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Ab initio classical trajectories on the Born—Oppenheimer surface:
Updating methods for Hessian-based integrators
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For the integration of the classical equations of motion in the Born—Oppenheimer approach, each
time the energy and gradient of the potential energy surface are needed, a properly converged wave
function is calculated. If Hessiarfsecond derivativgscan be calculated, significantly larger steps

can be taken in the numerical integration of the equations of motion without loss of accuracy. Even
larger steps can be taken with a Hessian-based predictor—corrector algorithm. Since updated
Hessians are used successfully in quasi-Newton methods for geometry optimization, it should be
possible to improve the performance of trajectory calculations using updated Hessians. The
Murtagh—SargentMS) update, the Powell-symmetric—BroydéPSB update and Bofill's update

(a weighted combination of MS and PBBere tested, and Bofill's update was found to be the best.
Slightly smaller step sizes were needed with Hessian updating to maintain good conservation of the
energy, but this was more than compensated by the reduction in total computational cost. An overall
factor of 3 in speed-up was obtained for trajectories of systems containing 4 to 6 heavy atoms
computed at the HF/3-21G level. @999 American Institute of Physi¢§0021-96069)30443-§

INTRODUCTION step sizes that can be taken with Hessian-based trajectory
integration schemes. Helgaker and co-workdrave used
Simulation of dynamics provides a much more detailedihis second order Hessian-based trajectory integration
picture than can be obtained from transition states, reactiopethod to study a number of reactions.
paths and statistical treatments of reaction rateswever, In recent work, we have outlined a more accurate
until recently, the only reactions that could be studied byHessian-based integration scheme for classical trajectory
molecular dynamics simulations were those for which anacalculation$ This scheme uses a second order predictor step
lytical surfaces had been carefully crafted. The advent of alyn a local quadratic surface, followed by a corrector step on
initio classical trajectory calculations has changed the picturg more accurate local surface fitted to the energies, gradients
dramatically? Because of advances in computer speed angnd Hessians computed at the beginning and end points of
improvements in molecular orbital software, it is now pos-each step along the trajectory. The electronic structure work
sible to compute classical trajectories directly from elec—per step is the same as for the second order Hessian based
tronic structure calculations without first fitting a global po- integrator, since the energy, gradient and Hessian for the
tential energy surface. There are two basic approaches: th@rrector step used to construct the local quadratic surface
Car—Parrinello(CP) method? in which both the electronic  for the next predictor step. A fifth order polynomial fit to the
wavefunction and the atoms are propagated, and the Bornpotential energy surface performs slightly better than a ratio-
OppenheimefBO) approacH, in which the electronic struc- nal function fit, and the step size can be increased by an
ture calculations are converged and the atoms move on gder of magnitude over the simple second order method
well defined surface. In the integration of classical trajecto-without loss of accuracy.
ries on the Born—Oppenheimer surface, electronic structure
calcula}tions are performed .each time there is a n.eed fo.r inN/lETHODOLOGY
formation about the potential energy surface or its deriva-
tives. Standard numerical methods for integrating the classi- To study larger and more interesting systems, the effi-
cal equations of motion require only the first derivatives orciency ofab initio classical trajectory calculations must be
gradients of the potential energy surfdcelowever, rela- improved further. For geometry optimization, very good per-
tively small step sizes are needed so that energy and angul@rmance is obtained with quasi-Newton methods, which use
momentum are conserved with sufficient accuracy. If anagradients to update an approximate Heséidhis suggests
lytic second derivativefi.e., Hessianscan be computed, the that for trajectories, rather than computing the Hessian at
equations of motion can be calculated on a local quadratieach step, considerable CPU time can be saved by updating
approximation to the potential energy surface. The extra coghe Hessian for several steps before re-computing it.
of computing the second derivatives is offset by the larger ~Updating the HessianFor minimizations, the BFGS
Hessian updating scheme is preferred because it maintains
dpermanent address: Department of Chemistry, University of Oslo, P.O.Bt.he p05|t|\{e definite CharaCte,r of the Hessfiaﬁowever, for
1033 Blindern, N-0315 Oslo, Norway. many regions of the potential energy surface explored by
D Author to whom correspondence should be addressed. trajectory calculations, such as near transition states, the Hes-
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sian is not positive definite. Hence, Hessian updating As discussed in Refs. 5 and 6, the equations of motion
schemes that have been used for transition structure optimier Hessian-based methods are most easily integrated in
zation are more appropriate. The Murtagh—Sargent updat@ass-weighted instantaneous normal mode coordinates. Be-
(MS), also known as the symmetric rank one form(8&1), cause the quadratic approximation of the potential energy
does not force a positive definite update and thus is suitablsurface is valid only for a given trust radius, it is more con-
for updating the Hessian along a trajectory calculation: venient to choose an integration step size in terms of a dis-
lacement rather than in terms of time. The displacement
(Ag—HAX)(Ag—HAx)" (1) Etep in mass-weighted coordinates,is related to tf?e time

AH MS= H new_ Hold:

(Ag—HAx)'Ax ' step,At, through the integrated path length defined by
For optimization on a quadratic function, MS converges to At -
the correct Hessian without exact line searchetwever, o= ft > wi(t)2dt=wAt, (4)
I

care must be taken to avoid the update if the denominator
becomes too small. An alternate updating formula that doewherew;(t) are the components of the mass-weighted veloc-
not have this problem is the Powell-symmetric—Broydenity. This equation does not have an analytical solution for
(PSB update: At, and the time step has to be determined iteratively. For a
fixed displacement step, the time steps are larger when the
__pold t __pold t )
AHPSB:(Ag HTAX)AX+Ax(Ag—H™AX) molecule is moving slowly and smaller when it is moving

Ax'Ax rapidly.
AXY(Ag—HO9AX) AxXA X! )
a (AXTAX)2 @ NUMERICAL TESTS

Bofill® has proposed an updating formula for transition state ~ The performance of different Hessian updating formulas
optimizations that is a combination of the PSB and MS up-The decomposition of O is a well studied reaction and
dates: thus was used to test whether Hessian updating is feasible
] and which formula is most suitable for trajectory calcula-
AHgofii= pAHus T (1= h)AHpsg; tions. The Murtagh—SargeitvS), the Powell—-symmetric—
(AX'(Ag—HO9Ax))2 Broyden(PS_B) anq the Bofill updgtes have been examined,
= Ax%(Ag—HOAx)Z - (3  and the trajectories were run with 0, 3, 6, and 9 updates
between analytic Hessian calculations. The conservation of
Implementation The integration of a trajectory starts energy is used to evaluate the quality of the trajectory inte-
with an analytic calculation of the energy, gradient and Hesgrations, and is calculated as the absolute value of the differ-
sian. Then, for a given number of steps, only the energy andnce of the total energy at the start and the end of the trajec-
gradient are calculated analytically, and the Hessian is obtory.
tained by updating. Each step uses the Hessian based As in our previous papefs,the trajectories for
predictor-corrector algorithm described earfiéfter the de- H,CO—H,+CO were started from the optimized transition
sired number of steps with the updated Hessian, the full Hesstructure with 5.145 kcal/mol of energy in the transition
sian is calculated again analytically. A better estimate of thenode. Step sizes of 0.250 and 0.350 &fhohr were used
previous Hessian can be obtained by updating using the cufen average corresponding to 0.5 and 0.7 & well as ro-
rent analytic Hessian and the previous gradient. The previoustional temperatures ® K and 298 K. The four trajectories
step can then be re-integrated with the better data. Howevewith the different combinations of step sizes and tempera-
the improvement using this scheme is very modest. tures were calculated for each typeS, PSB, Bofil) and
The number of times that the Hessian may be updatedumber of Hessian updates<0,3,6,9). For each case, the
can vary with the region of the potential energy surface exerror in the conservation of energy was computed as the
plored by the trajectory. However, as will be shown below,average of the four trajectories. The calculations were carried
most of the savings in CPU cost are already obtained wittout with the current development version of the Gaussian
four or five updates. Thus, not much is to be gained byseries of program8 using the RHF/3-21G level of theory.
dynamically adjusting the number of updates. The optimal  Generally it is desirable to conserve the energy over the
step size may also vary with the region of the potential eniength of a trajectory in the micro-Hartree rang@ge., errors
ergy surface. A Taylor expansion employing the energy, graef less than 1.8 10 ° Hartred, corresponding to approxi-
dient and Hessian from the previous step can be used tmately 0.01-0.02 kJ/mdi0.005 kcal/mol. Figure 1 shows
predict the energy and gradient at the current point. The difthe average energy conservations for 0, 3, 6, and 9 updates
ference between the predicted quantities and the calculatdmbtween analytic calculations of the full Hessian. In addition
energy or gradient could be a useful diagnostic for adjustingo the MS, PSB, and Bofill updating formulas, results are
the step size while maintaining the desired accuracy in thalso shown for trajectories where the Hessian is kept fixed
integration. Unfortunately, there appears to be very little corbetween each recalculation of the Hessian. The results for
relation between the errors in the predicted energy or gradin=0 are obviously all the same, since no updates are done
ent and the error in the energy conservation for a sRp ( between Hessian calculations. It is clear from Fig. 1 that
~0.3). Until a better diagnostic can be developed, we willupdating the Hessian is dramatically better than using a fixed
use a fixed step size. Hessian. Furthermore, of the three formulas examined, the
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FIG. 1. Conservation of energy as a function of the number of Hessiar |G- 2. The hydrogen—hydrogen bond length in /€8 dissociation tra-
updates between each time the Hessian is calculated analytically. With zel§CtTy as a function of time for different number of updatesThe trajec-

updates the Hessian is calculated at each step; a fixed Hessian means (R§ES Were run with a step size of 0-3/00 é{ﬁb(_)hr, and the solid line
updating is done between the analytical calculations. The results are avefO'TeSPonds to a step size of 0.100 dfbohr with analytical Hessians
ages based on four different trajectoriéstep size 0.250 and 0.350 COmputed at each step.

amu’?bohr temperaturesf® K and 298 K.

can be used with updated Hessians for this particular system.

Murtagh—Sargent update is distinctly inferior to the others. ~ The bounds on acceptable step sizes are even clearer in
The MS update is actually worse than indicated in the figureFig. 3. For a step size of 0.300 afffibohr, the trajectories
since the formula breaks down completely for certain comwith n=6 andn=9 have a final energy conservation that is
binations of updates, step size and temperature. Errors &jghtly worse than the desired accuracy; for step sizes of
large as 0.1 Hartree were observed in the conservation &.200 and 0.100 anitibohr, the conservation of energy is
energy, and can probably be attributed to the denominator igxcellent for all values oh. The decrease in the error in
Eg. (1) becoming too small. going from 6 to 9 updates is due to a fortuitous cancelation

Both the Powell-symmetric—Broyden and Bofill updatesin the particular trajectories examined. Averaging over a
perform well, and conservation of energy is satisfactory evetarge number of trajectories would yield smoother trends.
with nine updates. The fact that Bofill's update is somewhaflThe marked improvement in the energy conservation indi-

better agrees with the literature for transition statecates thatit may be beneficial to shorten the steps slightly in
optimization’® Bofil's update includes the Murtagh— order to increase the number of updates between each Hes-

Sargent update, but the switching functiah),is very effec-  sian calculation As will be discussed later, the cost of a smalll
tive in controlling the problems arising from the denominatorincrease in the number of steps is readily offset by a reduc-
in the Murtagh-Sargent formula. Based on these results, Bdion in the total CPU cost since fewer Hessian calculations
fil’'s update is chosen as the default updating method for ougre needed. When the rotational temperature is reduced from
Hessian-based integrators. 298 K to 0 K, the error in the energy conservation is typi-
H,CO trajectories with updated HessianGood energy cally two orders of magnitude lower (1010 ® Hartres,
conservation is an obvious requirement, but it is also necesand larger step sizes and a high number of updates can be
sary to show that essentially the same trajectories are tracét$ed.
out both with and without updates. Once more formaldehyde In addition to the energy, it is also important that the
decomposition is used as a simple test case. Trajectoridgtal angular momentum of the system is well preserved.
were run in the same manner as outlined above, this time

with step sizes of 0.100, 0.200, and 0.300 &&hohr and 0.000014

temperaturesfdd K and 298 K. - Olstepsize = 0.300 —

Both the carbon-oxygen and the hydrogen-hydrogen 3 0000012 Dlstepsize = 0.200
bond lengths were plotted as functions of time. Figure 2 £ 0.000010 + mstepsize =0.100
shows the H—H bond for trajectories with different number g 0.000008
of updates, all with a rotational temperature of 298 K and % B
step size of 0.300 ani@bohr. The solid line shows the “ex- ~ .§ 0:000006
act” trajectory, generated with a small step sid@100 g 0.000004 — 1
amu’?boh and with Hessians calculated at every step. Very £ ;oo | :
small differences for the various trajectories<3, 6, and 9 v 4"

; : : 0.000000 — . .
can be discerned in the figure, but these were the largest .
3 6 9

deviations seen for this test case. For the C-0O bond, the
trajectories were essentially superimposable, and the agree- Number of Hessian updates

ment was even better for trajectories U.SIr.]g .Shorter Ste‘pI§IG. 3. Conservation of energy for,80 dissociation as a function of the
and/or lower rotaglonal _temperaturgs._ This |nd|cate_s that afumber of Hessian updates using different step sizes. All step sizes are in
298 K, 0.300 amt?bohr is near the limit of the step size that units am&”bohr.
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FIG. 4. Conservation of energy for five different systems as the number of 5. Relative CPU cost as a function of the number of Hessian updates.
updates are varied. Different step sizes were used for the different systemg| nympers are relative to the CPU cost of the trajectories with no updating

to give approximately the same energy conservationnfe0, but all the ;o Hessian calculated at each $teand all trajectories were run for 50
trajectories were run for 50 stegsorresponding to 25—-35)fs steps.

Even at a rotational temperature of 298 K and 0.300  The conservation of energy for these systems is shown
amu’?bohr step size, the error in the conservation of angulayn Fig. 4, and with the exception of one trajectory=3 for
momentum is only of the order 16 4. The error does not H,CO™+CH,F), all results meet or exceed our criterion for
appear to increase with the number of updates, although théhergy conservation. It is clear that the error in energy con-
conservation does become even better with smaller stegervation is slightly worse using updated Hessians, but the
SIZes. increase is not dramatic. Furthermore, there does not seem to

Performance and CPU cost using updated Hessianspe a large change in the conservation of energy as the num-
Having explored the performance and limits of updated Hesper of Hessian updates is increased. It is very satisfying to
sians on the Simple formaldehyde case, we now turn to a fe\gee how well the energy and angu|ar momentum is con-
other systems. The @O decomposition is, of course, a very served, even with as many as nine updates between each
small system and there is little to be gained by using Updatanalytical Hessian calculation.

ing, since the Hessians are relatively inexpensatdeast at Given the excellent energy conservation, we can exam-
the HF/3-21G level Our method needs to be validated for ajne the reduction in CPU cost that can be obtained with
somewhat broader selection of systems. Hessian updating. The relative CPU cost as a function of the

We have chosen a small test suite containing five differnumber of Hessian updates, has been calculated for each
ent systems, ranging in size from two to six heavy aténps  the system as a ratio of the actual CPU time for the trajectory
to ten atoms total All of the systems were run with a rota- wjth n+0 and the trajectory witim=0. In Fig. 5 the results
tional temperature of 298 K. Three of the systemsCH,  are shown for the three largest systems. frer3, the cost is
H,CO™ +CH;F, and HCNCO +CHgCl, were started from  gjready less than half that with no updating, andrfer6 the
optimized transition states. The initial conditions for formal- cost is approximately one third. From there it starts to flatten
dehyde dissociation were described abOVe; for the other thut and there is not too much to be gained by increasing the
reactions, the energy of the transition mode was samplefumber of updates even further. The limit is the ratio of the
from a thermal distribution at 298 K. The last two SyStemSCost of the gradient to the cost of the Hessian.

CH,OH, and striazine (GNgH;) were started from mini-

rr_uzed_ structures. For all five systems, the energies Of.th%ONCLUSIONS

vibrational modes were sampled from a thermal distribution

at 298 K. The step sizes were adjusted for each system so Based on the results discussed above, it seems best to
that the conservation of energy without Hessian updatingise five or six updates between Hessian calculation. Most of
was in the micro-Hartree range. For formaldehyde 0.25@he reduction in CPU time can be achieved and, at the same
amu’?bohr was chosen, whereas for @bH, it was neces- time, good conservation of energy and angular momentum

sary to reduce the step size to 0.100 &hohr. The other can be maintained even if fairly large step sizes are used. It is
reactions were run with 0.200 aftbohr. To keep the test- further clear that any slight reduction in the step size that

ing manageable, all trajectories were run for exactly 50 stepsnay be needed to utilize the Hessian updating is more than
giving total integration times in the range 25—-35(flse ex- compensated by the reduction in total CPU cost. From the

ception again being C}0H, where the trajectories only present work, it seems apparent that for typical small sys-

covered 21 fg tems suitable foab initio direct dynamics, a factor of three
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increase in speed can easily be obtained using Hessian up€hem.100, 15388(1996; H.-H. Bueker and E. Uggerud, J. Phys. Chem.
dating methods. This is a significant improvement in perfor- 99, 5945(1995; K. Ruud, T. Helgaker, and E. Uggerud, J. Mol. Struct.:

mance, and the gain should be even more substantial for

systems larger than the ones considered here.

ACKNOWLEDGMENTS

THEOCHEM 393 59 (1997; E. L. Giestad and E. Uggerud, Int. J. Mass
Spectrom. lon Processé$5, 39 (1997.

6J. M. Millam, V. Bakken, W. Chen, W. L. Hase, and H. B. Schlegel, J.

Chem. Phys111, 3800(1999; W. Chen, W. L. Hase, and H. B. Schlegel,
Chem. Phys. Lett228 436 (1994).

"H. B. Schlegel, irEncyclopedia of Computational Chemistedited by P.

This research was Supported by a grant from the Na- v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F.

tional Science FoundatiofCHE 997400% and by Gaussian,
Inc. V.B. would like to thank the Research Council of Nor-
way for a travel grant in support of this work.

1J. 1. Steinfeld, J. S. Francisco, and W. L. Ha€hemical Kinetics and
Dynamics(Prentice Hall, Englewood Cliffs, 1989

2For a recent review of ab initio classical trajectory methods and a com-
parison of Born—Oppenheimer and Car—Parrinello methods see K. Boltong

W. L. Hase, and G. H. Peshlherbe, Nfodern Methods for Multidimen-
sional Dynamics Computation in Chemistedited by D. L. Thompson
(World Scientific, Singapore, 1998p. 143.

3R. Car and M. Parrinello, Phys. Rev. Lef5, 2471(1985; M. E. Tuck-

erman, P. J. Ungar, T. von Rosenvinge, and M. L. Klein, J. Phys. Chem.

100, 12878(1996 and references therein.

4C. W. Gear,Numerical Initial Value Problems in Ordinary Differential
Equations(Prentice-Hall, Englewood Cliffs, 1971J. Stoer and R. Bulir-
sch, Introduction to Numerical AnalysigSpringer-Verlag, New York,
1980; W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterlin,
Numerical RecipegCambridge University Press, Cambridge, 1989

5T. Helgaker, E. Uggerud, and H. J. A. Jensen, Chem. Phys.128t145
(1990; E. Uggerud and T. Helgaker, J. Am. Chem. Sdd4, 4265

(1992; H.-H. Bueker, T. Helgaker, K. Ruud, and E. Uggerud, J. Phys.

Schaefer Ill, P. R. Schreinéwiley, Chichester, 1998 p. 1136 and ref-
erences therein; T. Schlickbid. p. 1142; H. B. Schlegel, irModern
Electronic Structure Theoryedited by D. R. YarkonyWorld Scientific,
Singapore, 1995 p. 459.

8R. FletcherPractical Methods of OptimizatiofWiley, Chichester, 1981

J. E. Dennis and R. B. Schnab&lumerical Methods for Unconstrained
Optimization and Non-Linear Equation&Prentice-Hall, New Jersey,

J. M. Bdfill, J. Comput. Cheml5, 1 (1994).

10M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,

J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Strat-
mann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N.
Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R.
Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.
A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D.
Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B.
Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.
L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanay-
akkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W.
Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S.
Replogle, and J. A. Pople, GAUSSIAN 98aussian Inc., Pittsburgh, PA,
1998.



