
Abstract. This article provides an outline of the title
paper by Peter Pulay and discusses some of the
methodology that grew from it, and the impact that it
has had on the development of computational chemistry.

Key words: Gradients ± Force constants ± Hessians ±
Energy derivatives ± Geometry optimization

1 The paper

The title indicates that this paper is about the calculation
of vibrational force constants and the geometry optimi-
zation of polyatomic molecules; however, its primary
impact on computational chemistry comes from the
methodology for calculating analytic ®rst derivatives
with respect to molecular coordinates at the Hartree±
Fock (HF) level of theory. Applications of ®rst and
higher derivatives of the energies obtained by molecular
orbital (MO) calculations have revolutionized computa-
tional chemistry, allowing molecular structures and
properties to be computed e�ciently and reliably [1±5].
Almost all electronic structure codes compute analytic
®rst derivatives of the energy, and Pulay's paper was the
®rst to describe a practical calculational approach.

In the linear combination of atomic orbitals to form
MOs (LCAO-MO) approach, the HF energy can be
expressed in terms of the one-electron density matrix D
and integrals over the basis functions:

E � hwjH jwi � 2Rj /jjH1j/j

ÿ �� Rjk
ÿ
/2

j j1=rjkj/2
k

�
� 2Rmn�mjH1jn�Dmn

� Rmnrs�mnjrs� 2DmnDrs ÿ DmrDns� � ; �1�
where H1 is the one-electron part of the Hamiltonian, /
are the MOs and m, n, r, and s refer to the basis
functions (shown for a spin-restricted, closed-shell
system with real orbitals). The ®rst derivative of the
energy is

dE=dqi � hwjdH=dqijwi � 2hdw=dqijH jwi : �2�
The ®rst term is the Hellmann±Feynman contribution
and is readily calculated as an expectation value of a
one-electron operator. The second part can be called the
wavefunction derivative term (it has also come to be
known as the Pulay term). Typical MO wavefunctions
are constructed from basis functions that are centered on
the atoms and follow them rigidly. Such wavefunctions
do not obey the Hellmann±Feynman theorem and the
wavefunction derivative term is not zero. Many molec-
ular properties can also be written as energy derivatives
[1±4]. For some properties, it is advantageous to make
the wavefunction depend on the electric or magnetic
®eld; for these cases the wavefunction derivative term
must also be calculated.

The wavefunction derivative term depends on the
derivatives of the one- and two-electron integrals over
the basis functions, and on the derivative of the density
matrix. The self-consistent-®eld (SCF) process ®nds the
density matrix that minimizes the energy under the
constraint of orthonormality of the MOs; hence, only
the changes required to maintain orthonormality are
needed for the density matrix derivative contributions to
the wavefunction derivative term. The constraint that
the molecular orbitals are orthonormal is equivalent to
the requirement that the density matrix be idempotent:

D S D � D ; �3�
where S is the overlap matrix. Equation (3) can be
di�erentiated to obtain the change in D that maintains
idempotency

dD=dqi S D�D dS=dqi D�D S dD=dqi � dD=dqi :

�4�
A simple solution that satis®es Eq. (4) is

dD=dqi � ÿD dS=dqi D : �5�
The derivative of the energy, including both the
Hellmann±Feynman and wavefunction terms, is
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dE=dqi � 2Rmn�mjdH1=dqijn�Dmn

� 2Rmn��dm=dqijH1jn� � �mjH1jdn=dqi��Dmn

� Rmnrs��dm=dqinjrs� � �m dn=dqijrs�
� �mnjdr=dqis� � �mnjr ds=dq��
� �2DmnDrs ÿ DmrDns�
� 2Rmn�mjH1jn�dDmn=dqi � Rmnrs�mnjrs�
� �2dDmn=dqi Drs � 2DmndDrs=dqi

ÿ dDmr=dqi Dns ÿ DmrdDns=dqi� : �6�
Insertion of Eq. (5) and recognition that the terms
multiplying the density derivative constitute the Fock
matrix, F, yields the following compact expression for
the analytic ®rst derivative of the HF energy

dE=dqi � 2Rmn d�mjH1jn�=dqi Dmn

� Rmnrs d�mnjrs�=dqi �2DmnDrs ÿ DmrDns�
ÿ 2Rmn dSmn=dqi Wmn ; �7�

where W = D F D (borrowing the notation of later
papers on energy derivatives).

Pulay's paper goes on to calculate force constants
(second derivatives of the energy with respect to geo-
metrical parameters) by numerically di�erentiating the
analytical ®rst derivatives. At the time this was by far the
best compromise between e�ciency and accuracy in
computing the force constants. The second use of geo-
metric derivatives described in Pulay's paper is for ge-
ometry optimization. Optimization is best carried out in
internal coordinates, but the calculation of analytic de-
rivatives is most practical in Cartesian coordinates. The
forces are the negative of the ®rst derivatives of the
energy. The relation between Cartesian and internal
displacements (dx and dq) and forces (f and /) can be
written in terms of the Wilson B matrix [6]

dq � B dx; f � Bt/ �8�
The B matrix is rectangular; however, a suitable left
inverse can be constructed to transform Cartesian forces
into internal coordinates.

/ � �B m Bt�ÿ1 B m f �9�
The internal forces and a suitable approximation to the
force constants, F0, can be used to relax the molecule to
its equilibrium geometry.

qnew � qold � Fÿ10 /old �10�

2 Perspective

Pulay's paper is an early landmark in the explosive
growth in computational chemistry that we have seen in
the past quarter century. The method for calculating ®rst
derivatives as outlined in the article forms the basis for
the subsequent development of ®rst, second and higher
energy derivatives for many di�erent theoretical meth-
ods (for reviews, see Refs. [1±5]). The advances brought
about by energy derivative methods have enabled
theoretical calculations to become practical and e�cient

methods for determining molecular structures, exploring
potential-energy surfaces and computing molecular
properties.

Pulay demonstrated that analytic ®rst derivatives
with respect to geometric parameters can be calculated
easily and e�ciently for HF energies. Derivatives of
correlated methods followed a number of years after
SCF derivatives [4, 5]. Extensions of the SCF derivatives
to density functional theory methods were straightfor-
ward. In the three decades since Pulay's article, hundreds
of papers on energy derivatives have been published, and
all can trace their roots back to his paper. Energy de-
rivatives have become so useful for calculating molecular
structures and properties that, almost universally, ®rst
derivatives are formulated and coded soon after a new
theoretical method is developed for the energy.

Pulay's paper opened the way for analytic second and
higher derivatives of the SCF energy. Earlier papers had
suggested that this might be prohibitively expensive [7],
but the development of an e�cient method to solve the
couple perturbed HF (CPHF) equations, made the cal-
culation of SCF second derivatives practical [8]. As a
consequence, vibrational force constants and frequencies
could be calculated routinely and e�ciently. Third and
fourth geometric derivatives of the SCF energy followed
after a few years [9±12]. The solution of the CPHF
equations (in their full or reduced Z-vector form [13])
also made post-SCF ®rst derivatives practical and cost-
e�ective.

Analytic ®rst derivatives with respect to geometrical
parameters have proven to be extremely useful for ex-
ploring potential-energy surfaces [14]. Almost all studies
using electronic structure methods involve geometry
optimization at some level of theory. With the possible
exception of diatomics, energy derivative methods are
much less expensive than energy-only methods for ob-
taining equilibrium geometries. Calculations on mole-
cules with hundreds and thousands of atoms are now
possible, and energy derivatives provide an enormous
amount of information about the potenital-energy sur-
face at very little additional cost. Pulay's paper also
outlined the transformation of ®rst derivatives from
Cartesian to internal coordinates. Optimization in in-
ternal coordinates is signi®cantly more e�cient than
in Cartesian coordinates, and it is now the standard
approach. Energy derivatives are indispensible for ex-
ploring other aspects of potential-energy surfaces. For
example, they are essential for ®nding transition states
and following reaction paths [14]. Recently it has be-
come practical to compute classical trajectories using
energy derivatives directly from the electronic structure
calculations without ®rst ®tting a global potential-energy
surface (for a review, see Ref. [15]).

Many molecular properties, such as vibrational fre-
quencies, IR and Raman intensities, NMR shielding
constants, etc., can be formulated in terms of second and
higher derivatives with respect to geometry and applied
®elds [1±4]. Such calculations are now practical and
routine using analytic derivatives at the SCF level and a
few correlated methods. For some levels of theory, an-
alytic second and higher derivatives are not yet available
or are too complicated to code. In these cases, the `force
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method' described by Pulay's paper is still the method of
choice, i.e. di�erentiating once analytically and the re-
maining times numerically.
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