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Introduction

ntil recently, large biomolecules such as pro-U teins were outside the computational reaches
of quantum-mechanical calculations. However,
throughout the 1990s, much effort has been spent
developing linear-scaling semiempirical algo-
rithms, which make it possible to compute ener-
gies and gradients for molecules containing thou-
sands of atoms. Using these methods, it is now
possible to perform semiempirical geometry opti-
mizations on large biological molecules, such a
proteins. Most of the semiempirical geometry opti-
mizations performed on proteins thus far have
been carried out using the divide and conquer
Ž .DAC approach to reduce the time required for
the diagonalization step to linear scaling with the
number of atoms. Lewis and coworkers performed
a geometry optimization on a 1330 atom model for

w xthe cytidine deaminase active site 1 . They uti-
w xlized the semiempirical PM3 Hamiltonian 2 with

DAC to obtain linear scaling. For increased speed,
the protein backbone was held fixed during the
calculation. Later, Vincent et al. also used a linear-
scaling PM3 semiempirical program with DAC to
carry out a full optimization on the geometry of

w xthe 1960 atom hen egg white lysozyme 3 . One
difficulty with DAC methods is that the errors
introduced by replacing diagonalization with DAC
are difficult to control. Even though the DAC ap-
proximation is exact when the subsystem sizes
reach the size of the entire system, the error is not
a simple function of the subsystem size. Thus, it is
difficult to predict the accuracy of a DAC calcula-
tion without also performing a calculation using
diagonalization.

Therefore, if other linear-scaling methods for
replacing diagonalization could be found which
only contain parameters in which the error as
compared with the diagonalization result is pre-
dictable, they might be more appropriate candi-
dates for performing geometry optimizations on
large biological molecules. In a previous article,
we presented a performance comparison of several
linear-scaling replacements for diagonalization that

w xmeet this criterion 4 . One is conjugate gradient
Ž .density matrix search CGDMS which minimizes

an energy functional with respect to the density
w x Ž .matrix 5 . Another is pseudodiagonalization PD

which works by using Jacobi notations on a guess
w xset of orbitals for the system 6 . A third candidate

is purification of the density matrix which per-
forms transformations on a guess density matrix to

w xdrive it toward idempotency 7 . The last method,
Ž .the Chebyshev expansion method CEM , forms

the density matrix as a polynomial expansion
w xof the Hamiltonian 8 . In these linear-scaling diag-

onalization replacements, the introduced errors are
easily controlled by changing simple thresholds.
The errors depend on these thresholds in a way
that is, for the most part, system-independent or is
otherwise predictable. As the thresholds approach
zero, the methods become exact. Thus, these meth-
ods might be more desirable than is DAC for use
in large-molecule optimizations. The first such
semiempirical geometry optimization on a protein
was carried out by Stewart who optimized the
geometry of a 740 atom crambin molecule using

w xPM3 with PD 9 .
In this article, we present a gas-phase geometry

optimization on the 1226 atom kringle 1 of plas-
minogen using PM3 implemented with CGDMS.
Plasminogen is a protein present in human blood
plasma and is a key component in the fibrolytic
mechanism. It is also thought to play a role in
tissue repair, malignant transformation, macro-
phage function, ovulation, and embryo implanta-
tion. This is, to the best of our knowledge, the
largest protein to be optimized semiempirically
using a method other than DAC to achieve linear
scaling of the computational time with system
size.

Methods

The geometry optimization was carried out us-
ing the linear-scaling PM3 code within a develop-
mental version of the Gaussian suite of programs
w x10 . The diagonalization step of the SCF calcula-
tion is replaced by CGDMS. CGDMS searches for
the density matrix directly by using the method of
conjugate gradients to minimize a functional with
respect to the density matrix. To obtain linear
scaling with CGDMS, the zero elements of the
density and Fock matrices must be neglected. In
this calculation, all matrix elements below the ne-
glect threshold of 1 = 10y5 au are discarded. Also,

˚a distance cutoff of 15 A is used to determine the
form of the Fock matrix. These parameters are set
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such that an accuracy in energy as compared to the
diagonalization result of about 0.05 kcalrmol is
ensured. For more information about the imple-
mentation of CGDMS and its parameters, see
w x4, 5 .

Ž 2 .The geometry was updated via an OO N scal-
Ž .ing rational function optimization RFO technique

Ždeveloped from the regular RFO method by
w x.Farkas and Schlegel 11 combined with a modi-

fied version of the direct inversion in the iterative
Ž . Žsubspace procedure GDIIS introduced by

w xCsaszar and Pulay 12 and modified by Farkas´ ´
w x.and Schlegel 13 using redundant internal coordi-

nates. This optimization technique has been found
to converge the geometries of large systems with
about the same number of steps as that of
the regular quasi-Newton based methods, but
diagonalization of the Hessian matrix via an
Ž 3.OO N scaling operation is not required. The GDIIS

procedure uses the information from the previous
points; therefore, it can quickly recover after steps
resulting in higher energy and large forces. The
coordinate transformations of the gradients and
geometry updates between redundant interval
and Cartesian coordinates were performed via a

Ž 2 .very fast OO N scaling algorithm introduced by
w xFarkas and Schlegel 14 . Even though the geome-

Ž 2 .try updates step scales as OO N with the system
size, the CPU time that it requires in the plasmino-
gen calculation is small compared to the energy
and gradient update CPU time as discussed below.

Starting coordinates for kringle 1 of plasmino-
w xgen were obtained from the Protein Data Base 15 .

Hydrogen atoms were added to the structure us-
w xing GaussView 16 , with the resulting geometry

relaxed using the MM3 force field. This structure
was used for input for the PM3 optimization using
CGDMS as a replacement for diagonalization.

Results and Discussion

All calculations were carried out on a single
MIPS R10Kr195 MHz processor of an SGI
Origin2000 computer. When optimizing large
molecules such as proteins, it is not entirely clear
at which point to stop the geometry optimization.
The defaults in Gaussian for geometry-optimiza-
tion convergence criteria are the following: RMS

˚gradient s 0.36 kcalrmolrA, maximum gradient
˚s 0.53 kcalrmolrA, RMS displacement s 0.0012

au, and maximum displacement s 0.0018 au,
where the displacement is the Cartesian displace-
ment measured in bohrs. However, proteins con-
tain large, floppy chains, causing the Cartesian
displacement to be quite large with even small
changes in angles and dihedrals. We decided that
a better convergence criterion for this optimization
would be to use the change in internal coordinates
for the system instead of the Cartesian displace-
ment. Also, for such a large system, very small
changes in bond lengths and angles should not be
as important as in smaller molecules. Thus, it is
not necessary to determine the geometry of the
structure to such a high accuracy. We decided to
loosen the convergence thresholds for this opti-

˚mization to an RMS gradient s 3.6 kcalrmolrA,
˚maximum gradient s 5.3 kcalrmolrA, and RMS

internal coordinate displacement s 0.012 au
Ž .bohrsrradians .

Using these criteria, and starting from the MM3
geometry, the PM3 optimization converged in 362
geometry updates, much faster than the number of

w xsteps reported by Stewart 9 for the 740 atom
Ž .crambin molecule over 2000 cycles and Vincent

w xet al. 3 for the 1960 atom hen egg white lysozyme
Ž .1023 cycles . However, these numbers of cycles
are not directly comparable because the conver-
gence criteria differ between calculations. Also,
different proteins are used in each case, so the
starting structures of the various proteins are of
different degrees of accuracy and the geometries
themselves have different convergence properties.
Our calculation confirms the findings of Stewart
and Vincent that a large number of steps is re-
quired to optimize the geometry of proteins. Nev-
ertheless, the number of steps in our calculation is
about one-third the number of atoms. The average
time for the energy and gradient update is 64.8
CPU min, and for the geometry update, 9.8 CPU
min. Thus, the entire calculation required about
18.8 CPU days to complete.

The RMS gradient, as shown in Figures 1 and 2,
oscillates quite wildly as the optimization pro-
gresses. This trend was also found in previous

w xcalculations 3, 9 . However, these fluctuations be-
come smaller in size as the optimization proceeds,

Žso that near the end of the calculation in the last
.20 steps the maximum oscillations in the RMS

˚gradient are no larger than 1 kcalrmolrA.
Figures 3 and 4 show the RMS internal coordi-

nate displacement as a function of the geometry
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˚( )FIGURE 1. RMS gradient kcal / mol / A is shown as a function of the geometry optimization step.

˚( )FIGURE 2. RMS gradient kcal / mol / A is shown as a function of the geometry optimization step for the final portion
of the optimization.
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( )FIGURE 3. RMS internal coordinate displacement bond lengths in bohrs and angles in radians is shown as a
function of the geometry-optimization step.

( )FIGURE 4. RMS internal coordinate displacement bond lengths in bohrs and angles in radians is shown as a
function of the geometry-optimization step for the final portion of the optimization.
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( )FIGURE 5. Heat of formation kcal / mol is shown as a function of the geometry-optimization step.

( )FIGURE 6. Heat of formation kcal / mol is shown as a function of the geometry-optimization step for the final portion
of the optimization.
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update step. As with the forces, the RMS displace-
ments fluctuate wildly with the optimization step.
It can also be noted that the displacements de-
crease very slowly as the optimization progresses.
This is explainable by the large number of degrees
of freedom in the system. Furthermore, the dis-
placements are quite large throughout the calcula-
tion because the potential-energy surface is very
flat. Thus, large displacements cause very small
changes in energy.

Figures 5 and 6 show the heat of formation as a
w xfunction of the geometry-update steps. As in 9 ,

the heat of formation quickly decreases during the
first few geometry updates. Then, it gradually
levels off and decreases slowly in the final itera-
tions. However, the energy does not decrease
monotonically, but rather contains spikes as it de-
creases. This is probably an effect of using a differ-

w xent optimizer than the one utilized in 9 . These
spikes do not adversely affect the optimization, for
the general trend in the energy is to decrease
monotonically if the spikes are discarded. In the
last several steps of the optimization, the spikes in
energy disappear. Thus, over the last 15 geometry
updates, the change in the heat of formation is
only y0.07 kcalrmol.

The final, optimized structure has an RMS devi-
˚ation from the crystal structure of 2.4 A as mea-

w xsured by Quanta 17 . Perhaps the most significant
reason for this large deviation in structure is that
the PM3 calculation was carried out in the gas
phase, whereas the X-ray structure was deter-
mined from protein molecules along with several
water molecules in a crystalline form. The exclu-
sion of the effects of solvation on the surface of the
protein may tend to cause the molecule to expand
somewhat.

Several calculations on plasminogen were car-
ried out to optimize the parameters in the geome-

Žtry-optimization step such as the maximum step
.size . These calculations all used the same starting

Žgeometry with an energy 1300 kcalrmol above
.the energy at the optimized geometry , but con-

tained different optimization parameters. The final
geometries of each of these calculations differed
from one another slightly. The RMS deviations

˚between their geometries were at most 0.9 A, and
their energies differed by less than 6 kcalrmol.
This occurred because the molecule is very floppy,
causing the potential-energy surface to be very
flat. Thus, each optimization obtained different
local minima on the potential-energy surface.

Conclusions

CGDMS in conjunction with the GDIISrRFO
optimizer is an effective tool for semiempirical
geometry optimizations of proteins. We found that
the number of geometry update steps required by
the GDIISrRFO optimizer is roughly equal to
one-third the number of atoms in the system. Thus,
with linear-scaling energy and gradient updates,
such as PM3rCGDMS, calculations on proteins
containing over 1000 atoms are well within the
reach of current computational resources. We ex-
pect that protein geometry optimizations using
semiempirical methods will soon become routine.
Also, since proteins are naturally in a solvated
environment, it is important to add solvation ef-
fects to the calculations. Work along these lines is
in progress.
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