musaev, D. G.; Morokuma, K. Organometallics 2000, 19,

4402.
52. Armitage, D. A. In The Silicon-Heteroatom Bond; Patai, S., Rap-

poport, Z., Eds.; Wiley: New York, 1991; pp 151, 211, and references
therein.

53. Arduengo, A. J Accounts Chem Res 1999, 32, 913, and references
therein.

54. Luecke, H.; Schobert, B.; Richter, H. T.; Cartailler, J. P.; Lanyi, J. K.
J Mol Biol 1999, 291, 899.

55. Vreven, T.; Morokuma, K. Theor Chem Acc, to appear.
56. Torrent, M.; Vreven, T.; Musaev, D. G.; Morokuma, K.; Farkas, Ö.;
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