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A redundant internal coordinate algorithm for optimization
of periodic systems
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The algorithm for optimizing molecular geometries in redundant internal coordinates is extended to
periodic systems. The lattice vectors are not explicitly included in the set of optimized coordinates,
but are adjusted only implicitly via a combination of chemically meaningful inter- and intracell
internal coordinates. The Wilson B matrix required for coordinate transformations is modified to
include internal coordinate derivatives with respect to lattice vectors. The efficiency of the algorithm
is demonstrated on a one-dimensional polymer, poly~p-phenylenevinylene!, and a three-dimensional
crystal of urea. ©2001 American Institute of Physics.@DOI: 10.1063/1.1340578#
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I. INTRODUCTION

Geometry optimization has become an almost manda
step in computational studies of individual molecules.1 Much
attention has been devoted to making optimizations relia
and efficient. Newton–Raphson methods are perhaps
most rapidly convergent, but they require the computation
second derivatives or Hessians at each step in
optimization.2 However, for most levels of theory, secon
derivatives are significantly more difficult to calculate th
gradients ~first derivatives!, and their computation scale
poorly with the size of the system. Consequently, qua
Newton techniques have emerged as the method of ch
since they use only gradients.2 These algorithms start with
crude estimate of the Hessian and improve it during
course of the optimization by using a variety of possib
updating methods.

It has also become clear that internal coordinates
more efficient than Cartesians for optimizing molecu
systems.1 Redundant internal coordinates are especially u
ful for polycyclic molecules and other highly connecte
systems.3 Such coordinate systems are constructed from
stretches, bends, and torsions involving all of the bon
atoms in a molecule. Thus, the coordinate system autom
cally reflects the chemical connectivity and takes into
count the inherent curvilinear nature of internal motions
molecules. A well-chosen internal coordinate system
much less coupling between coordinates than a Carte
coordinate system, allowing the optimized structure to
found in significantly fewer steps. Furthermore, a diago
estimate of the Hessian is often sufficient for rapid and r
able convergence of the optimization.4 Traditional methods
for transforming between Cartesian and internal coordina
scale asO(N3) with system size. However, with recent d
velopments, this transformation can be carried out w

a!Electronic mail: guscus@rice.edu
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O(N2) effort and evenO(N) when sparse matrix technique
are used.5 When combined withO(N) methods6 for elec-
tronic structure calculations, this permits systems as larg
plasminogen ~1226 atoms! to be optimized readily on
workstations.7

To the best of our knowledge, optimizations of period
systems carried out to date utilized either fractional or C
tesian coordinate systems. Structural studies with electro
structure methods have been performed mostly for hig
symmetric systems with few independent degrees of freed
~typically 1–10!, so the efficiency of the optimizer has no
been a big issue. Furthermore, in most of these cases ana
energy gradients were not available, thus limiting the size
the system being studied. On the other hand, in perio
molecular mechanics calculations, energy, forces, and e
exact Hessians are relatively inexpensive computationally
high optimization efficiency can be achieved by combini
the readily available exact Hessian with a simple fractio
or Cartesian coordinate based method.8 When optimizing the
unit cell parameters, orientation-related instabilities can
cur if one does not take account of the three rotational
grees of freedom present in the nine Cartesian componen
the lattice vectors. To overcome such problems the varia
cell-shape algorithm9 employs six dot products of the lattic
vectors instead of their individual Cartesian components
another approach,8 minimization of the unit cell energy a
constant pressure is carried out via the strain matrix cont
ing six unique components, also removing the rotational
grees of freedom from the optimization.

In the present work, we describe an alternative and
tentially superior approach that uses redundant internal c
dinates to implicitly optimize the lattice vectors of a period
system. Because periodic structures have connectivities
are similar to cyclic and cage-like molecules, one can ant
pate that redundant internal coordinates will be the b
choice in this case as well. Our tests demonstrate that w
redundant internal coordinates are used, the number of s
9 © 2001 American Institute of Physics

 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.



re
t

c
e

or
an
a
m
c

s
or
ai

ds
s
e
ed
th
o
if

i-
d

m
B
-

s

gy

e
es

na
a
he
a
s

th

-
la-
be
in-
ns
on
osi-
tter
i-
g.
te
om-

nts
pre-

o-
-

he
n

ate
ce
ve
n

the
De-

iva-
he

-
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required to optimize a periodic system is similar to that
quired for a comparable molecular system~i.e., one made ou
of the unit cell of the periodic system!. This number is also
small in absolute terms, thus confirming the high efficien
of our redundant internal coordinate algorithm, which us
only a simple diagonal guess for the Hessian matrix.

II. METHOD

One of our main goals in using redundant internal co
dinates for periodic systems is to employ chemically me
ingful coordinates such as bond lengths, valence angles,
dihedral angles to represent not only the positions of ato
within a unit cell, but also the relative orientation and spa
ing between atoms in adjacent unit cells. Thus, change
the internal coordinates can also adjust the lattice vect
For example, consider a planar, one dimensional ch
–@P21–Q21# –@P0–Q0# –@P1–Q1# – ~Fig. 1!. If one opti-
mizes the bond length within a unit cellP0–Q0 , the bond
length spanning adjacent cellsQ0–P1 , and the angles
P0–Q0–P1 and Q0–P1–Q1 , then the translation vectorT
will be optimized implicitly as a combination of these bon
and angles. Force constants or Hessian matrix element
these internal coordinates should be comparable to thos
isolated molecules, and similar initial estimates can be us4

These force constants implicitly provide estimates for
Hessian matrix elements for the lattice vectors and their c
pling with the other coordinates, which might be rather d
ficult to estimate otherwise.

An optimization algorithm employing internal coord
nates requires a transformation matrix between Cartesian
placements and internal coordinate displacements. In
lecular calculations, this is the well-known Wilson
matrix,10 originally used in vibrational analysis. The B ma
trix for periodic systems is here defined similarly

dq5Bdr , ~1!

whereq5(q1 ,q2 ,...,qm)T, r5(r1 ,r2 ,...,rn ,t1 ,t2 ,t3)T, and
Bi , j

a 5]qi /]r j
a . Ther i5(r i

x ,r i
y ,r i

z) are the absolute position
of the atoms within the central cell, andt i5(t i

x ,t i
y ,t i

z) are the
lattice vectors. Accordingly, the derivatives of the ener
with respect to the lattice vectors~stress tensor! should be
calculated with the absolute atomic positions within the c
fixed; we have referred to this quantity as the solid cell str
in our previous work.11

In the periodic case, there are two types of inter
coordinates—intracell and intercell. Intracell coordinates
low one to adjust the relative positions of atoms within t
unit cell. Therefore, the periodic B matrix elements for intr
cell coordinates are computed exactly in the same way a
a comparable molecule. Intercell coordinates span two
more cells and depend on atomic coordinates in cells o

FIG. 1. A two-atomic periodic chain.
Downloaded 07 Feb 2001  to 141.217.26.99.  Redistribution subject to
-

y
s

-
-
nd
s
-
in
s.
n,

for
for
.

e
u-
-

is-
o-

ll
s

l
l-

-
in

or
er

than the central cell~cell 0!. Yet, periodic systems are com
pletely defined by the coordinates in cell 0 and the trans
tional vectors. Coordinates of atoms in other cells can
readily obtained by an appropriate translation. Therefore,
tercell coordinates effectively depend on atomic positio
within the central cell and translational vectors. Optimizati
of such coordinates results in the adjustment of atomic p
tions and translational vectors, without considering the la
explicitly. A rather straightforward way to obtain the per
odic B matrix for intercell coordinates is then the followin
First, by treating all atoms within a given internal coordina
as independent, one computes the molecular B matrix c
ponents for each atom using the usual formulas.10 Next, by
applying the chain rule, these molecular B matrix eleme
are transformed into periodic ones. Several examples
sented in the following should clarify this procedure.

In the above-mentioned example~Fig. 1!, the system is
defined via the vector r5(P0,Q0,t), where P0

5(P0
x ,P0

y ,P0
z), Q05(Q0

x ,Q0
y ,Q0

z), and t5(tx,ty,tz). In the
following, we represent the molecularlike B matrix comp
nents asB̂, which are the partial derivatives of internal co
ordinates with respect to the explicit atomic positions. T
periodic B matrix elements required for our optimizatio
method are total derivatives of a given internal coordin
with respect to an atomic position in cell 0, and the latti
vectors. To simplify notation, we denote the total derivati
of a given internal coordinateqi with respect to the Cartesia
componenta of atomic positionP0 as

Bi ,P
a [Bi ,P0

a 5
dqi

dP0
a

. ~2!

For intracell coordinates, such asP0–Q0 , the periodicB

matrix elements are identical to the molecular ones (B̂) be-
cause all the atoms are located within cell 0 and therefore
corresponding total and partial derivatives are the same.
noting theP0–Q0 bond length asqi5q(P0,Q0), one obtains

Bi ,P
a 5

dqi

dP0
a

5
]qi

]P0
a

5B̂i ,P0

a , Bi ,Q
a 5

dqi

dQ0
a

5
]qi

]Q0
a

5B̂i ,Q0

a .

~3!

For the intercell case, e.g., theQ0–P1 bond, some addi-
tional manipulations are necessary to obtain the total der
tives with respect to atoms within the central cell and t
lattice vectors. Letqj5q(Q0,P1) be the intercell bond
Q0–P1 . First, the molecular B matrix elements forQ0

a and
P1

a are calculated as

B̂j ,Q0

a 5
]qj

]Q0
a

, B̂j ,P1

a 5
]qj

]P1
a

. ~4!

Using P1
a5P0

a1ta, the required total derivatives with re
spect toP0

a and ta are then obtained as

Bj ,P
a 5

dqj

dP0
a

5
]qj

]P1
a
•

]P1
a

]P0
a

5
]qj

]P1
a

5B̂j ,P1

a , ~5!

Bj ,t
a 5

dqj

dta
5

]qj

]P1
a
•

]P1
a

]ta
5

]qj

]P1
a

5B̂j ,P1

a , ~6!
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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where we have used that

]P1
a

]P0
a

51,
]P1

a

]ta
51. ~7!

For the angle Q0–P1–Q1 , denoted as qk

5q(Q0,P1,Q1), the periodic B matrix elements are

Bk,Q
a 5

dqk

dQ0
a

5
]qk

]Q0
a

1
]qk

]Q1
a
•

]Q1
a

]Q0
a

5B̂k,Q0

a 1B̂k,Q1

a , ~8!

Bk,t
a 5

dqk

dta
5

]qk

]P1
a
•

]P1
a

]ta
1

]qk

]Q1
a
•

]Q1
a

]ta
5B̂k,P1

a 1B̂k,Q1

a .

~9!

The last example illustrates that for intercell internal coor
nates depending on more than one atom in an adjacent ce
the same atom appearing in more than one cell, the co
sponding periodicB matrix elements have contributions fro
more than one molecularB̂ matrix element. We also not
that because of simple expressions describing atomic coo
nates in cells other than cell 0 through coordinates in ce
and translational vectors, any periodic B matrix element is
most a sum of molecular contributionsB̂, such as in the
previously mentionedqk .

It is also instructive to consider the bondP0–P1 . Let
ql5q(P0,P1) and recall that the molecularB̂ matrix ele-
ments are translationally invariant~i.e., B̂l ,P0

a 1B̂l ,P1

a 50 in

the present case!, then

Bl ,P
a 5

dql

dP0
a

5
]ql

]P0
a

1
]ql

]P1
a
•

]P1
a

]P0
a

5B̂l ,P0

a 1B̂l ,P1

a 50, ~10!

Bl ,t
a 5

dql

dta
5

]ql

]P1
a
•

]P1
a

]ta
5B̂l ,P1

a . ~11!

The only survivingB component is for the lattice vector, as
should be. On the other hand, the bondqm5q(P1,Q1) will
contribute to the following periodic B matrix elements:

Bm,P
a 5

dqm

dP0
a

5
]qm

]P1
a
•

]P1
a

]P0
a

5B̂j ,P1

a , ~12!

Bm,Q
a 5

dqm

dQ0
a

5
]qm

]Q1
a
•

]Q1
a

]Q0
a

5B̂j ,Q1

a , ~13!
Downloaded 07 Feb 2001  to 141.217.26.99.  Redistribution subject to
-
or
e-

di-
0
t
Bm,t

a 5
dql

dta
5

]qm

]P1
a
•

]P1
a

]ta
1

]qm

]Q1
a
•

]Q1
a

]ta
5B̂m,P1

a 1B̂m,Q1

a 50,

~14!

where the last result is again due to the translational inv
ance of the molecular B matrix elements. As expected,
bond q(P1,Q1) does not depend on the translational vec
and yields the same B matrix contributions as the bo
q(P0,Q0). Consequently, an arbitrary translation of all atom
in a given internal coordinate will lead to a coordinate ide
tical to the original one.

In a general three-dimensional periodic system, intrac
bonds will be of the typeP(0,0,0) –Q(0,0,0), while the in-
tercell bonds are of the typeP(c1 ,c2 ,c3) –Q(d1 ,d2 ,d3),
where all of theca and db indices are either 0 or 1. As a
consequence, a given coordinate will contribute to latt
vectors t i when ci or di are 1. For example, the bon
P(0,0,0) –Q(1,1,1) will have nonzero periodic B matrix e
ements for atomsP andQ, and all three lattice vectors. Sim
lar considerations apply to angles and dihedrals. To gene
a full set of intra- and intercell internal coordinates, one c
replicate the central cell and obtain a 23232 cluster of cells
with cell indices 0 and 1. Then, all of the possible bond
angles, and dihedrals are generated within this cluster

FIG. 2. ~a! Poly~p-phenylenevinylene!. ~b! Styrene.
TABLE I. Comparison of optimizations of periodic and molecular systems.E denotes energy~in a.u.!,
A(F2—RMS_Force~in a.u.!, A(Dx2—RMS_Displacement~in a.u.!.

Cycle

PPV polymer—@C8H6#` Styrene molecule—C8H8

E(DE) A(F2 A(Dx2 E(DE) A(F2 A(Dx2

1 2306.353 871 9 0.010 74 0.169 48 2307.526 000 6 0.008 08 0.192 20
2 ~20.012 176 9! 0.004 46 0.055 79 ~20.006 698 0! 0.002 98 0.072 83
3 ~20.002 523 9! 0.001 88 0.004 21 ~20.001 873 9! 0.001 32 0.005 12
4 ~20.000 094 5! 0.000 62 0.000 86 ~20.000 086 0! 0.000 34 0.000 91
5 ~20.000 009 5! 0.000 14 0.000 15 ~20.000 006 5! 0.000 07 0.000 28

2306.368 676 7 2307.534 665 0
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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Downloaded 07
TABLE II. Convergence of the PPV polymer optimization.E denotes energy~in a.u.!, T—translational vector
~in Å!, dE/dT—force ~in a.u.!.

Cycle

@~C8H6)1] ` @(C8H6!2#`

E(DE) T(DT) dE/dT 1
2•E(DE)

1
2•T(DT) dE/dT

1 2306.353 871 9 6.4485 0.034 97 2306.353 871 9 6.4485 0.034 97
2 ~20.012 176 9! ~0.3871! 20.014 02 ~20.013 256 8! ~0.3497! 20.011 23
3 ~20.002 523 9! ~20.1191! 20.002 10 ~20.001 468 8! ~20.0811! 20.002 01
4 ~20.000 094 5! ~20.0014! 20.000 79 ~20.000 072 0! ~20.0029! 20.000 62
5 ~20.000 009 5! ~20.0007! 20.000 14 ~20.000 007 3! ~0.0001! 20.000 13

2306.368 676 7 6.7142 2306.368 676 9 6.7143
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duplicate ones are thrown away by applying translatio
invariance. For example, bondP(0,1,1) –Q(1,0,1) is the
same asP(0,1,0) –Q(1,0,0) and is eliminated. A similar ap
proach is used for valence angles and dihedrals.

With this method, optimization of periodic systems r
quires only minor modifications to an algorithm for redu
dant internal coordinate optimization of molecules. Deta
of our molecular optimization algorithm have been describ
previously.3~d!,5~a!,5~b! Since all of the machinery commonl
used for molecular optimizations is available, it can be u
in novel ways for periodic cases. For example, if the latt
vector t1 is to be held constant, one simply freezes the d
tanceP(0,0,0) –P(1,0,0). Similarly, to freeze the angle be
tween lattice vectorst2 and t3 , one can constrain the ang
P(0,1,0) –P(0,0,0) –P(0,0,1); to keep theP–Q bond at a
given angle to thet1 lattice vector, one would constrai
P(0,0,0) –Q(0,0,0) –Q(1,0,0). Therefore, in our metho
one can use the existing capabilities for applying constra
if it is desired to freeze some or all of the lattice paramete

III. EXAMPLES

All calculations were carried out with theGAUSSIAN12

suite of programs extended for calculations on periodic s
tems as described in Ref. 11. The computational met
used here for illustration purposes is the PBE density fu
tional for exchange and correlation13 together with a 3-21G
basis set. The optimization thresholds were Max_Fo
50.00045, RMS_Force50.0003, Max_Displacemen
50.0018, RMS_Displacement50.0012, all in atomic units.
The optimization was stopped when all these conditio
were satisfied. This particular set of values correspond
the default convergence criteria in theGAUSSIAN package.12

First, we analyze the optimization of a one-dimensio
polymer, poly~p-phenylenevinylene! @C8H6#` ~PPV! @Fig.
2~a!#. The initial geometry was chosen as C–H bond51.09
Å, C–C aromatic bond51.39 Å, C–C double bond51.36 Å,
conjugated C–C single bond51.44 Å, and all valence angle
5120°. All atoms lay within a plane, so the dihedrals a
either 0° or 180°. Thek space integration employed 1
points. For comparison, we also optimized a molecule str
turally similar to the unit cell of PPV–styrene C8H8 @Fig.
2~b!#. Its initial geometrical parameters~bonds and angles!
were set to values identical to those in the PPV case
simple valence force field was employed for the initial gue
of the force constants, which is the default for optimizatio
 Feb 2001  to 141.217.26.99.  Redistribution subject to
l

s
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A
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s

in GAUSSIAN. The optimization convergence pattern for bo
structures is shown in Table I. It is evident that for the
structures the two procedures perform similarly, confirmi
that optimization of the periodic system in internal coord
nates is just as efficient as in the nonperiodic case. The
lecular framework in both systems is relatively rigid, and
minimum is found in just five cycles. In PPV, the intern
coordinate selection algorithm defined 15 bonds, 24 vale
angles, and 36 dihedrals, totaling 75 coordinates, compa
to 39 nonredundant degrees of freedom.

It is instructive to compare the optimization of PPV u
ing one and two (C8H6) polymer units per cell. Table II lists
energies at each step, translational vectors, and the deriv
of the energy with respect to this vector. For comparis
purposes, the energies and translational vector for the la
unit cell are scaled by 1/2. While for the doubled unit cell t
translational vector is twice that for a single unit cell, th
derivativedE/dT is the same in both cases. This is becau
in our definition of dE/dT only one bond is affected by
dT,11~a! and it is the same bond in both cases@the bond
crossed by the cell box in Fig. 2~a!#. Overall, both optimiza-
tions proceed similarly, the small differences found are pr
ably caused by slightly different force constant matrices w
the redundant degrees of freedom projected out.

We also optimized urea in itsP4̄21m crystal phase at
zero pressure. This is a highly symmetric system, with e

FIG. 3. A fragment of the urea crystal. The four molecules shown in fr
define the simulation cell used in this work.
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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urea molecule NH2CONH2 occupying a site ofC2v symme-
try. Currently our program is capable of utilizing only lim
ited symmetry—the point group of the unit cell. Therefo
in our calculations we use a unit cell with 4 urea molecu
~32 atoms!, and the point group of the unit cell was co
strained to beS4 ~Fig. 3!. During the optimization, atomic
displacements are symmetrized via the operations of the
cell point group. We have also frozen all dihedral angles
further reduce the actual number of degrees of freedom b
optimized. The purpose of this procedure is to avoid num
cal noise present in the forces and to ensure symmetry o
final structure. We used a 23234 mesh ofk points for the
reciprocal space integration. The atoms in the unit cell h
99 degrees of freedom; however, the number of indepen
degrees of freedom is actually much smaller. The optimi
tion employed 204 redundant internal coordinates, includ
36 bonds, 24 hydrogen bonds, 48 angles, 16 linear ang
and 80 dihedrals. The optimization convergence patt
starting from the experimental geometry found in Ref.
~also used in Ref. 15! is shown in Table III. In the early
stages of the optimization the lattice vectors and ene
change substantially indicating that the ‘‘strong’’ intram
lecular coordinates are being brought to their optimum v
ues. In later steps the energy changes are significa
smaller, with a slower decrease in the rms force. Molecu
in solid urea are bound by weak hydrogen bonds with re
tively shallow minima, and finding a local minimum is mo
demanding than optimizing covalent distances and ang
Such behavior is not uncommon in weakly bonded syste

The optimization algorithm described in this work w
also recently used to optimize fluorinated carbon nanotu
of C2F stoichiometry16 and polyglycines in various confor

TABLE III. Convergence of the urea optimization. The three translatio
vectors are@T1 , T2 , T2#. E denotes energy~in a.u.!, A(F2—RMS_Force
~in a.u.!, A(Dx2—RMS_Displacement~in a.u.!.

T2

step E(DE) A(F2 A(Dx2 T1 T2

1 2895.300 319 0 0.015 04 0.026 73 4.684 7.87
2 ~20.016 220 5! 0.005 83 0.014 00 4.710 7.902
3 ~20.003 932 0! 0.003 36 0.045 35 4.673 7.863
4 ~20.005 065 1! 0.001 94 0.021 23 4.587 7.736
5 ~20.000 554 2! 0.001 78 0.004 59 4.558 7.679
6 ~20.000 220 1! 0.000 89 0.007 96 4.563 7.670
7 ~0.000 003 9! 0.000 48 0.004 81 4.565 7.646
8 ~20.000 033 2! 0.000 51 0.002 47 4.564 7.660
9 ~20.000 065 1! 0.000 19 0.000 98 4.572 7.661

10 ~20.000 005 6! 0.000 14 0.003 54 4.572 7.659
11 ~20.000 005 8! 0.000 08 0.002 07 4.575 7.653
12 ~20.000 007 7! 0.000 06 0.000 50 4.574 7.659

2895.326 424 3
Downloaded 07 Feb 2001  to 141.217.26.99.  Redistribution subject to
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mations, some of which were helices bound by weak hyd
gen bonds.17,18 Overall, a general ‘‘black box’’ redundan
internal coordinate optimization algorithm such as the o
developed here is a very useful tool in structural studies
periodic systems.
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