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Ab initio classical trajectories on the Born–Oppenheimer surface:
Hessian-based integrators using fifth-order polynomial
and rational function fits

John M. Millam, Vebjørn Bakken,a) Wei Chen, William L. Hase,
and H. Bernhard Schlegelb)

Department of Chemistry, Wayne State University, Detroit, Michigan 48202

~Received 24 March 1999; accepted 24 May 1999!

Classical trajectories can be computed directly from electronic structure calculations without
constructing a global potential-energy surface. When the potential energy and its derivatives are
needed during the integration of the classical equations of motion, they are calculated by electronic
structure methods. In the Born–Oppenheimer approach the wave function is converged rather than
propagated to generate a more accurate potential-energy surface. If analytic second derivatives
~Hessians! can be computed, steps of moderate size can be taken by integrating the equations of
motion on a local quadratic approximation to the surface~a second-order algorithm!. A more
accurate integration method is described that uses a second-order predictor step on a local quadratic
surface, followed by a corrector step on a better local surface fitted to the energies, gradients, and
Hessians computed at the beginning and end points of the predictor step. The electronic structure
work per step is the same as the second-order Hessian based integrator, since the energy, gradient
and Hessian at the end of the step are used for the local quadratic surface for the next predictor step.
A fifth-order polynomial fit performs somewhat better than a rational function fit. For both methods
the step size can be a factor of 10 larger than for the second order approach without loss of accuracy.
© 1999 American Institute of Physics.@S0021-9606~99!30131-8#
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INTRODUCTION

Classical trajectory calculations1 are a powerful tool for
studying reaction dynamics and have been used widely. T
provide much greater insight into the dynamics of reactio
than variational transition state theory~VTST! and reaction
path Hamiltonian methods.2 Such calculations require accu
rate global potential-energy surfaces for the reaction syste
The traditional approach is to construct an analyti
potential-energy function by fitting to experimental da
and/orab initio molecular-orbital calculations.1 The classical
equations of motion are then integrated numerically on
fitted surface, using well developed ordinary differential
tegration algorithms such as Runge–Kutta, predicto
corrector methods, etc.3 The bottleneck in this procedure
the construction of the potential-energy surface.4 Since there
are no general methods for constructing accurate glo
potential-energy surfaces, each reaction must be treated
special case, and it may take many months to build a suit
model surface for a specific reaction. Furthermore, the h
dimensionality of most surfaces~i.e., 3N26 for nonlinear
systems withN atoms! may necessitate the introduction of
number of assumptions and approximations, the validity
which may be difficult to test.

Because of advances in computer speed and impr
ments in molecular-orbital software, it has become poss
to compute classical trajectories directly from electro
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structure calculations without first fitting a global potentia
energy surface~for a recent review see Ref. 5!. In the Car–
Parrinello method,6 the electronic wave function is propa
gated along with the nuclei. In the Born–Oppenheim
approach, the wave function is converged to yield a m
accurate potential-energy surface for the dynamics calc
tions. Classical trajectories can be calculated on this sur
by using the analytical first derivatives~gradients! computed
directly by the electronic structure method. If analytical se
ond derivatives~Hessians! can be computed, significantl
larger steps can be taken by calculating the classical e
tions of motion on a local quadratic approximation to t
surface. In their pioneering work, Helgaker, Uggerud, a
Jensen7 used this approach to compute classical trajecto
for the H21H reaction and for CH2OH1

˜CHO11H2 di-
rectly from the ab initio calculations. Local quadratic
potential-energy surfaces were obtained from multiconfi
ration self-consistent field~MCSCF! calculations of energies
gradients, and Hessians, as needed in the course of the
gration. This alternative approach makes it possible to st
the reaction dynamics of small molecules without fitting g
bal analytical functions and introducing arbitrary assum
tions. A growing number of systems have been studied
gradient-based and Hessian-based direct classical traje
methods.7–11

The integration of classical trajectories using local qu
dratic surfaces requires modest step sizes because of th
harmonicity of the global molecular potential-energy surfa
In this paper we present a more accurate Hessian base
gorithm that involves a predictor step on a local quadra

B.
0 © 1999 American Institute of Physics
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surface followed by a corrector step. The corrector step
ploys a fifth-order polynomial or a rational function fitted
the energy, gradient, and Hessian at the beginning and
points of each step. No additionalab initio calculations are
required beyond those needed for the second-order met
since the energy, gradient, and Hessian calculated at the
of the current step are used for the local quadratic surfac
the predictor phase of the next step. Test results indicate
the correction step allows an increase of a factor of ten
more in the step size. Our initial applications of this a
proach were to H2CO˜H21CO,9 C2H4F˜H1C2H3F,10 and
a model of retinal isomerization.11

METHODOLOGY

A local quadratic surface can be constructed from
analytical first and second derivatives of the energy ca
lated by molecular-orbital methods

V~x!5E01G0t~x2x0!1 1
2~x2x0! tH0~x2x0!, ~1!

whereE0, G0, andH0 are the energy, gradient, and Hessi
evaluated atx0. Integration of the classical equations of m
tion is straightforward since the trajectory may be expres
in a closed analytical form. In Cartesian coordinates, Ne
ton’s equations of motion on the quadratic surface are

mid
2xi /dt252dV~x!/dxi52Gi

02S jHi j
0 ~xj2xj

0!. ~2!

Let Ui be the eigenvectors of the mass-weighted Hessian
hi the corresponding eigenvalues,Ui

t(m21/2Hm21/2)Uj

5hid i j , wherem is a diagonal matrix of the atomic masse
In the instantaneous normal mode approach, the coordin
are transformed to the eigenvector space of the m
weighted Hessian, and the equations of motion become

dpi /dt52gi2hiqi , ~3!

where qi5Ui
tm1/2(x2x0), pi is the conjugate momentum

andgi5Ui
tm21/2G. It can be readily shown that the solution

to Eq. ~3! are

qi~ t !52ai@12cos~v i t !#1bi sin~v i t !, hi.0,

pi~ t !5v i@2ai sin~v i t !1bi cos~v i t !#,

qi~ t !52 1
2git

21pi~0!t, hi50
~4!

pi~ t !5pi~0!2git,

qi~ t !52ai@12cosh~v i t !#1bi sinh~v i t !, hi,0,

pi~ t !5v i@2ai sinh~v i t !1bi cosh~v i t !#,

whereai5gi /hi , bi5pi(0)/uv i u and v i
25uhi u . The Carte-

sian coordinates and velocities are given byx5x0

1m21/2Uq anddx/dt5m21/2Up.
The quadratic approximation to the potential-energy s

face is valid only for a given trust radius,t. The time interval
for the integration of the predictor step is adjusted so that
integration path length is equal to the trust radius. This for
the basic step of the second order Hessian-based traje
integration method.7 The energy, gradient, and Hessian a
then calculated again, and the integration of the equation
motion is repeated for the next step.
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A more accurate method can be constructed by star
with the second-order method as a predictor step, and
lowed by a corrector step. This sequence is outlined in F
1. At the end of the predictor step, the energy, gradient,
Hessian are recalculated. A better local approximation to
potential-energy surface is obtained by fitting a higher-or
surface to the energy, gradient, and Hessian at the begin
and at the end of the predictor step. Standard numer
methods can then be used to integrate the trajectory on
fitted surface. In the present implementation, the Bulirsc
Stoer method is used with the thresholds set so that the e
in the integration is less than 1026 amu1/2 bohr and the error
in the energy is less than 10210hartree. This trajectory is
integrated for the same time interval as used for the predi
step. The Hessian at the end of the current predictor ste
used to calculate the next predictor step. Thus, like
second-order method, only one Hessian is calculated
step. However, the more accurate local fitted surface allo
larger steps to be taken.

Two types of local fitted surfaces have be
examined—a fifth-order polynomial, and a rational functi
fit. To carry out the fit, the Cartesian coordinates are rota
so that one component is parallel to the predictor step,xi ,
and the others are perpendicular to the step,x' . For given
displacements parallel and perpendicular to the path,Dxi and
Dx' , the energies, first and second derivatives parallel to
path are given by

Ea5E11g1
'

tDx'1 1
2Dx'

tH1
','Dx' ,

ga5g1
i1H1

i ,'Dx' , ha5H1
i ,i ,

~5!
Eb5E21g2

'
tDx'1 1

2Dx'
tH2

','Dx' ,

gb5g2
i1H2

i ,'Dx' , hb5H2
i ,i ,

whereE1, g1, andH1 are calculated at the beginning of th
predictor step,x1, and E2, g2, and H2 at the end of the
predictor step,x2.

A good approximation to the potential-energy surfa
can be constructed by fitting a fifth order polynomial toEa,
ga, ha, Eb, gb, andhb.

V~x!5Ea~Dx'!y1~Dxi!1ga~Dx'!y2~Dxi!

1ha~Dx'!y3~Dxi!1Eb~Dx'!y4~Dxi!

1gb~Dx'!y5~Dxi!1hb~Dx'!y6~Dxi!. ~6!

The y’s are the appropriate fifth-order interpolating polyn
mials listed in the Appendix.

FIG. 1. Hessian-based predictor–corrector algorithm for integration of
jectories. A quadratic approximation to the surface atx1 is used in a predic-
tor step to obtainx2; the energies, gradients, and Hessians atx1 andx2 are
fitted by a fifth-order polynomial or rational function; a correction step
then taken on this fitted surface; the procedure is repeated for the next
starting with the quadratic approximation to the surface atx2.
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Alternatively, a rational function approximation to the surface can be obtained by fitting a quartic polynomial divid
a quadratic polynomial toEa, ga, ha, Eb, gb, andhb.

V~x!5
p0~Dx'!1p1~Dx'!Dxi1p2~Dx'!Dxi

21p3~Dx'!Dxi
31p4~Dx'!Dxi

4

11q1~Dx'!Dxi1q2~Dx'!Dxi
2 . ~7!
c
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The determination of thep’s andq’s is described in the Ap-
pendix.

If Cartesian coordinates are used for the fitted surfa
the local potential-energy surface is not invariant to ove
rotation. Residual problems with numerical noise and w
translational and rotational invariance can be removed
projecting the mass-weighted gradient,Pg. The appropriate
projector is given by

P5I2(
i 51

6

UiUi
t, ~8!

whereU1–U6 are the normalized vectors corresponding
overall translation and rotation in mass weighted coor
nates. An alternate solution is to use internal coordinates
the surface fitting to ensure translational and rotational
variance. This will be explored in a subsequent paper.

NUMERICAL TESTS

The H2CO˜H21CO reaction has been used to exam
the behavior of the Hessian based integration schemes.
reaction involves only a small number of atoms and, wh
started from the transition state, trajectories reach the pro
region in ;35 fs. Thus numerous tests can be carried
without excessive computational effort. The system conta
a mixture of high- and low-frequency modes and the pr
ucts are rotationally and vibrationally excited; hence
should provide a reasonable test for various aspects of
trajectory calculations. The electronic structure calculatio
were carried out at the RHF/3-21G~restricted Hartree–Fock!
level of theory with the current development version of t
GAUSSIAN series of programs.12 As in the previous paper,9

the trajectories at 0 K were started at the transition state wi
5.145 kcal/mol translational energy along the transition v
tor, zero-point energy in the other vibrational modes and
rotational energy. For the trajectories at 298 K, the transit

FIG. 2. Comparison of changes in the H–H bond length for trajectorie
H2CO˜H21CO starting at the transition state. For the step sizes indica
all of the trajectories are superimposable; points on the trajectory are ma
only for the largest step size.
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structure was given12 kT rotational energy about each prin
ciple axis, but only zero-point energy for the vibrations.

Figure 2 compares different step sizes in the integrat
of a trajectory. The H–H bond length should be the m
sensitive indicator because H2 has a high-vibrational fre-
quency and is produced vibrationally excited. All of the tr
jectories from 0.005 to 0.320 amu1/2bohr are superimposible
~for clarity only the points for 0.320 amu1/2bohr are marked
explicitly!. Trajectories with a step size of 0.480 amu1/2bohr
starts to deviate slightly, and with a step size of 0.6
amu1/2bohr they differ significantly. Increasing the rotation
temperature to 298 K does not change this picture. The C
bond length is even less sensitive to the size of the steps
a step size of 0.320 amu1/2bohr, 50–55 steps are required fo
the 30–35 fs needed to reach the products.

The conservation of the total energy as a function of s
size is shown in Fig. 3 in atomic units. The accumulat
error in the energy is the sum of the absolute values of
changes in the total energy for each step. The final erro
the total energy is about an order of magnitude lower th
the accumulated error. The energy difference between
transition state and the products at this level of theory
0.166 hartree or 104 kcal/mol and energy is conserved
1024– 1028 hartree depending on the step size and the an
lar momentum. At 0 K, the fifth-order polynomial fit per
forms significantly better than the rational function fit. A
298 K the difference between the fifth order and ration
function methods is much less pronounced, but both integ

f
d,
edFIG. 3. Accumulated error in the conservation of energy as a function
step size for trajectories at 0 and 298 K.
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tors have errors that are one to two orders of magnit
larger than at 0 K. The second-order method is not shown
these plots, because the errors in the conservation of the
energy are three to four orders of magnitude larger than
fifth-order fit for step sizes up to 0.320 amu1/2bohr.

The conservation of total angular momentum as a fu
tion of step size is shown in Fig. 4 in units of\. At 298 K the
total angular momentum is;14 \. Projection reduces the
error in the conservation of angular momentum by;8 orders
of magnitude. The behavior with different step sizes is v
similar at both temperatures. As was found for the ener
the rational function fit is somewhat inferior to the fifth-ord
polynomial fit. Surprisingly, the second-order method w
projection conserves total angular momentum somewhat
ter than either of the fifth order or the rational polynom
fits.

The order of a numerical differential equation integr
tion scheme can be obtained by determining the average
ror as a function of the step size. Figure 5 is a log–log plo
the average of the absolute value of the change in the
energy per step~i.e., the accumulated error divided by th
number of steps! as a function of the step size at 298 K
Although the energy conservation is better at 0 K, the pl
of the errors as a function of step size are somewhat m
erratic. The quadratic and the fifth-order fits yield slopes
;3, indicating they are both second-order methods with
spect to the step size. The fifth-order polynomial fit ha
much smaller error as a result of the better fit to the poten
energy surface parallel to the step. However, perpendic
to the step, this fit is only quadratic. Thus it is the error in t
component of the trajectory perpendicular to the overall s
that determines the order of the integrator using the fi
order fit.

FIG. 4. Accumulated error in the conservation of angular momentum
function of step size for trajectories at 0 and 298 K.
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CONCLUSIONS

For a given step size, the fifth-order and rational functi
fits significantly reduce the error relative to a simple qu
dratic function. As can be seen from Fig. 5, the error in t
total energy is three orders of magnitude lower with ess
tially no increase in computational cost. The fifth-order fit
generally somewhat better than the rational function fit, a
step sizes of up to 0.320 amu1/2bohr can be used with very
good conservation of the total energy and angular mom
tum. With comparable conservation of the energy, integ
tion using the fifth-order polynomial is an order of magn
tude faster than the simple quadratic fit for the test ca
considered in the present work.
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APPENDIX

Fifth-order polynomial fit

The interpolating polynomials for fitting the surface a

y1~u!51210u3115u426u5,

y2~u!5s~u26u318u423u5!,

y3~u!5s2/2 ~u223u313u42u5!,
~A1!

y4~u!510u3215u416u5,

y5~u!5s~24u317u42u5!,

y6~u!5s2/2 ~u322u41u5!,

whereu5Dxi /s ands5ux22x1u.

a

FIG. 5. A log–log plot of the average error in the conservation of energy
a function of the step size at 298 K. The slopes of the lines fitted to each
of points are indicated in parentheses.
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Rational polynomial fit

The determination of the coefficients for the ration
polynomial approximation is a bit more involved.

V~x!5
p01p1Dx1p2Dx21p3Dx31p4Dx4

11q1Dx1q2Dx2 . ~A2!

For a given perpendicular displacement, the energy, grad
and Hessian at the beginning of the step (Dx50) and the
end of the step (Dx5s) are Ea, ga, ha, and Eb, gb, hb,
respectively, calculated by Eq.~5!. Since there are seve
unknowns and only six pieces of data, an additional c
straint is needed. Coefficientsp0 , p1 , and p2 can be ob-
tained readily by fittingV(x) to Ea, ga andha at Dx50.

p05Ea, p15Eaq11ga, p25Eaq21gaq111/2ha.
~A3!

Fitting V(x) to Eb, gb, andhb at Dx5s leads to three linea
equations with four unknowns~p3 , p4 , q1 , and q2!. To
simplify the equations, all theq1 dependence is put on th
right-hand-side of the equation

Cr5Fq11D,

r 15q2 , r 25p3 , r 35p4 ,

F15s~Eb2Ea!2s2ga,

F25~Eb2Ea!1s~gb22ga!,

F352~gb2ga!1shb,
~A4!

D15~Eb2Ea!2sga2 1
2s

2ha,

D25~gb2ga!2sha, D35~hb2ha!,

C115s2~Ea2Eb!, C125s3, C135s4,

C2152s~Ea2Eb!2s2gb, C2253s2, C2354s3,

C3152~Ea2Eb!24sgb2s2hb, C3256s, C33512s2 .

The solution to these equations depends onq1:

r5C21Fq11C21D5Aq11B. ~A5!

When the denominator of the rational function goes to ze
there are singularities atDxs5(2q16(q1

224q2)1/2)/2q2 .
These singularities can be moved away from the interpo
ing regions by constrainingq1 such that the discriminant i
as negative as possible.

~q1
224q2!5f. ~A6!

By combining this with Eq.~A5! for q2 ~i.e., q25A1q1

1B1!, we get

q152A16~4A1
214B11f!1/2,

~A7!
q252A1

21B16A1~4A1
214B11f!1/2.

To have real coefficients, (4A1
214B11f) must be greater

than zero. Thus, we cannot choosef arbitrarily; however,
f524A1

224B1 is a unique and optimal choice, leading t

q152A1 , q252A1
21B1 . ~A8!

Specific values forp3 andp4 can then be obtained from Eq
~A5!, p0 , p1 , andp2 can be obtained from Eqs.~A3!.
l

nt,

-

,

t-

For the integration of the equations of motion, we al
need the gradient of the fitted potential. For the fifth-ord
polynomial surface, the derivatives of the interpolating po
nomials are required. For the rational function fit, the co
ficients depend on the perpendicular displacement. The
rivatives of the coefficients are obtained by solving t
derivative of Eqs.~A4!.
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