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Methods for optimizing large molecules. II. Quadratic search
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Geometry optimization has become an essential part of quantum-chemical computations, largely
because of the availability of analytic first derivatives. Quasi-Newton algorithms use the gradient to
update the second derivative matrix~Hessian! and frequently employ corrections to the quadratic
approximation such as rational function optimization~RFO! or the trust radius model~TRM!. These
corrections are typically carried out via diagonalization of the Hessian, which requires O(N3)
operations forN variables. Thus, they can be substantial bottlenecks in the optimization of large
molecules with semiempirical, mixed quantum mechanical/molecular mechanical~QM/MM ! or
linearly scaling electronic structure methods. Our O(N2) approach for solving the equations for
coordinate transformations in optimizations has been extended to evaluate the RFO and TRM steps
efficiently in redundant internal coordinates. The regular RFO model has also been modified so that
it has the correct size dependence as the molecular systems become larger. Finally, an improved
Hessian update for minimizations has been constructed by combining the Broyden–Fletcher–
Goldfarb–Shanno~BFGS! and~symmetric rank one! SR1 updates. Together these modifications and
new methods form an optimization algorithm for large molecules that scales as O(N2) and performs
similar to or better than the traditional optimization strategies used in quantum chemistry. ©1999
American Institute of Physics.@S0021-9606~99!30648-6#
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I. INTRODUCTION

Developments in quantum chemistry continue to prov
more accurate tools for calculating the properties of m
ecules, studying chemical reactions, and interpreting a w
range of experiments. Improvements in calculational me
ods and computer hardware allow these calculations to
applied to increasingly larger organic molecules, inorga
complexes and biomolecules. Optimization of the structu
of large molecules by quantum chemical methods requ
stable, efficient, and therefore, elaborate optimizat
algorithms,1 usually in the framework of an over-complet
redundant internal coordinate system.2,3~c! Since the deriva-
tives of the energy are calculated with respect to the Ca
sian coordinates4 of the nuclei, they must be transformed in
the internal coordinate system5 to carry out the optimization
process. As described in our previous paper,6 we have devel-
oped an O(N2) method for these coordinate transformatio
suitable for the optimization of large molecules. This a
proach is available in theGAUSSIAN 987 quantum-chemica
program package. Alternative coordinate transformat
methods for nonredundantnatural3 or delocalized8 internal
coordinate systems have also been introduced by Pu
Paizs, Baker, and co-workers.9

a!Electronic mail: farkas@para.chem.elte.hu; URL: http://organ.elte
farkas

b!Electronic mail: hbs@chem.wayne.edu; URL: http://chem.wayne.e
schlegel
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Quasi-Newton algorithms are very efficient for findin
minima, particularly when inexpensive gradients~first de-
rivatives! are available. These methods employ a quadr
model of the potential-energy surface to take a series of s
that converges to a minimum. The optimization is genera
started with an approximate Hessian~second derivative ma
trix! which is updated at each step using the computed
dients. The stability and rate of convergence of qua
Newton methods can be improved by controlling the s
size, using methods such as rational function optimizatio10

~RFO! or the trust radius model1,11 ~TRM!. The RFO or
TRM equations are normally solved by diagonalization
the Hessian. The O(N3) computational effort required fo
this is usually negligible compared to typical quantum
chemical computations. However, it can become a bottlen
in the optimization of larger molecules when semiempiric
or linearly scaled electronic structure methods are used.

In this paper we briefly review various aspects of curre
quasi-Newton optimization methods: The quadratic appro
mation and the Newton–Raphson step, prevailing meth
for updating the Hessian, and control of the step size us
RFO and TRM. We then introduce our new contribution
An RFO step independent of size of the system, RFO c
rection independent of the coordinate system, modificat
of our O(N2) equation solver to calculate the combine
RFO/TRM step, and an improved Hessian updating sche
for minimizations. Lastly, the various features of the optim
zation procedure are tested on a range of molecules.
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6 © 1999 American Institute of Physics
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A. Quasi-Newton optimization methods

Gradient optimization methods1,11 are based on a qua
dratic approximation to the potential-energy surface~PES!

E* 5E2fTs1 1
2s

THs, ~1!

whereE* is the predicted energy at a steps from the current
point, E and f are the energy and force~negative of the
gradient! calculated at the current point andH is the ~ap-
proximate! Hessian which is updated during the optimiz
tion. The related linear approximation to the forces gives
prediction for the force,f* , at a steps from the current point:

f* 5f2Hs. ~2!

At a stationary point~e.g., minimum, transition state, etc.!,
the forces vanish. Within the quadratic approximation,
step to the stationary point is:

sNR5H21f. ~3!

Equation~3! is the definition of the well-known Newton–
Raphson ~NR! or quasi-Newton optimization step,sNR,
which is repeated until the optimization converges. If t
quadratic approximation described the PES accurately
the exact Hessian were used, then Eq.~3! would reach the
stationary point in one step. However, the PES is not q
dratic and the actual Hessian provides a good approxima
to the PES only in the vicinity of the current point, whic
may be far from a stationary point~it may not even have the
correct structure for the desired optimization—zero nega
eigenvalues for minimization, one negative eigenvalue
transition structure searches!.

The calculation of the Hessian can be very expens
specially for large systems. Consequently, a quasi-New
optimization usually starts with an approximate Hessian m
trix that has the required structure, and then improves
Hessian with an updating procedure during the course of
optimization.11 The BFGS update12 is particularly successfu
for minimization because it ensures that the Hessian rem
positive definite. For transition state searches, the up
should not force the Hessian to be positive definite. The S
update ~also known as the Murtagh–Sargent, update!13 is
appropriate, as is the Powell-symmetric-Broyden14 ~PSB!
update. Bofill developed an improved update15 by combining
PSB with SR1 in a manner that avoids the problem with
denominator of the latter.

A simple quasi-Newton optimization based on a qu
dratic model with updated Hessians and Newton–Raph
steps can readily encounter difficulties. Even when the H
sian has the right structure~e.g., positive definite for mini-
mizations!, care must be taken not to step too far, since
quadratic model is accurate for only a small region of
potential-energy surface. Both RFO and TRM can be
garded as methods for controlling the step size and h
proven to be valuable components of optimization alg
rithms. TRM and RFO based minimization algorithms can
regarded as Newton–Raphson methods with a corrected
sian

sl5~H1lS!21f, ~4!
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wherel is a non-negative scalar,S is usually simply a con-
stant scalar times the unit matrix,jI , andsl is the resulting
corrected step.

1. Trust radius model (TRM)

The goal of TRM in minimization is to find the lowes
energy point within a suitable trust radius, in the framewo
of the quadratic approximation. This condition is equivale
to finding a step,sl, such that it is parallel to the predicte
force, fl, points in the same direction (l>0) and has a
length no greater than the trust radius,t

lsl5fl5f2Hsl, uslu<t. ~5!

Note that this is equivalent to Eq.~4! if S is replaced by the
unit matrix. Equation~5! has only one non-negative solutio
for l when the Hessian is positive definite~l is zero if the
length of the Newton–Raphson step is less than the t
radius!. If the Hessian has one or more negative eigenvalu
the only acceptable solution for minimization is alwa
larger than the negative of the lowest eigenvalue,e lowest.
Combining these conditions yields

l>Max~0,2e lowest!. ~6!

The TRM method usually results in more efficient step s
control than a simple scaling of the Newton–Raphson st

2. Rational function optimization (RFO)

In the RFO approach for minimization, the quadra
model is modified so that a suitably controlled step towa
the minimum is obtained. By including a step size depend
scaling denominator, the RFO method contains a s
consistent trust radius

E* 5E2
fTs2~1/2!sTHs

11sTSs
, ~7!

whereS is a symmetric, usually diagonal scaling matrix. T
expression of the force vector in terms of the RFO mode

f* 5
f2Hs12~E* 2E!Ss

11sTSs
5

f2Hs

11sTSs
1

2fTs2sTHs

~11sTSs!2 Ss.

~8!

For the RFO step,sRFO, which satisfies the stationary cond
tion, f* 50, the predicted energy lowering isE* 2E5
2 1

2f
TsRFO ~i.e., same form as for the Newton–Raphson s

in the quadratic approximation!. Thus the RFO step can b
calculated by solving the implicit formula

sRFO5@H1~ fTsRFO!S#21f5~H1lS!21f, ~9!

wherel5fTsRFO. In practice,S is chosen to be the identity
(I ), a scalar time the identity (jI ), or some other diagona
matrix, yielding an RFO correction that is a simple diagon
shift of the Hessian. Equation~9! can be expressed in th
eigenvector space of the Hessian, where theH1lS matrix is
diagonal and its inverse can be given explicitly. Some imp
mentations split the eigenvector space into subspaces fo
‘‘high’’ and ‘‘low’’ eigenvalues and solve Eq.~9! for them
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separately. This approach allows the extension of the R
method for transition state optimizations and is known
eigenvector following16 ~EF! optimization.

Equation~9! is in implicit form; therefore, the solution
can only be obtained by iterating untill converges. For
minimizations,l should obey condition~6! to ensure the
positive definiteness ofH1lS. Constraints onl for transi-
tion state optimizations are discussed elsewhere.10~b! Some
important features of the RFO approach for minimizati
are:

~a! smooth convergence to the quadratic approximat
in the vicinity of critical points,

~b! automatic scaling down of displacements cor
sponding to small eigenvalues of a positive definite Hess

~c! scaling up of displacement~s! corresponding to nega
tive eigenvalues of the Hessian and directing the step tow
a minimum,

~d! avoiding problems when the Hessian is nearly sin
lar, such as in the vicinity of inflection points.

B. Size independent rational function optimization
„SIRFO…

The RFO model tends to over-correct the quadratic
proximation as the number of dimensions grows. To illu
trate the size dependency of the original RFO model,
define a simple quadratic PES with a diagonal Hessian
positive constant times the identity matrix

H5bI . ~10!

One of the goals for convergence is to reduce the root-me
square~rms! force, f̃ , below a fixed threshold. The rms forc
is

f̃ 5Af Tf

N
, ~11!

whereN is the number of variables. The expression for c
culating the RFO step in this example is

l5f TsRFO5
N f̃2

b1l
, ~12!

whereS5I . The only acceptable, positive solution forl is

l5
2b1Ab214N f̃2

2
. ~13!

It is clear, that whenN approaches infinityl approaches
AN f̃ . Therefore, in larger systems and with noticeable for
on the nuclei, the RFO correction can become dominant.
choice ofS5(j/AN)I , wherej is a suitable constant, make
the model size independent. Our implementation inGAUSS-

IAN 98 usesj51. Equation~13! gives a general lower limit
for l whenb is not smaller than the largest eigenvalue of
arbitrary positive definite Hessian. The effect of the size
dependent scaling on the efficiency of the optimization p
cess is shown in Table I.
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C. Transformation to avoid problems with RFO and
redundant coordinates

Geometry optimizations in a complete set of appropri
internal coordinates usually converge significantly fas
than in Cartesian coordinates.2,17 A suitable internal coordi-
nate system, even if it is based on a local linear combina
of individual internal coordinates~like the natural internal
coordinate system! may contain redundancy. The RFO co
rection depends on the coordinate system and can be ov
timated because of the redundancy. Problems with the red
dancy can be avoided by determining the RFO correction
Cartesian coordinates. The relationship between the Ca
sian and internal coordinates~qx andqint , respectively! can
be expressed in terms of the Wilson B-matrix18

dqint.5Bdqx , ~14!

wheredqint. anddqx are infinitesimal changes in internal an
Cartesian coordinates, respectively, andB contains the de-
rivatives of the internal coordinate values with respect to
Cartesian coordinates. The connection between the inte
forces,f int. , and Cartesian forces,fx , is

fx5BTf int. . ~15!

The expression for Newton–Raphson step,sint. , in terms of
internal coordinates forces,f int. , and Hessian,H int. , is

sint.5H int.
21f int. , ~16!

which can be transformed into the following equation:

B21sint.5~BTH int.B!21BTf int. . ~17!

The use of the notationsx for B21sint. andHx for (BTH int.B)
gives

sx5Hx
21fx , ~18!

~note that because of the curvilinear nature of the inter
coordinates,Hx is not the Cartesian Hessian whenfÞ0!. The
RFO correction is applied to Eq.~18! and the displacement i
transformed back to internal coordinates

sint.5Bsx . ~19!

Alternatively, the RFO procedure could be made coordin
system independent by usingS5jG215j(BBT)21 instead
of S5jI in the denominator in the rational function expre
sion for the energy, Eq.~7!.

D. An O „N2
… algorithm for calculating the RFO/TRM

step

The RFO/TRM step is usually obtained by diagonalizi
the Hessian and solving

f5~H1lS!s, ~20!

in the eigenvector space of the Hessian. Since diagona
tion is an O(N3) process, this can be a serious bottleneck
the optimization of large molecules. Alternatively, o
O(N2) equation solving method that we have employed
the coordinate transformations can be used to obtain
RFO/TRM step. The starting value forl is taken from the
previous optimization step or can be initialized~e.g.,l5fTf!
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TABLE I. Number of cycles required to optimize the test molecules using different sets of options.

Method options #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14

SR1-BFGS 2 2 2 2 2 2 2 1 1 1 1 1 1 1

BFGS ~Ref. 12! 1 1 1 1 1 1 1 2 2 2 2 2 2 2

Full history update 1 1 2 1 2 1 2 1 1 2 1 2 1 2

RFO ~Ref. 10! 1 1 1 2 2 2 2 1 1 1 2 2 2 2

SIRFO 2 2 2 1 1 1 1 2 2 2 1 1 1 1

TRM ~max. component/rms! 2 2 2 1 1 1 1 2 2 2 1 1 1 1

Fast equation solving 2 1 1 1 1 1 1 2 1 1 1 1 1 1

Other optionsa 1 1 1 1 1 2 1 1 1 1 1 2 2

Molecule Natoms Number of optimization cycles Energy
~Hartree!

S~1–30!b,c 183 180 186 180 184 181 184 179 176 178 176 177 178 179
31 ACTHCP 16 28 29 26 29 28 27 26 27 28 26 29 25 26 262838.905 321 4
32 histamine H1 18 18 19 19 19 22 20 22 16 17 17 19 20 19 212353.958 745 8
33 hydrazobenzene 26 17 16 15 15 19 18 17 17 15 13 19 192563.261 583 0

25 24 2563.263 803 6
S~1–33!b 254 245 247 243 249 247 250 246 238 238 239 235 242 245

34 C60 60 9 8 8 8 8 8 8 10 8 7 8 8 8 8 1.549 590
35 taxol 113 58 55 66 51 56 46 60 55 49 50 49 49 46 45 20.667 063 4
36 For–Ala5–NH2 56 30 36 38 35 37 31 34 31 32 32 35 32 32 31 20.397 760 0
37 For–Ala10–NH2 #1 106 66 81 74 78 55 67 60 62 61 58 55 63 20.733 064 5

140 20.733 699 6
88 20.733 962 1

38 For–Ala10–NH2 #2 106 61 68 61 68 51 72 46 59 45 58 45 51 20.733 131 7
90 88 20.734 305 8

39 For–Ala20–NH2 #1 206 115 21.423 269 7
99 21.425 661 7

69 59 89 21.425 829 0
102 124 105 121 126 78 109 74 108 21.426 585 5

40 For–Ala20–NH2 #2 206 104 21.424 399 3
104 21.424 808 2

72 127 58 21.425 829 0
104 122 85 104 90 21.426 585 5

101 124 71 103 21.426 824 4
S~34–40! 478 429 509 438 490 332 494 543 344 422 357 417 303 377
S~1–40! 732 674 756 681 739 579 744 789 582 660 596 652 545 622

41 RNA1water molecules 368 ¯ ¯ ¯ 805 ¯ ¯ ¯ 21.020 335 4
585 21.023 630 0

468 21.025 104 7
796 21.025 887 2

756 21.028 741 8
603 21.028 750 9

761 21.029 757 0
785 21.035 861 2

42 crambind 642 ¯ ¯ 269 ¯ 281 196 475 ¯ ¯ 231 ¯ 241 129 259 0.755 720 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

aLinear search, trust radius update and swapping.
bThe input structures for molecules 1–33 were taken from Ref. 17.
cThe details for the first 30 molecules are available in the supplementary material.
dThe input structure was taken from Ref. 23.
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and the equations are solved forS and l simultaneously.
This task necessitates some minor changes in our orig
algorithm;6 therefore, we present a brief summary.

The goal is to solve a system of linear equations

y5~M1lS!x5~M1mI !x5M̄x, ~21!

wherey andM are known. We assume that solutionx exist
and designate the corrected Hessian,M1lS by M̄ in the
description of the algorithm to simplify the equations. Sin
the scaling matrix,S, is chosen to be a scalar times the u
al

t

matrix, lS5mI with m5l/AN for the size independen
RFO andm51 otherwise. To solve the RFO/TRM equatio
M is replaced byH, y by f and x by s. The steps of the
algorithm are as follows:

~1! Initialize the counter ask50, the solution vector as
x050 and the error in vectory asDy5y. Obtain a guess for

the inverse,M̄0
21, or initialize it as the inverse of the diago

nal of matrixM̄0 using a suitable initial value forl0 .

~2! Form intermediate vectorsD x̃5M̄ k
21Dy, D ỹ

5M̄ kD x̃ and compute the scaling factors5DyTD ỹ/
D ỹTD ỹ. If usu is smaller than 1023, replaceD x̃ by Dy.
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~3! Form the next approximation to the solution vecto
xk115xk1sD x̃.

~4! Update the inverse matrix using an SR1 update13

M̄ k11
21 5M̄ k

211
~D x̃2M̄ k

21D ỹ!•~D x̃2M̄ k
21D ỹ!T

~D x̃2M̄ k
21D ỹ!T

•D ỹ
. ~22!

~5! Calculatelk11 ~using the scheme described belo!
and obtainmk11 andM̄ k11 .

~6! Calculate the new error iny, Dy5y2M̄ k11xk11 .
~7! Update the counter (k5k11) and go to step~2! until

Dy converges to0 within a useful threshold for the norm
and/or maximum absolute value.

1. Updating the diagonal correction „lS… to the
Hessian

The method of updatingl in step ~5! of the algorithm
should provide a good balance between stability and
convergence for most cases. When both RFO and TRM
enabled, the actual method used to control the step size
be determined dynamically. Different updated values
lRFO and lTRM are calculated and the larger correction
used in the next iteration.

There are several ways of updatinglRFO. The simplest
is to use Eq.~9!, e.g.,lk11

RFO5yTxk11 ; however, this can lead
to oscillations resulting from large changes in the solut
vector x near the beginning of the iterative process. Wh
neither x nor lRFO are converged Eq.~9! is not satisfied;
nevertheless, the current step can be scaled so that both
of the Eq.~9! give the same scalar product with the curre
step

xk11
T ~M1axk11

T yS!ax5xk11
T y. ~23!

Equation~23! can be solved to obtain a new value forlRFO

lk11
RFO5axk11

T y. ~24!

For the SIRFO method, the total diagonal correction to
Hessian islRFOS5mI5(lRFO/AN)I .

The update forlTRM assumes that a change inlTRM can
be approximated by a simple scaling of the current step. T
approach can be used to limit the length of the step or
maximum component of the step. Whichever criterion res
in a larger Hessian correction is used for updatinglTRM

when both criteria are enabled@i.e., when the original step
~RFO or NR! exceeds one of the limits, the TRM correctio
will provide a step equal to the corresponding limit#. The
updating process uses the previous correction,mk , resulting
in a stepxk11 which has to be scaled bya to fulfill the
corresponding limit~maximum step component, rms or tot
step size!. Similar to the updating process forlRFO, the sca-
lar product of the current step and the right side of Eq.~21!
with the previous and the scaled step yields

xk11
T ~H1mkI !xk115xk11

T ~H1lk11
TRMI !axk11 . ~25!

Solving for lk11
TRM gives the new TRM correction

lk11
TRM5

~12a!xk11
T Hxk111mkxk11

T xk11

axk11
T xk11

. ~26!
,
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If ak21 andak are smaller and larger than 1, the TRM co
rection is updated by a linear interpolation using two pre
ous corrections,mk21 andmk

lk11
TRM5

~12ak!mk211~ak2121!mk

ak212ak
. ~27!

The TRM correction may cause oscillations when t
changes inx are large; therefore, the largest increase inm
between consecutive cycles should be chosen.

When the lowest eigenvalue of the Hessian is negat
the convergence oflTRM can be accelerated by assumin
that the resulting step has a large component in the direc
corresponding to the negative eigenvalue

lk11
TRM5

1

ak
~mk1e lowest!1e lowest. ~28!

A lower limit for the correction is

lmin52e lowest1minS 2e lowest

2
,eminD , ~29!

where theemin is a suitable limit~e.g., 1024 a.u.! to protect
the inverse of the corrected Hessian from approaching
gularity. The constraints onl for transition state optimiza-
tion are discussed elsewhere.10~b!

E. Combined Hessian update method for minimization

For minimizations with simple Newton–Raphson step
it is necessary to use a Hessian update like BFGS wh
ensures that the Hessian remains positive definite

Hk5Hk211DHk
BFGS,

DHk
BFGS52S DfkDfk

T

sk21
T Dfk

1
Hk21sk21sk21

T Hk21

sk21
T Hk21sk21

D ,

Dfk5fk2fk21 . ~30!

With step size control methods such as RFO and TRM,
optimization can step toward a minimum even when the H
sian is not positive definite. Bofill developed a succesful u
date for transition state optimizations

Hk5Hk211wBofillDHk
SR11~12wBofill !DHk

Powell, ~31!

wBofill5
~~Dfk1Hk21sk21!Tsk21!2

~Dfk1Hk21sk21!T~Dfk1Hk21sk21!sk21
T sk21

,

~32!

where the symmetric rank one~SR1! update and the Powell
symmetric-Broyden~PSB! update are given by

DHk
SR152

~Dfk1Hk21sk21!~Dfk1Hk21sk21!T

~Dfk1Hk21sk21!Tsk21
, ~33!

DHk
PSB5~Dfk1Hk21sk21!Tsk21

sk21sk21
T

~sk21
T sk21!2

2
~Dfk1Hk21sk21!sk21

T 1sk21~Dfk1Hk21sk21!T

sk21
T sk21

.

~34!
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This suggests that a similar combination of SR1 with BF
could be advantageous for minimizations. However, ini
tests showed no noticeable improvement. Closer examina
revealed that the weight of the SR1 formula was very sm
usually less than 10%. Therefore, we have tested the s
combination but with the square root of Bofill’s origina
weighting factor

Hk5Hk211wDHk
SR11~12w!DHk

BFGS, ~35!

w5AwBofill

5A ~~Dfk1Hk21sk21!Tsk21!2

~Dfk1Hk21sk21!T~Dfk1Hk21sk21!sk21
T sk21

.

~36!

This approach is only slightly better for the smaller te
cases, but gives noticeably improved results for larger m
ecules~see Table I!. The increased molecular size requir
more optimization cycles, which may result in the BFG
update converging to an inaccurate Hessian. This beha
seems to be corrected by our combined update process
ing the square root of the original Bofill weight in the SR
PSB combination, Eq.~31!, also improves transition stat
optimizations.

F. Test calculations

Our current study contains a number of changes and
provements that need to be validated by comparing them
existing procedures. To test all combinations of the availa
options would result more than 400 optimizations for ea
test molecule; therefore, only a few appropriate combi
tions of options have been selected:

• BFGS or combined SR1-BFGS Hessian update,
• full history update~using all available, up to a maxi

mum of 100, previous points within an acceptable distan!
or two vector update~using only the last two points!,

• regular or size independent RFO,
• regular step size scaling or TRM on largest compon

and rms of the step,
• regular or O(N2) scaling transformation and equatio

solving methods,
• other features which are implemented in the ‘‘Berny

optimization algorithm,19 such as:
—linear search,11 ~fit a quartic polynomial to the lates

two points using the energies and forces!
—trust radius update,11

—swapping~reorder the stored points, if necessary,
that the linear search uses the lowest energy point!.
The optimizations were carried out using the default init
guess20 Hessian inGAUSSIAN 98. The convergence criteria
optimization parameters, other computational details and
input structures are available in supplementary material.21

1. Small molecule tests

A series of 33 molecules employed by Baker17 form a
convenient test set of small molecules that has been use
numerous authors to test geometry optimization metho
For the first 30 molecules, the average of the maxim
change in internal coordinates between initial and final str
l
on
ll,

e

t
l-

ior
s-

-
to
le
h
-

t

l

e

by
s.

-

tures is;0.2 bohr or radian,23 indicating that in general they
were started from very good initial geometries. Calculatio
were carried out at the Hartree–Fock STO-3G level of the
and are summarized in Table I. The differences in perf
mance are very small, less than 5%, indicating that exis
minimization methods are already close to optimal for sm
molecules~further details can be found in the supplementa
material!. The combined SR1-BFGS update~columns 8–14!
is only ;3% better than BFGS~columns 1–7!. The full his-
tory update option results in a mere 1.5% improvement. T
SIRFO/TRM combination gives results nearly identical
the regular RFO for these small tests; however, TRM or s
scaling was rarely active. The RFO implementations in
present algorithm is slightly better than the regular RF
presumably due to the different coordinate systems use
the present method for solving the RFO equations. The o
options ~trust radius update, linear search, and swappi!
show almost no improvement when they are enabled. P
vided an appropriate coordinate system is used and the
mization step size is controlled, the tests on these sma
molecules demonstrate that a wide range of options can
almost identical results. By contrast, the medium and lar
size molecules discussed below show significant differen
for the various options.

2. Medium size molecules

The medium size test set contains buckminsterfuller
C60, taxol, and helical alanine-based oligopeptides built fro
5, 10, and 20 amino acids~molecules 34–40!. These mol-
ecules contain up to 206 atoms, and were optimized at se
empirical AM1 level of theory. The number of steps need
for optimization are listed in Table I, and one can begin
see some significant differences between the various op
sets. For the first three molecules, all optimizations c
verged to the same minimum. The Ala10 and Ala20 systems,
however, are sufficiently flexible and have many loc
minima; therefore, different options can yield different stru
tures. The performance of different options can be compa
directly only if the optimizations reach the same minimum

A number of factors can cause optimizations to conve
to different minima. For the larger oligopeptides, the optim
zations encountered negative eigenvalues in the upd
Hessian. The RFO method is tends to scale up the step in
direction of the lowest~negative! eigenvalue and can pro
duce very large steps~if allowed by the trust radius!, endan-
gering the stability of the optimization. Another potenti
problem arises if the effective~corrected! Hessian ap-
proaches singularity during the equation solving process;
can be controlled with the TRM approach. The trust rad
updating varies the trust radius in the interval of 0.05–1
a.u. and can also result different optimization path th
methods with no trust radius update. The linear search c
tains a separate step size control; therefore, the resulting
step can be twice as long than the actual trust radius.

For C60, taxol, and Ala5, the new combined SR1-BFGS
Hessian update method shows a noticeable performance
provement compared to BFGS, especially when the f
history Hessian updating is not enabled. Interestingly,
combined SR1-BFGS update shows the worst performa
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for these medium size molecules when used with the reg
optimization scheme~option set 8! but the best performanc
when used with SIRFO/TRM and full-history Hessian upd
ing. The extra options~linear search, trust radius updat
swapping! were tuned to work best for minimization with th
BFGS update and show relatively stable performance~op-
tions sets 1–5!. Surprisingly, BFGS with SIRFO/TRM and
full history update works best for these molecules witho
the extra options~option set 6!. The much poorer perfor
mance of the two vector update compared to the full hist
update is unfortunate because the latter scheme canno
used readily in a limited memory version of our large m
ecule optimization algorithm.

3. Larger molecules

Crambin and solvated segments of RNA were chosen
our largest test molecules to be optimized at empirical u
versal force field22 ~UFF! level. The regular optimization
algorithm with matrix diagonalizations is very CPU intensi
for these systems and thus was not used in the comparis
The RNA structure contains 8 bases in 4 segments, 4 sod
ions, and 34 water molecules. Due to the relatively we
interaction between the large number of fragments and
cause the starting structure was far from any minimum,
entire optimization path could not be described with a sin
set of redundant internal coordinates. The coordinate sys
was automatically rebuilt 32 times during the course of
optimization@because of the fast coordinate transformati
this did not affect the O(N2) scaling of the optimization#.
Three of the four SR1-BFGS runs resulted in structures w
very similar energies, and one of the BFGS runs yielde
lower minimum. However, the ribonucleic acid~RNA! opti-
mizations cannot be used for direct comparisons, since e
of the optimizations converged to a different local minimu

Crambin is a small protein with 642 atoms and can
used to demonstrate the performance of optimization te
niques for biologically interesting proteins. The input f
crambin was taken form Ref. 23. The structure is not
floppy and the coordinate system needed to be rebuilt o
once during the optimization. All the crambin optimizatio
converged to the same structure; therefore, the performa

FIG. 1. Energy vs step number for several SR1-BFGS based optimiza
on crambin. Cycles 1–25.
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of the various options can be compared. Table I shows
the full history SR1-BFGS update combined with SIRF
TRM performs exceptionally well~option set 13!. For the
two vector update, the RFO based optimization~10! is some-
what better than the SIRFO-TRM option~12 and 14!. The
SR1-BFGS update is significantly better than BFGS~3 vs 10,
5 vs 12, 6 vs 13, 7 vs 14!.

Figures 1–3 show the energy of crambin as a function
the step number for the different optimization procedures.
the beginning~Fig. 1! all methods show a rapid, monoton
decrease in the energy, except RFO~10!. The RFO proce-
dure has a very large jump in energy~;0.5 hartree! because
of a negative eigenvalue in the updated Hessian, resultin
a bad RFO step along the corresponding eigenvector.
difference in the behavior of the various options is mo
apparent in the expanded energy scale in Fig. 2. For R
~10! the energy descends very smoothly, because of the
ear search and the larger correction to the Hessian, whe
the SIRFO based optimizations~12–14! start to oscillate.
Figure 3 shows the final 50 steps of each optimization. T
two vector update SIRFO optimizations~12 and 14! continue
to oscillate, with the oscillations dampened somewhat by
ear search~12 vs 14!. The full history SR1-BFGS update

nsFIG. 2. Energy vs step number for several SR1-BFGS based optimiza
on crambin. Cycles from 50 until convergence.

FIG. 3. Energy vs step number for several SR1-BFGS based optimiza
on crambin. Last 50 optimization cycles, 0 represents the last cycle.



c-
p
th

ve
g
e

at

fu
ve

te

in
a

ha
ee
or
ap

go

in
i

m
th
m
he
FO
P

m-
ars,
re-
ol-

ods.
im-
n
ifi-
orts
ed
O/
ing
ol-

of
er
t be
other

b-
i-

the

Hz

10813J. Chem. Phys., Vol. 111, No. 24, 22 December 1999 Optimizing large molecules
based scheme~13! converges quickly as the number of ve
tors used in the update grows. The regular RFO based o
mization~10! shows smooth convergence but approaches
minimum very slowly at the end of the optimization~Fig. 3!.
It appears that toward the end of the optimization, RFO~10!
uses too large a correction to the Hessian, slowing con
gence, while SIRFO~12! uses too small a correction, causin
oscillations. This will be examined in a subsequent pap
Despite the oscillations, both SIRFO based schemes with
extra options~13 and 14! show much faster convergence
the end than the others.

For large molecules, the memory requirements of a
history Hessian update can be a serious limitation. Howe
the performance penalty for using the two vector update
unacceptably large~e.g., 259 vs 129 steps!. Potentially, a
limited update using more than two vectors could be bet
As a test, crambin was optimized with the SIRFO/TRM
SR1-BFGS combination using a maximum of five vector
the update process. The same minimum was reached
convergence was achieved in 138 steps. This suggests t
may be possible to find a satisfactory compromise betw
performance and cost. However, considerably more w
will be needed to determine the parameters that will be
propriate for a wide range of molecules.

4. CPU timing and scaling

Figure 4 clearly demonstrates that our optimization al
rithm has O(N2) scaling with the size of the system~number
of atoms!. The break-down of the CPU usage is given
Table II. For semiempirical calculations, the present optim
zation method uses less than 10% of the total CPU ti
compared to 50%–80% for the regular optimization. For
larger systems, the full history Hessian update consu
more than half of the time in the optimization step, but t
two vector update takes less than 10%. Solution of the R
TRM equations accounts for less than one-third of the C
time in the optimization step.
ti-
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II. CONCLUSIONS

The geometry optimization methods for quantum che
istry have been studied extensively for more than 20 ye
ever since gradient calculations became practical. With
cent advances in hardware and software, much larger m
ecules can now be studied by quantum-chemical meth
Optimization techniques need to keep pace with these
provements. The O(N2) scaling coordinate transformatio
and RFO/TRM equation solving methods represent sign
cant progress in improving the size dependence of the eff
required to calculate the optimization step. Our combin
SR1-BFGS method with full history update and the SIRF
TRM procedures are very efficient, substantially reduc
the number of optimization steps required for larger m
ecules. These methods were recently used with O(N) scaling
PM3 semiempirical method to optimize kringle one
plasminogen24—1226 atoms in 362 steps. For even larg
systems, the CPU time and memory requirements mus
decreased even further. Reduced memory updates and
geometry optimization methods such as GDIIS25,26 ~geom-
etry optimization using direct inversion in the iterative su
space! will be considered for future improvements in optim
zation methods for large molecules.

FIG. 4. The square root of the average of the CPU time spent for
optimization algorithm~option set 14 in Table I! in each cycle vs the num-
ber of atoms. The data were obtained on an Intel Celeron A/412 M
processor.
ng the
TABLE II. Percentage of the total CPU time taken by the optimization step, updating Hessian and solvi
RFO/TRM equations. Most details can be found in the supplementary material.

Molecule For–Ala5–NH2 For–Ala10–NH2 For–Ala20–NH2 RNA1water crambin

~#36! ~#38! ~#39! ~#41! ~#42!
Energy/gradient AM1 AM1 AM1 UFF~Ref. 22! UFF
Number of atoms 56 106 206 368 642

Regular optimization~#1!
Optimization~%! 51.48% 71.58% 79.90% ¯ ¯

Number of cycles 30 90 99 ¯ ¯

Combined SR1-BFGS with full-history update and fast equation solving~option set #13!
Optimization~%! 9.28% 9.78% 7.17% 97.31% 94.02%
Hessian update~%! 4.32% 5.12% 4.34% 72.41% 66.84%
RFO/TRM ~%! 0.84% 0.91% 0.66% 7.10% 10.66%
Number of cycles 32 45 59 603 129

Combined SR1-BFGS with two vector update and fast equation solving~option set #14!
Optimization~%! 5.47% 6.16% 2.76% 80.19% 84.44%
Hessian update~%! 0.26% 0.20% 0.13% 5.00% 5.87%
RFO/TRM ~%! 1.57% 1.28% 0.78% 24.08% 25.60%
Number of cycles 31 51 89 756 259
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26~a! Ö. Farkas, PhD~CSc! thesis, Eo¨tvös Loránd University and Hungarian
Academy of Sciences, Budapest, 1995~in Hungarian!; ~b! Ö. Farkas and
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