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Ab initio classical trajectories on the Born–Oppenheimer surface:
Updating methods for Hessian-based integrators
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~Received 4 June 1999; accepted 25 August 1999!

For the integration of the classical equations of motion in the Born–Oppenheimer approach, each
time the energy and gradient of the potential energy surface are needed, a properly converged wave
function is calculated. If Hessians~second derivatives! can be calculated, significantly larger steps
can be taken in the numerical integration of the equations of motion without loss of accuracy. Even
larger steps can be taken with a Hessian-based predictor–corrector algorithm. Since updated
Hessians are used successfully in quasi-Newton methods for geometry optimization, it should be
possible to improve the performance of trajectory calculations using updated Hessians. The
Murtagh–Sargent~MS! update, the Powell-symmetric–Broyden~PSB! update and Bofill’s update
~a weighted combination of MS and PSB! were tested, and Bofill’s update was found to be the best.
Slightly smaller step sizes were needed with Hessian updating to maintain good conservation of the
energy, but this was more than compensated by the reduction in total computational cost. An overall
factor of 3 in speed-up was obtained for trajectories of systems containing 4 to 6 heavy atoms
computed at the HF/3-21G level. ©1999 American Institute of Physics.@S0021-9606~99!30443-8#
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INTRODUCTION

Simulation of dynamics provides a much more detai
picture than can be obtained from transition states, reac
paths and statistical treatments of reaction rates.1 However,
until recently, the only reactions that could be studied
molecular dynamics simulations were those for which a
lytical surfaces had been carefully crafted. The advent o
initio classical trajectory calculations has changed the pic
dramatically.2 Because of advances in computer speed
improvements in molecular orbital software, it is now po
sible to compute classical trajectories directly from ele
tronic structure calculations without first fitting a global p
tential energy surface. There are two basic approaches
Car–Parrinello~CP! method,3 in which both the electronic
wavefunction and the atoms are propagated, and the Bo
Oppenheimer~BO! approach,2 in which the electronic struc
ture calculations are converged and the atoms move o
well defined surface. In the integration of classical trajec
ries on the Born–Oppenheimer surface, electronic struc
calculations are performed each time there is a need fo
formation about the potential energy surface or its deri
tives. Standard numerical methods for integrating the cla
cal equations of motion require only the first derivatives
gradients of the potential energy surface.4 However, rela-
tively small step sizes are needed so that energy and an
momentum are conserved with sufficient accuracy. If a
lytic second derivatives~i.e., Hessians! can be computed, the
equations of motion can be calculated on a local quadr
approximation to the potential energy surface. The extra c
of computing the second derivatives is offset by the lar
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step sizes that can be taken with Hessian-based trajec
integration schemes. Helgaker and co-workers5 have used
this second order Hessian-based trajectory integra
method to study a number of reactions.

In recent work, we have outlined a more accura
Hessian-based integration scheme for classical trajec
calculations.6 This scheme uses a second order predictor s
on a local quadratic surface, followed by a corrector step
a more accurate local surface fitted to the energies, gradi
and Hessians computed at the beginning and end point
each step along the trajectory. The electronic structure w
per step is the same as for the second order Hessian b
integrator, since the energy, gradient and Hessian for
corrector step used to construct the local quadratic sur
for the next predictor step. A fifth order polynomial fit to th
potential energy surface performs slightly better than a ra
nal function fit, and the step size can be increased by
order of magnitude over the simple second order met
without loss of accuracy.

METHODOLOGY

To study larger and more interesting systems, the e
ciency of ab initio classical trajectory calculations must b
improved further. For geometry optimization, very good p
formance is obtained with quasi-Newton methods, which
gradients to update an approximate Hessian.7 This suggests
that for trajectories, rather than computing the Hessian
each step, considerable CPU time can be saved by upda
the Hessian for several steps before re-computing it.

Updating the Hessian. For minimizations, the BFGS
Hessian updating scheme is preferred because it main
the positive definite character of the Hessian.8 However, for
many regions of the potential energy surface explored
trajectory calculations, such as near transition states, the
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sian is not positive definite. Hence, Hessian updat
schemes that have been used for transition structure op
zation are more appropriate. The Murtagh–Sargent up
~MS!, also known as the symmetric rank one formula~SR1!,
does not force a positive definite update and thus is suit
for updating the Hessian along a trajectory calculation:

DHMS5Hnew2Hold5
~Dg2HoldDx!~Dg2HoldDx! t

~Dg2HoldDx! tDx
. ~1!

For optimization on a quadratic function, MS converges
the correct Hessian without exact line searches.8 However,
care must be taken to avoid the update if the denomin
becomes too small. An alternate updating formula that d
not have this problem is the Powell-symmetric–Broyd
~PSB! update:

DHPSB5
~Dg2HoldDx!Dxt1Dx~Dg2HoldDx! t

DxtDx

2
Dxt~Dg2HoldDx!DxDxt

~DxtDx!2 . ~2!

Bofill 9 has proposed an updating formula for transition st
optimizations that is a combination of the PSB and MS u
dates:

DHBofill5fDHMS1~12f!DHPSB;

f5
~Dxt~Dg2HoldDx!!2

Dx2~Dg2HoldDx!2 . ~3!

Implementation. The integration of a trajectory start
with an analytic calculation of the energy, gradient and H
sian. Then, for a given number of steps, only the energy
gradient are calculated analytically, and the Hessian is
tained by updating. Each step uses the Hessian b
predictor-corrector algorithm described earlier.6 After the de-
sired number of steps with the updated Hessian, the full H
sian is calculated again analytically. A better estimate of
previous Hessian can be obtained by updating using the
rent analytic Hessian and the previous gradient. The prev
step can then be re-integrated with the better data. Howe
the improvement using this scheme is very modest.

The number of times that the Hessian may be upda
can vary with the region of the potential energy surface
plored by the trajectory. However, as will be shown belo
most of the savings in CPU cost are already obtained w
four or five updates. Thus, not much is to be gained
dynamically adjusting the number of updates. The optim
step size may also vary with the region of the potential
ergy surface. A Taylor expansion employing the energy, g
dient and Hessian from the previous step can be use
predict the energy and gradient at the current point. The
ference between the predicted quantities and the calcul
energy or gradient could be a useful diagnostic for adjus
the step size while maintaining the desired accuracy in
integration. Unfortunately, there appears to be very little c
relation between the errors in the predicted energy or gr
ent and the error in the energy conservation for a stepR2

;0.3). Until a better diagnostic can be developed, we w
use a fixed step size.
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As discussed in Refs. 5 and 6, the equations of mot
for Hessian-based methods are most easily integrate
mass-weighted instantaneous normal mode coordinates.
cause the quadratic approximation of the potential ene
surface is valid only for a given trust radius, it is more co
venient to choose an integration step size in terms of a
placement rather than in terms of time. The displacem
step in mass-weighted coordinates,s, is related to the time
step,Dt, through the integrated path length defined by

s5E
t8

t81DtA(
i

wi~ t !2dt'w̄Dt, ~4!

wherewi(t) are the components of the mass-weighted vel
ity. This equation does not have an analytical solution
Dt, and the time step has to be determined iteratively. Fo
fixed displacement step, the time steps are larger when
molecule is moving slowly and smaller when it is movin
rapidly.

NUMERICAL TESTS

The performance of different Hessian updating formul.
The decomposition of H2CO is a well studied reaction an
thus was used to test whether Hessian updating is feas
and which formula is most suitable for trajectory calcu
tions. The Murtagh–Sargent~MS!, the Powell–symmetric–
Broyden~PSB! and the Bofill updates have been examine
and the trajectories were run with 0, 3, 6, and 9 upda
between analytic Hessian calculations. The conservation
energy is used to evaluate the quality of the trajectory in
grations, and is calculated as the absolute value of the dif
ence of the total energy at the start and the end of the tra
tory.

As in our previous papers,6 the trajectories for
H2CO→H21CO were started from the optimized transitio
structure with 5.145 kcal/mol of energy in the transitio
mode. Step sizes of 0.250 and 0.350 amu1/2bohr were used
~on average corresponding to 0.5 and 0.7 fs!, as well as ro-
tational temperatures of 0 K and 298 K. The four trajectories
with the different combinations of step sizes and tempe
tures were calculated for each type~MS, PSB, Bofill! and
number of Hessian updates (n50,3,6,9). For each case, th
error in the conservation of energy was computed as
average of the four trajectories. The calculations were car
out with the current development version of the Gauss
series of programs10 using the RHF/3-21G level of theory.

Generally it is desirable to conserve the energy over
length of a trajectory in the micro-Hartree range~i.e., errors
of less than 1.031025 Hartree!, corresponding to approxi
mately 0.01–0.02 kJ/mol~0.005 kcal/mol!. Figure 1 shows
the average energy conservations for 0, 3, 6, and 9 upd
between analytic calculations of the full Hessian. In additi
to the MS, PSB, and Bofill updating formulas, results a
also shown for trajectories where the Hessian is kept fi
between each recalculation of the Hessian. The results
n50 are obviously all the same, since no updates are d
between Hessian calculations. It is clear from Fig. 1 t
updating the Hessian is dramatically better than using a fi
Hessian. Furthermore, of the three formulas examined,
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Murtagh–Sargent update is distinctly inferior to the othe
The MS update is actually worse than indicated in the figu
since the formula breaks down completely for certain co
binations of updates, step size and temperature. Error
large as 0.1 Hartree were observed in the conservatio
energy, and can probably be attributed to the denominato
Eq. ~1! becoming too small.

Both the Powell-symmetric–Broyden and Bofill updat
perform well, and conservation of energy is satisfactory e
with nine updates. The fact that Bofill’s update is somew
better agrees with the literature for transition sta
optimization.7,9 Bofill’s update includes the Murtagh–
Sargent update, but the switching function,f, is very effec-
tive in controlling the problems arising from the denomina
in the Murtagh-Sargent formula. Based on these results,
fill’s update is chosen as the default updating method for
Hessian-based integrators.

H2CO trajectories with updated Hessians. Good energy
conservation is an obvious requirement, but it is also nec
sary to show that essentially the same trajectories are tr
out both with and without updates. Once more formaldeh
decomposition is used as a simple test case. Trajecto
were run in the same manner as outlined above, this t
with step sizes of 0.100, 0.200, and 0.300 amu1/2bohr and
temperatures of 0 K and 298 K.

Both the carbon-oxygen and the hydrogen-hydrog
bond lengths were plotted as functions of time. Figure
shows the H–H bond for trajectories with different numb
of updates, all with a rotational temperature of 298 K a
step size of 0.300 amu1/2bohr. The solid line shows the ‘‘ex
act’’ trajectory, generated with a small step size~0.100
amu1/2bohr! and with Hessians calculated at every step. V
small differences for the various trajectories (n53, 6, and 9!
can be discerned in the figure, but these were the lar
deviations seen for this test case. For the C–O bond,
trajectories were essentially superimposable, and the ag
ment was even better for trajectories using shorter s
and/or lower rotational temperatures. This indicates tha
298 K, 0.300 amu1/2bohr is near the limit of the step size th

FIG. 1. Conservation of energy as a function of the number of Hes
updates between each time the Hessian is calculated analytically. With
updates the Hessian is calculated at each step; a fixed Hessian mea
updating is done between the analytical calculations. The results are
ages based on four different trajectories~step size 0.250 and 0.35
amu1/2 bohr temperatures of 0 K and 298 K!.
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can be used with updated Hessians for this particular sys
The bounds on acceptable step sizes are even clear

Fig. 3. For a step size of 0.300 amu1/2bohr, the trajectories
with n56 andn59 have a final energy conservation that
slightly worse than the desired accuracy; for step sizes
0.200 and 0.100 amu1/2bohr, the conservation of energy
excellent for all values ofn. The decrease in the error i
going from 6 to 9 updates is due to a fortuitous cancelat
in the particular trajectories examined. Averaging over
large number of trajectories would yield smoother tren
The marked improvement in the energy conservation in
cates that it may be beneficial to shorten the steps slightl
order to increase the number of updates between each
sian calculation As will be discussed later, the cost of a sm
increase in the number of steps is readily offset by a red
tion in the total CPU cost since fewer Hessian calculatio
are needed. When the rotational temperature is reduced
298 K to 0 K, the error in the energy conservation is typ
cally two orders of magnitude lower (1027– 1028 Hartree!,
and larger step sizes and a high number of updates ca
used.

In addition to the energy, it is also important that th
total angular momentum of the system is well preserv

n
ro
no

er-

FIG. 2. The hydrogen–hydrogen bond length in an H2CO dissociation tra-
jectory as a function of time for different number of updates,n. The trajec-
tories were run with a step size of 0.300 amu1/2 bohr, and the solid line
corresponds to a step size of 0.100 amu1/2 bohr with analytical Hessians
computed at each step.

FIG. 3. Conservation of energy for H2CO dissociation as a function of the
number of Hessian updates using different step sizes. All step sizes a
units amu1/2 bohr.
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Even at a rotational temperature of 298 K and 0.3
amu1/2bohr step size, the error in the conservation of angu
momentum is only of the order 1028 \. The error does no
appear to increase with the number of updates, although
conservation does become even better with smaller
sizes.

Performance and CPU cost using updated Hessia.
Having explored the performance and limits of updated H
sians on the simple formaldehyde case, we now turn to a
other systems. The H2CO decomposition is, of course, a ve
small system and there is little to be gained by using upd
ing, since the Hessians are relatively inexpensive~at least at
the HF/3-21G level!. Our method needs to be validated for
somewhat broader selection of systems.

We have chosen a small test suite containing five diff
ent systems, ranging in size from two to six heavy atoms~up
to ten atoms total!. All of the systems were run with a rota
tional temperature of 298 K. Three of the systems, H2CO,
H2CO21CH3F, and HCNCO21CH3Cl, were started from
optimized transition states. The initial conditions for forma
dehyde dissociation were described above; for the other
reactions, the energy of the transition mode was samp
from a thermal distribution at 298 K. The last two system
CH2OH2

1 and s-triazine (C3N3H3) were started from mini-
mized structures. For all five systems, the energies of
vibrational modes were sampled from a thermal distribut
at 298 K. The step sizes were adjusted for each system
that the conservation of energy without Hessian upda
was in the micro-Hartree range. For formaldehyde 0.2
amu1/2bohr was chosen, whereas for CH2OH2

1 it was neces-
sary to reduce the step size to 0.100 amu1/2bohr. The other
reactions were run with 0.200 amu1/2bohr. To keep the test
ing manageable, all trajectories were run for exactly 50 ste
giving total integration times in the range 25–35 fs~the ex-
ception again being CH2OH2

1 where the trajectories only
covered 21 fs!.

FIG. 4. Conservation of energy for five different systems as the numbe
updates are varied. Different step sizes were used for the different sys
to give approximately the same energy conservation forn50, but all the
trajectories were run for 50 steps~corresponding to 25–35 fs!.
0
r

he
ep

s
-
w

t-

-

o
d

s

e
n
so
g
0

s,

The conservation of energy for these systems is sho
in Fig. 4, and with the exception of one trajectory (n53 for
H2CO21CH3F!, all results meet or exceed our criterion fo
energy conservation. It is clear that the error in energy c
servation is slightly worse using updated Hessians, but
increase is not dramatic. Furthermore, there does not see
be a large change in the conservation of energy as the n
ber of Hessian updates is increased. It is very satisfying
see how well the energy and angular momentum is c
served, even with as many as nine updates between
analytical Hessian calculation.

Given the excellent energy conservation, we can exa
ine the reduction in CPU cost that can be obtained w
Hessian updating. The relative CPU cost as a function of
number of Hessian updates,n, has been calculated for eac
the system as a ratio of the actual CPU time for the traject
with nÞ0 and the trajectory withn50. In Fig. 5 the results
are shown for the three largest systems. Forn53, the cost is
already less than half that with no updating, and forn56 the
cost is approximately one third. From there it starts to flat
out and there is not too much to be gained by increasing
number of updates even further. The limit is the ratio of t
cost of the gradient to the cost of the Hessian.

CONCLUSIONS

Based on the results discussed above, it seems be
use five or six updates between Hessian calculation. Mos
the reduction in CPU time can be achieved and, at the s
time, good conservation of energy and angular momen
can be maintained even if fairly large step sizes are used.
further clear that any slight reduction in the step size t
may be needed to utilize the Hessian updating is more t
compensated by the reduction in total CPU cost. From
present work, it seems apparent that for typical small s
tems suitable forab initio direct dynamics, a factor of thre

of
ms
FIG. 5. Relative CPU cost as a function of the number of Hessian upda
All numbers are relative to the CPU cost of the trajectories with no upda
~i.e., Hessian calculated at each step!, and all trajectories were run for 50
steps.
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increase in speed can easily be obtained using Hessian
dating methods. This is a significant improvement in perf
mance, and the gain should be even more substantia
systems larger than the ones considered here.
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