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The algorithm for optimizing molecular geometries in redundant internal coordinates is extended to
periodic systems. The lattice vectors are not explicitly included in the set of optimized coordinates,
but are adjusted only implicitly via a combination of chemically meaningful inter- and intracell
internal coordinates. The Wilson B matrix required for coordinate transformations is modified to
include internal coordinate derivatives with respect to lattice vectors. The efficiency of the algorithm
is demonstrated on a one-dimensional polymer, (paphenylenevinyleng and a three-dimensional
crystal of urea. ©2001 American Institute of Physic§DOI: 10.1063/1.1340578

I. INTRODUCTION O(N?) effort and everO(N) when sparse matrix techniques
are used. When combined withO(N) method$ for elec-
Geometry optimization has become an almost mandatorytonic structure calculations, this permits systems as large as
step in computational studies of individual molecuidduch plasminogen (1226 atomp to be optimized readily on
attention has been devoted to making optimizations reliablgyorkstations’
and efficient. Newton—Raphson methods are perhaps the To the best of our knowledge, optimizations of periodic
most rapidly convergent, but they require the computation okystems carried out to date utilized either fractional or Car-
second derivatives or Hessians at each step in thgsjan coordinate systems. Structural studies with electronic
optimization” However, for most levels of theory, second structure methods have been performed mostly for highly
derivatives are significantly more difficult to calculate thansymmetric systems with few independent degrees of freedom
gradients (first derivative, and their computation scales (typically 1-10, so the efficiency of the optimizer has not
poorly with the size of the system. Consequently, quasibeen a big issue. Furthermore, in most of these cases analytic
Newton techniques have emerged as the method of choigghergy gradients were not available, thus limiting the size of
since they use only gradiert’hese algorithms start with a the system being studied. On the other hand, in periodic
crude estimate of the Hessian and improve it during thenolecular mechanics calculations, energy, forces, and even
course of the optimization by using a variety of possibleexact Hessians are relatively inexpensive computationally, so
updating methods. high optimization efficiency can be achieved by combining
It has also become clear that internal coordinates arghe readily available exact Hessian with a simple fractional
more efficient than Cartesians for optimizing molecularor Cartesian coordinate based metfisthen optimizing the
systems. Redundant internal coordinates are especially Usennit cell parameters, orientation-related instabilities can oc-
ful for polycyclic molecules and other highly connected cyr if one does not take account of the three rotational de-
systems. Such coordinate systems are constructed from thgrees of freedom present in the nine Cartesian components of
stretches, bends, and torsions involving all of the bondeghe |attice vectors. To overcome such problems the variable-
atoms in a molecule. Thus, the coordinate system automatie||-shape algoriththemploys six dot products of the lattice
cally reflects the chemical connectivity and takes into acvectors instead of their individual Cartesian components. In
count the inherent curvilinear nature of internal motions ofgnother approachminimization of the unit cell energy at
molecules. A well-chosen internal coordinate system hagonstant pressure is carried out via the strain matrix contain-
much less coupling between coordinates than a Cartesigfg six unique components, also removing the rotational de-
coordinate system, allowing the optimized structure to begrees of freedom from the optimization.
found in significantly fewer steps. Furthermore, a diagonal | the present work, we describe an alternative and po-
estimate of the Hessian is often sufficient for rapid and reliventially superior approach that uses redundant internal coor-
able convergence of the optimizatioriraditional methods ginates to implicitly optimize the lattice vectors of a periodic
for transforming between Cartesian and internal coordinate§y3tem_ Because periodic structures have connectivities that
scale asO(N°) with system size. However, with recent de- are similar to cyclic and cage-like molecules, one can antici-

velopments, this transformation can be carried out Withpate that redundant internal coordinates will be the best

choice in this case as well. Our tests demonstrate that when
dElectronic mail: guscus@rice.edu redundant internal coordinates are used, the number of steps
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than the central cellcell 0). Yet, periodic systems are com-

P. P P : . .
Oygl\\o“/go\\ol/a pletely defined by the coordinates in cell 0 and the transla-

tional vectors. Coordinates of atoms in other cells can be

T . readily obtained by an appropriate translation. Therefore, in-
tercell coordinates effectively depend on atomic positions
FIG. 1. A two-atomic periodic chain. within the central cell and translational vectors. Optimization

of such coordinates results in the adjustment of atomic posi-
) o o o tions and translational vectors, without considering the latter

requwed to optimize a periodic system is similar to that re-explicitly. A rather straightforward way to obtain the peri-
quired for a comparable molecular systé., one made out  ,qjic B matrix for intercell coordinates is then the following.
of the unit cell of the periodic systemThis number is also  jrst by treating all atoms within a given internal coordinate
small in absolute terms, thus confirming the high efficiency,q independent, one computes the molecular B matrix com-
of our redundant internal coordinate algorithm, which USe$honents for each atom using the usual forméfaNext, by
only a simple diagonal guess for the Hessian matrix. applying the chain rule, these molecular B matrix elements

are transformed into periodic ones. Several examples pre-
Il. METHOD sented in the following should clarify this procedure.

One of our main goals in using redundant internal coor- In the above-mentioned exampileig. 1), the system is

dinates for periodic systems is to employ chemically meanfj(afmed via  the ~vector r=(Po,Qot), ~where Pq

_(pX pY p?Z —(0O* OY O? — (X tY t2Z
ingful coordinates such as bond lengths, valence angles, a’?8|(|§v°v i,rITO,Svoe?,reQOres(eQn(')[’tQhe,rQanI,ec?lTIg:Iikg ét r;:a)t}i;ncz)hn? o-
dihedral angles to represent not only the positions of atoms 9 P P

within a unit cell, but also the relative orientation and spac-"ents asB, which are the partial derivatives of internal co-
ing between atoms in adjacent unit cells. Thus, changes ifrdinates with respect to the explicit atomic positions. The
the internal coordinates can also adjust the lattice vectorgeriodic B matrix elements required for our optimization

For example, consider a planar, one dimensional chairinethod are total derivatives of a given internal coordinate
—[P_,-Q_1]-[Po—Qo]-[P1—Q4]~ (Fig. 1. If one opti-  With respect to an atomic position in cell 0, and the lattice

mizes the bond length within a unit ceéfly—Q,, the bond  VECtors. To simplify notation, we denote the total derivative
length spanning adjacent cell®,—P,, and the angles of a given internal coordinatg with respect to the Cartesian
Po—Qo—P; and Qe—P;—Q;, then the translation vectgf ~ Componena of atomic positionP, as
will be optimized implicitly as a combination of these bonds _

: : dg
and angles. Force constants or Hessian matrix elements for BﬁPEBﬁPO= —.
these internal coordinates should be comparable to those for dPy
isolated molecules, and similar initial estimates can be tisedpor intracell coordinates, such &,—-Q,, the periodicB

These force constants implicitly provide estimates for thematrix elements are identical to the molecular or} ke-

Hgssmn matrix elements fp r the Iattlc;e vectors and their COUzause all the atoms are located within cell 0 and therefore the
pling with the other coordinates, which might be rather dif-

ficult t timate otherwi corresponding total and partial derivatives are the same. De-
Icult to estimate otherwise. . . noting thePy—Qg bond length as|;=q(Py,Qy), one obtains
An optimization algorithm employing internal coordi-

nates requires a transformation matrix between Cartesian dis- __~ dg;  dq; ., . do 9 .,
placements and internal coordinate displacements. In mo- Bi,P:ﬁ:E: i,Pg? i,Q:an:a_Qa: i,Qp"
lecular calculations, this is the well-known Wilson B 0 0 0 0
matrix° originally used in vibrational analysis. The B ma-

2

©)

trix for periodic systems is here defined similarly ~ Forthe intercell case, e.g., tig—P, bond, some addi-
Sa—Bs tional manipulations are necessary to obtain the total deriva-
q=DBor,

tives with respect to atoms within the central cell and the
whereq=(01,02,...,am) ", r=(r{,r>,...rn,t1,to,t3)7, and  lattice vectors. Letq;=q(Qq,P;) be the intercell bond
B, =aq;/ar. Ther;=(r},r},r?) are the absolute positions Qo—P1. First, the molecular B matrix elements fQg and
of the atoms within the central cell, ane= (t*,tY t?) are the ~ P7 are calculated as
lattice vectors. Accordingly, the derivatives of the energy 50, J0.
with respect to the lattice vectofstress tensgrshould be B2  — 29 B2 = 9 )
calculated with the absolute atomic positions within the cell 1 Q0 <9Q3’ e aP§
fixed; we have referred to this quantity as the solid cell stres
in our previous work!

In the periodic case, there are two types of internal

4

%Jsing P{=P§+1t?, the required total derivatives with re-
Ispect toP§ andt? are then obtained as

coordinates—intracell and intercell. Intracell coordinates al- . do; g P I

low one to adjust the relative positions of atoms within the j,P:ﬁ: E' ﬁ: Ip2 = Bj,Plv ()
unit cell. Therefore, the periodic B matrix elements for intra- 0 1 0 1

cell coordinates are computed exactly in the same way as in dq; dq, P2 aq .

a comparable molecule. Intercell coordinates span two or Bﬁtz—‘— At 7A :B?Pli 6)

more cells and depend on atomic coordinates in cells other dt*  gP] at* JP{
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where we have used that
aP3 aP§ @
oPa o
For the angle Qy—P;—Q;, denoted as qy
=0(Q,P1,Q,), the periodic B matrix elements are
o _doc_da  da 9QT ., ae ® " H H
k'Q_d a a a a  —kQq k,Qq?
Q Qg Q1 Qg
o _da_daqc 9PT  dax ﬁQi‘_Ba 52 H
Kkt~ 72 oa —a 2 a Bkp,TBka
dtt  gP§ at* Q% ot H
9

The last example illustrates that for intercell internal coordi-
nates depending on more than one atom in an adjacent cell ¢
the same atom appearing in more than one cell, the corre
sponding periodi® matrix elements have contributions from H H
more than one moleculd matrix element. We also note

that because of simple expressions describing atomic coordi-
nates in cells other than cell O through coordinates in cell O
and translational vectors, any periodic B matrix element is at

most a sum of molecular contributior, such as in the
previously mentioned, .
It is also instructive to consider the bori—P;. Let

0:=9(Pgy,P;) and recall that the moleculd® matrix ele-

FIG. 2. (a) Poly(p-phenylenevinylene (b) Styrene.

o _da_ddn 9PT dqn Q%
™ ode gP2 gt 9Q2 at?

_Ra pa _
= Bmvpl—i- Bval—O,

(14)

where the last result is again due to the translational invari-

ments are translational
the present cagethen

g8 dg  Jq

P

a :ﬁ: aq . aP§
dt2  gP§ oat?

I,t

The only survivingB component is for the lattice vector, as it

should be. On the othe
contribute to the followi
a _90m_d9n IPI
mFdPa gp2 9P

ga _9m_ 9 Q1
" dQ aQf aQ§

_da _ aq,
dP§ oP§ aP§ aP§

_pa
_Bj’Pla

ly invariafite., Blp +Bf'p =0 in

JP§

=Bfp,+Bfp =0, (10

=B2, .
P,

11

r hand, the bapg=q(P1,Q4) will
ng periodic B matrix elements:

(12

1,Qp (13)

ance of the molecular B matrix elements. As expected, the
bondq(P;,Q;) does not depend on the translational vector
and yields the same B matrix contributions as the bond
d(Py, Qo). Consequently, an arbitrary translation of all atoms
in a given internal coordinate will lead to a coordinate iden-
tical to the original one.

In a general three-dimensional periodic system, intracell
bonds will be of the typd>(0,0,0)-Q(0,0,0), while the in-
tercell bonds are of the typ®(c,,C,,c3)—Q(d;,d,,d3),
where all of thec, andd, indices are either O or 1. As a
consequence, a given coordinate will contribute to lattice
vectorst; when c; or d; are 1. For example, the bond
P(0,0,0)—Q(1,1,1) will have nonzero periodic B matrix el-
ements for atomP andQ, and all three lattice vectors. Simi-
lar considerations apply to angles and dihedrals. To generate
a full set of intra- and intercell internal coordinates, one can
replicate the central cell and obtain x2X2 cluster of cells
with cell indices 0 and 1. Then, all of the possible bonds,
angles, and dihedrals are generated within this cluster and

TABLE I. Comparison of optimizations of periodic and molecular systeBisdenotes energyin a.u),
SF“—RMS_Force(in a.u), \/EAXZ—RMS_DispIacemen(tin a.u).

PPV polymer—{ CgHg]..

Styrene molecule—gE,

Cycle E(AE) J=F2 JEAXZ E(AE) o= SAX
1 —306.353 8719 0.01074  0.16948 —307.526 0006 0.00808  0.19220
2 (-0.0121769%  0.00446  0.05579  (—0.0066980  0.00298  0.07283
3 (-0.0025239  0.00188  0.00421  (—0.0018739  0.00132  0.00512
4 (-0.0000945  0.00062  0.00086  (—0.0000860  0.00034  0.00091
5 (-0.0000095  0.00014  0.00015 (—0.000006%  0.00007  0.000 28

—306.368 676 7

—307.534 6650
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TABLE Il. Convergence of the PPV polymer optimizatidhdenotes energgin a.u), T—translational vector
(in A), dE/d T—force (in a.u).

[(CgHeg)1] - [(CgHe)2l--
Cycle E(AE) T(AT) dE/dT 1.E(AE) 1.7(AT) dE/dT
1 —306.3538719 6.4485 0.03497 —306.3538719 6.4485 0.034 97

(-0.012176 9 (0.3872  —0.01402  (—0.0132568 (0.3497  —0.01123
(-0.0025239 (—0.1192 —0.00210  (-0.001468% (—0.0811  —0.00201
(-0.0000945 (—0.0014 —0.00079  (—0.0000720 (—0.0029  —0.000 62
(-0.0000095 (—0.0005 —0.00014  (—0.000007 3 (0.0003  —0.00013

a b wnN

—306.368 676 7 6.7142 —306.368 676 9 6.7143

duplicate ones are thrown away by applying translationaln GAUSSIAN. The optimization convergence pattern for both
invariance. For example, bonB(0,1,1)-Q(1,0,1) is the structures is shown in Table I. It is evident that for these
same a$(0,1,0)-Q(1,0,0) and is eliminated. A similar ap- structures the two procedures perform similarly, confirming
proach is used for valence angles and dihedrals. that optimization of the periodic system in internal coordi-
With this method, optimization of periodic systems re- nates is just as efficient as in the nonperiodic case. The mo-
quires only minor modifications to an algorithm for redun- lecular framework in both systems is relatively rigid, and a
dant internal coordinate optimization of molecules. Detailsminimum is found in just five cycles. In PPV, the internal
of our molecular optimization algorithm have been describeccoordinate selection algorithm defined 15 bonds, 24 valence
previously>@5@:50) since all of the machinery commonly angles, and 36 dihedrals, totaling 75 coordinates, compared
used for molecular optimizations is available, it can be usedo 39 nonredundant degrees of freedom.
in novel ways for periodic cases. For example, if the lattice It is instructive to compare the optimization of PPV us-
vectort, is to be held constant, one simply freezes the dising one and two (gHg) polymer units per cell. Table Il lists
tanceP(0,0,0)—(1,0,0). Similarly, to freeze the angle be- energies at each step, translational vectors, and the derivative
tween lattice vectors, andt;, one can constrain the angle of the energy with respect to this vector. For comparison
P(0,1,0)-P(0,0,0)-P(0,0,1); to keep th>—Q bond at a purposes, the energies and translational vector for the larger
given angle to thet; lattice vector, one would constrain unit cell are scaled by 1/2. While for the doubled unit cell the
P(0,0,0)Q(0,0,0)Q(1,0,0). Therefore, in our method translational vector is twice that for a single unit cell, the
one can use the existing capabilities for applying constraintslerivativedE/dT is the same in both cases. This is because
if it is desired to freeze some or all of the lattice parametersin our definition of dE/dT only one bond is affected by
dT,™@ and it is the same bond in both cas¢se bond
1. EXAMPLES crossed by the cell box in Fig(&]. Overall, both optimiza-
) ) ) ., tions proceed similarly, the small differences found are prob-
_All calculations were carried out with theAUSSIAN™ 4y caused by slightly different force constant matrices with
suite of programs extended for calculations on periodic Systhe redundant degrees of freedom projected out.
tem(sj r?s dfscr;lbe? '? Ref. 11. Th_e fr?mglététz)nal .tmfthOd We also optimized urea in it®42,m crystal phase at
Eiﬁal f(?rreex%rh:irl:;eraa:](:jnc%l::gl(;?c%jtfgetﬁer with Zn; 2y 1 Cl;nczero pressure. This is a highly symmetric system, with each
basis set. The optimization thresholds were Max_Force
=0.00045, RMS_Force0.0003, Max_Displacement
=0.0018, RMS_Displacemen.0012, all in atomic units.
The optimization was stopped when all these conditions
were satisfied. This particular set of values corresponds to
the default convergence criteria in tbaussiAN package-?
First, we analyze the optimization of a one-dimensional
polymer, polyp-phenylenevinylene[CgHgl.. (PPV) [Fig.
2(a)]. The initial geometry was chosen as C—H beiid09
A, C—C aromatic bong1.39 A, C—C double bond1.36 A,
conjugated C—C single bord..44 A, and all valence angles
=120°. All atoms lay within a plane, so the dihedrals are
either 0° or 180°. Thek space integration employed 16 | jJ--eemn
points. For comparison, we also optimized a molecule struc- !
turally similar to the unit cell of PPV—styreneglg [Fig.
2(b)]. Its initial geometrical parametef®onds and anglés
were set to values identical to those in the PPV case. A

simple valence force field was employed for the in.itiéjll QUESFG. 3. A fragment of the urea crystal. The four molecules shown in front
of the force constants, which is the default for optimizationsdefine the simulation cell used in this work.

!

il TV
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L
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TABLE lll. Convergence of the urea optimization. The three translationalmations, some of which were helices bound by weak hydro-
vectors ard T,, T,, T,]. E denotes energyin a.u), V=F*—RMS_Force gen bondg/+18 Overall, a general “black box” redundant
(in a.u), yZAx*—RMS_Displacementin a.u). internal coordinate optimization algorithm such as the one

T, developed here is a very useful tool in structural studies of
step E(AE) JEF? SAX T, T, periodic systems.
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