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The geometry optimization using direct inversion in the iterative subspace (GDIIS) has been implemented in a

number of computer programs and is found to be quite efficient in the quadratic vicinity of a minimum.
However, far from a minimum, the original method may fail in three typical ways: (a) convergence to a nearby
critical point of higher order (e.g. transition structure), (b) oscillation around an inflection point on the potential
energy surface, (c) numerical instability problems in determining the GDIIS coefficients. An improved

algorithm is presented that overcomes these difficulties. The modifications include: (a) a series of tests to control
the construction of an acceptable GDIIS step, (b) use of a full Hessian update rather than a fixed Hessian,
(c) a more stable method for calculating the DIIS coefficients. For a set of small molecules used to test geometry

optimization algorithms, the controlled GDIIS method overcomes all of the problems of the original GDIIS
method, and performs as well as a quasi-Newton RFO (rational function optimization) method. For larger
molecules and very tight convergence, the controlled GDIIS method shows some improvement over an RFO

method. With a properly chosen Hessian update method, the present algorithm can also be used in the same
form to optimize higher order critical points.

Introduction

Geometry optimization is an essential part of most computa-
tional chemistry studies involving electronic structure meth-
ods.1 It is often a major component of the computational
expense of such studies. Therefore, efficient geometry optimi-
zation algorithms are very desirable. It is now well established
that internal coordinates are more efficient than Cartesian
coordinates for geometry optimization of most molecular
systems, and that redundant internal coordinates are particu-
larly useful.2 Recent advances have overcome the O(N3) bot-
tleneck in transforming Cartesian coordinates to internals, and
these transformations can be carried out in a fashion that
asymptotically scales linearly with size for most systems.3 A
second well established aspect of geometry optimization is that
gradient-based methods are, in general, much more cost
effective than algorithms that require only the function values,
or that require the calculation of the full matrix of second
derivatives.4 Of the gradient-based algorithms, quasi-Newton
methods have been used most widely.1 These typically require
O(N2) memory to maintain an updated Hessian. However,
there are limited memory quasi-Newton schemes with satis-
factory performance but memory requirements that scale as
O(N) with the system size.5 Conjugate gradient methods4 also
have memory requirements that scale linearly, but their per-
formance is generally not as good as those of quasi-Newton
methods. Geometry optimization using direct inversion of the

iterative subspace6,7 is an alternative to quasi-Newton and
conjugate gradient methods for large molecules that has
received much less attention.
The performance of GDIIS is similar to quasi-Newton

methods and in some cases, such as relatively flat regions of the
potential energy surface, may even be superior. With an
approximate Hessian that is diagonal or sparse, the memory
requirements scale linearly; hence, this approach is suitable for
large molecules. However, in its original formulation,6 GDIIS
can have a number of problems. There is a tendency to con-
verge to the nearest critical point, even if it is of different order
than desired (e.g. a transition structure rather than a minimum).
Inflection points (e.g. shoulders) on potential energy surfaces
may cause endless oscillations. Numerical problems can arise in
solving for the coefficients. The present paper outlines a mod-
ified GDIIS algorithm7 that overcomes these difficulties, and
demonstrates its behavior for a number of test cases.
The present algorithm has been extensively used since 1993,

when it was implemented into MOPAC 5.08 to carry out not
only semiempirical but also ab initio calculations through a
general driver to external programs; more recently, it has also
been implemented in Gaussian 98,9 where it is part of the
default algorithm to carry out semiempirical optimizations and
optional for other electronic structure methods. The present
paper serves to document the algorithm.

Method

Regular GDIIS

The GDIIS method is based on a linear interpolation (and
extrapolation) of the available structures that minimizes the

y For Part II see ref. 3(b).
z Electronic Supplementary Information available. See http:==
www.rsc.org=suppdata=cp=b1=b108658h=
x In memory of Richárd Hargitai.
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length of an error vector.

x* ¼
X

ci xi ; where
X

ci ¼ 1 ð1Þ

For each structure xi , an error vector is constructed using a
quadratic approximation to the potential energy surface.
Given an estimated Hessian, H, a Newton–Raphson optimi-
zation step yields xSRi .

xSRi ¼ xi þ H�1fi ð2Þ

where fi is the force (negative of the gradient) at xi . The error
vector ei is chosen as the displacement in this simple relaxation
(SR) step:

ei ¼ xSRi � xi ¼ H�1fi ð3Þ

In the quadratic approximation, the error or residuum vector
for x* is the linear combination of the individual error vectors,

r ¼
X

ci ei ¼ e* ð4Þ

The coefficients ci are obtained by minimizing jrj2 with the
constraint

P
ci¼ 1. This least-squares problem leads to the

following set of equations:
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where matrix A is defined as ai,j¼ ei
T ej and l is the Lagrangian

multiplier arising from the previously mentioned constraint.
These coefficients determine the intermediate point x* that
minimizes the length of the residuum vector. The residuum
vector is equal to the simple relaxation step from x*, and the
next point in the optimization is given by

xkþ1 ¼ x*þ r ¼
X

ciðxi þ eiÞ ¼
X

cix
SR
i ð6Þ

The new point can also be regarded as the same linear com-
bination of the predicted geometries, xSRi , produced by simple
relaxation from the earlier points.

Difficulties with the regular GDIIS

The regular GDIIS method tends to converge to the closest
stationary point. This behavior can be anticipated from the
fact that the residuum vector can also be written in terms of an
interpolated force r¼H�1 P

ci fi (for a quadratic surface,
r¼H�1f *, where f * is the force at x*). A minimum in r is
achieved when the force vanishes, i.e. at any critical point—
minimum, transition state, second-order saddle point, etc. In
this respect, the behavior of the regular GDIIS is similar to the
gradient norm method.10 Certain types of inflection points can
also cause problems—points where the gradient is non-zero,
but its magnitude is a local minimum. Such a point corre-
sponds to a shoulder along a reaction path, as shown in Fig. 1.
If the gradient at this inflection point is larger than the con-
vergence threshold, the optimization will not terminate. In
practice, the regular GDIIS algorithm may oscillate about this
point.
As the optimization proceeds and more points are col-

lected, the error vectors may become nearly linearly depen-
dent. If there is a linear dependence among the error vectors,
then ej¼

P
i 6¼ j bi ei for some j. Hence one can choose the

coefficients ci such that r¼
P
ci ei¼ 0 for

P
ci¼ 1. A value of

r¼ 0 would falsely indicate that the optimization has con-
verged, even though the components of the error vectors per-
pendicular to the subspace spanned are not zero. Furthermore,
linear dependences among the ei result in a matrix A that is
singular, i.e. jrj2¼ (

P
ci ei)

2¼ 0¼
P

ij ci eTi ejcj¼
P

ij ci aij cj .
Thus, for numerical stability, one needs to avoid situations

where the error vectors are nearly linearly dependent. One
remedy is to discard some or all of the previous points when a
near-linear dependence is detected and to restart the GDIIS
procedure.

Improvements to GDIIS

The GDIIS method is very effective in interpolating within the
quadratic region of the desired stationary point. When the
current point is outside the quadratic region, a method is
needed to control the GDIIS procedure so that it steps reliably
toward the stationary point of interest. This is done by com-
paring the GDIIS step with a reference step.
A simple relaxation step will move toward the desired sta-

tionary point, provided that the approximate Hessian, H, is
appropriate for the optimization (for a minimization, no
negative eigenvalues; for a transition state search, one negative
eigenvalue and a corresponding eigenvector suitable for the
reaction, etc.). Let this reference step be

Dxref ¼ xSRk � xk ¼ H�1fk ð7Þ

where xk is the current point. In some cases, the Hessian may
have the wrong number of negative eigenvalues, or the
resulting step may be too large. In general, it is best to control
the step using an RFO11 or trust radius method. In this case,
the Hessian in eqn. (7) is replaced by an effective Hessian,
H eff

¼Hþ l I, where l is chosen to control the step size and
direction. We use this effective Hessian not only for the
reference step, but also to compute the error vectors (eqn. (3)).
For a given collection of points, a number of criteria can be

developed to determine if a GDIIS step is acceptable. If not,
then the number of points used to construct the GDIIS step
can be changed, and the step can be tested again. The fol-
lowing four criteria are used to determine whether a particular
GDIIS step is acceptable.
(a) The direction of the GDIIS step, DxGDIIS¼ xk+1� xk ,

(eqn. (6)) can be compared to the reference step (eqn. (7)).

cosðyÞ ¼ ðDxGDIISÞT � Dxref=jDxGDIISjjDxrefj ð8Þ

If the angle y is greater than a specified value, the GDIIS step
is not acceptable. The suitable values for the cut-off depend on
the number of points employed in the GDIIS calculation and
the expected accuracy of the estimated Hessian. In the present
implementation, the cut-offs for cos(y) are 0.97, 0.84, 0.71,
0.67, 0.62, 0.56, 0.49, 0.41 for 2–9 vectors, respectively, and
0.00 for 10 or more vectors.
(b) The length of the GDIIS step is limited to be no more

than 10 times the reference step.

Fig. 1 A potential energy curve with an inflection point, illustrating
that the gradient (first derivative) is a local minimum at an inflection
point but does not vanish.
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(c) The magnitude of the largest GDIIS coefficients, ci , is
an indicator of the quality of the GDIIS step. If one or more
of the coefficients are large in absolute value, then the step
involves a substantial extrapolation. Also, when the GDIIS
step involves many points, each of the coefficients, ci , may
have a reasonable magnitude, yet the net result could be a large
extrapolation. The sum of all of the positive coefficients (or of
all of the negative coefficients) is a good measure of the extra-
polation. The GDIIS step is considered not acceptable if this
value exceeds 15.
(d) If A is nearly singular, jrj2 becomes small and c=jrj2 (see

eqn. (9) below) becomes large, signaling numerical stability
problems. If the magnitude of c=jrj2 exceeds 108, then the step
is assumed to be unacceptable. To avoid the effect of the size of
the error vectors, we rescale them for the purpose of solving
the DIIS equations so that the smallest error vector has
unit length.
In the present implementation, we start with the current

point and add the most recent points one at a time until we run
out of points or the GDIIS step becomes unacceptable. If the
step has become unacceptable, then the last acceptable GDIIS
step is used. In general all of the previous points (up to a
maximum number) are retained so that in future steps the
procedure can make the most use of the information available.
However, if the angle between the GDIIS step and the refer-
ence step is greater than 90� (eqn. (8)), we permanently discard
the offending point and all earlier points in the optimization. If
less than three points are used for the current GDIIS step, then
the step can be replaced by a linear search (a constrained
quartic polynomial fitted to the energies and gradients is
employed for the line search, the same as used in regular
gradient based geometry optimization12). Otherwise, the
reference step is used (eqn. (7)).

Solving the GDIIS equations

For the actual computation of the DIIS coefficients, it is
convenient to re-arrange eqn. (5). Since it can be easily shown
that l¼ jrj2, eqn. (5) can be re-written as:

a1;1 � � � a1;k
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The dimension of A is relatively small and the solution can be
obtained by any of a number of standard methods. However, a
sequence of these equations needs to be solved as additional
error vectors are incorporated, increasing the dimension of A
by one each time. Hence, iterative methods and Gauss elim-
ination have some advantages since they are able to reuse
information from the previous step in the sequence.

Hessian updating

The GDIIS method can perform satisfactorily with a constant
Hessian. For an N-dimensional quadratic potential energy
surface and Nþ 1 points that span the space, GDIIS will
predict the exact minimum independent of the value of the
Hessian (provided the Hessian is not singular). However,
updating the Hessian in a fashion similar to quasi-Newton
methods can improve the performance. The BFGS13 updating
formula

Hk ¼ Hk�1 þ DHBFGS
k

DHBFGS
k ¼ �

DfkDf Tk
sTk�1Dfk

þ
Hk�1sk�1s

T
k�1Hk�1

sTk�1Hk�1sk�1

� �
ð10Þ

Dfk ¼ fk � fk�1

is frequently used for minimization; the Powell symmetric-
Broyden14 (PSB)

DHPSB
k ¼ ðDfk þ Hk�1sk�1Þ

Tsk�1
sk�1s

T
k�1

ðsTk�1sk�1Þ
2

�
ðDfk þ Hk�1sk�1Þs

T
k�1 þ sk�1ðDfk þ Hk�1sk�1Þ

T

sTk�1sk�1
ð11Þ

and symmetric rank one15 (SR1) methods are suitable for tran-
sition state searches.

DH SR1
k ¼ �

ðDfk þ Hk�1sk�1ÞðDfk þ Hk�1sk�1Þ
T

ðDfk þ Hk�1sk�1Þ
Tsk�1

; ð12Þ

Bofill has developed a weighted combination of PSB and
SR1 that is superior for transition states.16

Hk ¼ Hk�1 þ jBofillDH SR1
k þ 1� jBofill

 �
DHPowell

k ð13Þ

jBofill ¼
ððDfk þ Hk�1sk�1Þ

Tsk�1Þ
2

ðDfk þ Hk�1sk�1Þ
T
ðDfk þ Hk�1sk�1Þs

T
k�1sk�1

ð14Þ

We have found that a similar weighted combination of BFGS
and SR1 provides an improvement over pure BFGS or SR1 for
minimization.3b Furthermore, we have also found that the
square root of the original Bofill weighting is better.

Hk ¼ Hk�1 þ jDH SR1
k þ ð1� jÞDHBFGS

k ; ð15Þ

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
jBofill

p
¼
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For large systems, storage and manipulation of a full
Hessian leads to O(N2) memory and cpu usage. The simplest
approach is to use a diagonal or sparse Hessian that is held
constant through the optimization. This is appropriate for
large molecular mechanics calculations and the micro-itera-
tions in combined QM=MM calculations. Since the energy and
gradient evaluations are inexpensive, a small increase in the
number of iterations is a good trade-off for linear scaling in
memory and cpu. For large semi-empirical optimizations, it
may be more economical to use a limited memory BFGS
method5 that also scales linearly with system size.

Combining GDIIS with other optimization methods

The GDIIS procedure can be readily generalized to encompass
a continuous weighting between GDIIS and any other opti-
mization scheme. Let xoptk be the optimized structure predicted
by the other optimization scheme. Then we can define another
set of error vectors.

e0i ¼ xoptk � xi ð17Þ

Note that solving the GDIIS equations with ei0 will always
yield xk

opt. A new set of error vectors can then be constructed
as a linear combination:

e00i ¼ ð1� aÞei þ ae0i ð04a4 1Þ ð18Þ

With these error vectors, the GDIIS procedure will interpolate
between regular GDIIS and the other optimization method.

Discussion

For the purpose of validating our changes to the original
algorithm we performed several test calculations on a set of 37
molecules ranging in size up to 642 atoms. Most of the test
cases were taken from Baker’s test set,17 which has already
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been widely used for testing geometry optimization meth-
ods.2d,3a,b,17 The additional four molecules, taxol, oligopep-
tides of 10 and 20 alanine residues and crambin, were picked
from the test set we used for testing the performance of our
O(N2) scaling optimization algorithm.3a,b While regular opti-
mization criteria are often quite satisfactory for most appli-
cations, very tight convergence more readily illustrates the
difficulties that optimization algorithms can encounter.
Therefore, all optimizations were performed using convergence
criteria of 10�6 au for the root mean square gradient and
1.5
 10�6 au for the maximum component of the gradient
vector, 4
 10�6 au for the root mean square displacement in
Cartesian coordinates and 6
 10�6 au for the maximum
component of the displacement. All test calculations were
performed using redundant internal coordinates with the
default diagonal starting Hessian within the large molecular
optimization framework of Gaussian as described in ref. 3a
and 3b.
We compared three optimization algorithms (see Table 1),

(1) regular GDIIS, (2) quasi-Newton RFO with combined
BFGSþ SR1 Hessian update and line search, and (3) con-
trolled GDIIS using error vectors produced by the RFO based
method. The storage and use of a large number of earlier
geometries and forces might become a bottleneck for larger
molecules. Consequently, we limited all three optimization
algorithms to store no more than 10 of the earlier points. For
all methods, the optimizations on methylamine, acanil01,
benzidine, pterine, mesityl oxide and caffeine molecules from
Baker’s test set converge to higher order critical points due to
the symmetry of the initial structures; therefore, symmetry was
turned off for these structures. Nevertheless, except for pterine,
the structures still optimized to higher order critical points of
the corresponding potential energy surfaces because the high
symmetry of the starting structures with vanishing forces
pointing toward the minimum.
In any suitable collection of test molecules, there will be

some that misbehave. These may be representative of the dif-
ficult cases encountered in actual research studies. Therefore,
in the remainder of this discussion we will focus on these cases.
However, we note that for the rest of the test cases, all tested
optimization options, including the simple GDIIS optimiza-
tion procedure provided similar results. The detailed results
are available as Electronic Supplementary information.z

Pterine

With regular convergence criteria or with use of symmetry, all
tested optimization techniques converge to a transition struc-

ture. However, with no symmetry and using very tight con-
vergence criteria, the RFO-based optimization and the
controlled GDIIS can bypass converging to the transition
structure and find the minimum. Regular GDIIS, as can be
expected, stays in the vicinity of the transition structure and
rapidly converges to it.

Histamine Hþ and hydrazobenzene

The regular GDIIS method converges slowly to transition
structures for both systems. The two other methods show
similar performance and converge to the correct minima.

ACTHCP and taxol

The regular GDIIS method enters into endless oscillation for
both molecules due to inflection points on the potential
energy surfaces. The RFO-based method and controlled
GDIIS converge to the same minima in a similar number of
steps.

For-Ala10-NH2 , For-Ala20-NH2 and crambin

Regular GDIIS cannot achieve convergence because of oscil-
lations. The RFO-based method converges to the minima but
needs 10–25% more steps than the controlled GDIIS method.
These examples indicate that the controlled GDIIS is an effi-
cient choice for optimizing large molecules.

Conclusions

The present paper discussed the algorithmic details of a con-
trolled GDIIS optimization technique that provides a robust
method suitable for optimizing large molecules. The method
has been used extensively in a local version of MOPAC and
in Gaussian 98, where it is the default geometry optimization
scheme for semiempirical methods. A significant advantage of
GDIIS is that it can be readily implemented with linear scaling,
using a limited amount of memory and cpu, and that it is much
less sensitive to the actual Hessian than Newton–Raphson-
based optimization methods. The performance of the method
depends on a number of control parameters, and may be
sensitive to the fine-tuning of these values. The present algo-
rithm is shown to be efficient for optimizing large molecules,
suggesting that further development of iterative subspace
methods would be advantageous.

Table 1 Comparison of the number of optimization steps taken by regular GDIIS, quasi-Newton RFO and controlled GDIIS algorithmsa

Optimization algorithm

Regular GDIIS Quasi-Newton RFO Controlled GDIIS

Molecules and theoretical method N Energy=au N Energy=au N Energy=au

Pterine (STO-3G) 12b �569.8488410 36 �569.8538323 36 �569.8538323
Histamine Hþ (STO-3G) 85b �353.9035357 24 �353.9587458 25 �353.9587458
Hydrazobenzene (STO-3G) 41b �563.2052728 25 �563.2615830 25 �563.2615830
ACTHCP (STO-3G) —c Oscillation 31 �838.9053214 32 �838.9053214
Taxol (AM1)d —c Oscillation 64 �0.6670634 67 �0.6670634
For-(Ala)10-NH2 (AM1)

e —c Oscillation 67 �0.7331317 59 �0.7331317
For-(Ala)20-NH2 (AM1)

f —c Oscillation 103 �1.4265856 93 �1.4265856
Crambin (MM=UFF) —c Oscillation 190 0.6556034 150 0.6556034

a Number of optimization steps (N) to reach very tight convergence criteria (see text); starting geometries taken from ref. 17 except as
noted. b Attempted minimization yielded a transition structure. c Attempted minimization resulted in oscillations. d Starting geometry from ref.
3(b). e Starting geometry ‘‘For-Ala10-NH2 #2 ’’ in ref. 3(b).

f Starting geometry ‘‘For-Ala20-NH2 #1 ’’ in ref. 3(b).
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