JOURNAL OF CHEMICAL PHYSICS VOLUME 111, NUMBER 9 1 SEPTEMBER 1999

Ab initio classical trajectories on the Born—Oppenheimer surface:
Hessian-based integrators using fifth-order polynomial
and rational function fits
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Classical trajectories can be computed directly from electronic structure calculations without
constructing a global potential-energy surface. When the potential energy and its derivatives are
needed during the integration of the classical equations of motion, they are calculated by electronic
structure methods. In the Born—Oppenheimer approach the wave function is converged rather than
propagated to generate a more accurate potential-energy surface. If analytic second derivatives
(Hessians can be computed, steps of moderate size can be taken by integrating the equations of
motion on a local quadratic approximation to the surféeesecond-order algorithmA more
accurate integration method is described that uses a second-order predictor step on a local quadratic
surface, followed by a corrector step on a better local surface fitted to the energies, gradients, and
Hessians computed at the beginning and end points of the predictor step. The electronic structure
work per step is the same as the second-order Hessian based integrator, since the energy, gradient
and Hessian at the end of the step are used for the local quadratic surface for the next predictor step.
A fifth-order polynomial fit performs somewhat better than a rational function fit. For both methods
the step size can be a factor of 10 larger than for the second order approach without loss of accuracy.
© 1999 American Institute of Physids$0021-960809)30131-§

INTRODUCTION structure calculations without first fitting a global potential-

energy surfacéfor a recent review see Ref).9n the Car—

C!assmal t.rajectory galculatlohare a powerul t.OOI for Parrinello method, the electronic wave function is propa-
studying reaction dynamics and have been used widely. The . . )
ated along with the nuclei. In the Born—Oppenheimer

provide much greater insight into the dynamics of reaction > oproach. the wave function is converaed to vield a more

than variational transition state theofyTST) and reaction PP ’ . 9 yie

path Hamiltonian methodsSuch calculations require accu- e}ccurate po_tentlal—.energ.y surface for the dynamlcg calcula-

rate global potential-energy surfaces for the reaction system |.ons..CIaSS|caI trapctones can be. calculgted on this surface
y using the analytical first derivativégradient$ computed

The traditional approach is to construct an analytical’’ . )
PP y directly by the electronic structure method. If analytical sec-

potential-energy function by fitting to experimental data d derivati Hessi b ted. sianificant
and/orab initio molecular-orbital calculationsThe classical °N¢ derva ives(Hessiank can be computed, significantly

equations of motion are then integrated numerically on thd2/9€r Steps can be taken by calculating the classical equa-
fitted surface, using well developed ordinary differential in-10NS ©f motion on a local quadratic approximation to the
tegration algorithms such as Runge—Kutta, predictor—surface' In thel_r pioneering work, Helgaker,-Uggergd, apd
corrector methods, efcThe bottleneck in this procedure is Jensehused this approach to compute cIaSS|c+aI trajectories
the construction of the potential-energy surfAGince there ~for the H+H reaction and for CBDH"—CHO"+H, di-
are no general methods for constructing accurate globdfCtly from the ab initio calculations. Local quadratic
potential-energy surfaces, each reaction must be treated adgtential-energy surfaces were obtained from multiconfigu-
special case, and it may take many months to build a suitablétion self-consistent fielMCSCB calculations of energies,
model surface for a specific reaction. Furthermore, the higigradients, and Hessians, as needed in the course of the inte-
dimensionality of most surfaces.e., 3N—6 for nonlinear gration. This alternative approach makes it possible to study
systems withN atoms may necessitate the introduction of a the reaction dynamics of small molecules without fitting glo-
number of assumptions and approximations, the validity ofal analytical functions and introducing arbitrary assump-
which may be difficult to test. tions. A growing number of systems have been studied by
Because of advances in computer speed and improvéradient-based and Hessian-based direct classical trajectory
ments in molecular-orbital software, it has become possibIééT“?thOdS7-_11

to compute classical trajectories directly from electronic ~ The integration of classical trajectories using local qua-
dratic surfaces requires modest step sizes because of the an-
dpermanent address: Department of Chemistry, University of Oslo, P‘O‘BharrT!OHICI'[y of the gIObal molecular po'[entlal_enel.‘gy surface.
1033 Blindern, N-0315 Oslo, Norway. In this paper we present a more accurate Hessian based al-

YElectronic mail: hbs@chem.wayne.edu gorithm that involves a predictor step on a local quadratic
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surface followed by a corrector step. The corrector step em- EZ g2 H? ‘s
. . . . . 2 3
ploys a fifth-order polynomial or a rational function fitted to & %W%SX predictor step -
. . . . X -

the energy, gradient, and Hessian at the beginning and en Sorrestor step C comedersp =0
points of each step. No additionab initio calculations are _ _ _ ) _
required beyond those needed for the second-order metho'(:)‘G' 1. Hessian-based predictor—corrector algorithm for integration of tra-

. th dient dH . lculated at th jettories. A quadratic approximation to the surface’ais used in a predic-
since the energy, gradient, and Hessian calculated at th€ ey step to obtain?; the energies, gradients, and Hessians'andx? are
of the current step are used for the local quadratic surface ifitted by a fifth-order polynomial or rational function; a correction step is
the predictor phase of the next step. Test results indicate th#ten taken on this fitted surface; the procedure is reneaged for the next step,
the correction step allows an increase of a factor of ten ofta"ting with the quadratic approximation to the surface”at

more in the step size. Our initial applications of this ap-
proach were to CO—H,+CO,° C,H,F—H+C,H,F,*? and

a model of retinal isomerizatioft. A more accurate method can be constructed by starting
with the second-order method as a predictor step, and fol-
lowed by a corrector step. This sequence is outlined in Fig.

METHODOLOGY 1. At the end of the predictor step, the energy, gradient, and

A local quadratic surface can be constructed from theHessmn are recalculated. A better local approximation to the

analytical first and second derivatives of the energy calcyPotential-energy surface is obtained by fitting a higher-order
lated by molecular-orbital methods surface to the energy, gradient, and Hessian at the beginning

and at the end of the predictor step. Standard numerical
V() =E%+ G (x—x% + 3(x—x°)'Ho(x—x?), (1) methods can then be used to integrate the trajectory on this
fitted surface. In the present implementation, the Bulirsch—

evaluated ax®. Integration of the classical equations of mo- Stoer method is used with the thresholds set so that the error

- . . - /2
tion is straightforward since the trajectory may be expressell! (€ intégration is less than 16amu”® bohr and the error
in the energy is less than 1&hartree. This trajectory is

in a closed analytical form. In Cartesian coordinates, New- g ;
ton’s equations of motion on the quadratic surface are integrated for th.e same time interval as used for the predlctqr
step. The Hessian at the end of the current predictor step is

mid2x; /dt?= —dV(x)/dx=—G)—3;H}(x;—x}). (2 used to calculate the next predictor step. Thus, like the
mecond-order method, only one Hessian is calculated per
step. However, the more accurate local fitted surface allows

whereE®, G°, andH? are the energy, gradient, and Hessian

Let U; be the eigenvectors of the mass-weighted Hessian a
h; the corresponding eigenvalued);i(m~*?Hm~*2)u,
=h;&,; , wherem is a diagonal matrix of the atomic masses. larger steps to be taken.

In the instantaneous normal mode approach, the coordinates TWO typeg of local f'tte(_j surfaces ) have bgen

are transformed to the eigenvector space of the masg_xamlned—a fifth-order polynomial, and a rational function

weighted Hessian, and the equations of motion become fit. To carry out the fit, the Cartesian coordinates are rotated
’ so that one component is parallel to the predictor skgp,

dp;/dt=—g;—h;q;, (3 and the others are perpendicular to the step, For given

where g;=Um¥3(x—x%), p; is the conjugate momentum displacements parallel and perpendicular to the piah and
andg;=U'm~Y2G. It can be readily shown that the solutions Ax, , the energies, first and second derivatives parallel to the
i :

to Eq. (3) are path are given by
qi(H)=—a[1—cogw;t)]+b; sin(wt), h>0, E*=E*+g", "Ax, +3Ax, 'HY | AX,,
Pi(t) = wi[ —a; sin(w;t) +b; cogwit) ], @*=gh+HY L Ax, hi=HY,
ai(h)=— g t2+p (0, h=0 EP_ 24 @7, Ax, + 3AX,1H?, | A, ©
PiH=pi(0)—ait, “ g°=g%+H?  Ax,, hP=H? |

6i()=—al1-coshwt)]+b;sinfleit), <0, whereE?, g', andH?! are calculated at the beginning of the

pi(t)=w;[ —a; sinh(w;t)+b; cosw;t)], predictor stepx®, and E2, ¢g?, and H? at the end of the
o _ 2_ _ predictor stepx®.
ggﬁr82$or%|i{12tésbl aﬁld(O)\ﬂelllg(':ifilZg wziare|hgi.vg:e bifztoe A good approximation to the potential-energy surface
+m~Y2Uq anddx/dt=m"2Up can be constructed by fitting a fifth order polynomial&d,

a pa b b b
The quadratic approximation to the potential-energy sur—g % B g7, andh®

face is valid only for a given trust radius, The time interval V(X)=E3(AX,)y1(Ax,) +g3(AX, )ya(AX))

for the integration of the predictor step is adjusted so that the

integration path length is equal to the trust radius. This forms +h2(Ax,)y3(Ax) +EP(AX,)ya(AX))

the basic step of the second order Hessian-based trajectory +gP(Ax,)ys(Ax))+hP(AX, )ye(AX)). (6)

integration method.The energy, gradient, and Hessian are
then calculated again, and the integration of the equations dfhe y's are the appropriate fifth-order interpolating polyno-
motion is repeated for the next step. mials listed in the Appendix.
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Alternatively, a rational function approximation to the surface can be obtained by fitting a quartic polynomial divided by
a quadratic polynomial t&?, g2, h?, E®, g°, andh®.

Po(AX, )+ P1(AX, ) AX+ Pa(Ax, ) AXZ+ Pa(Ax, ) AX2+pa(Ax, ) Ax*

V(x)= 1+01(AX, )AX+0o(AX, )AX,?

)

The determination of thg’s andq’s is described in the Ap- structure was gives kT rotational energy about each prin-
pendix. ciple axis, but only zero-point energy for the vibrations.

If Cartesian coordinates are used for the fitted surface, Figure 2 compares different step sizes in the integration
the local potential-energy surface is not invariant to overallof a trajectory. The H—H bond length should be the most
rotation. Residual problems with numerical noise and withsensitive indicator because,Hhas a high-vibrational fre-
translational and rotational invariance can be removed byuency and is produced vibrationally excited. All of the tra-
projecting the mass-weighted gradieRg. The appropriate jectories from 0.005 to 0.320 arttbohr are superimposible

projector is given by (for clarity only the points for 0.320 am@bohr are marked
6 explicitly). Trajectories with a step size of 0.480 afibohr
P=|— Z UiU?, (8) starts to deviate slightly, and with a step size of 0.640
i=1 ' amu?bohr they differ significantly. Increasing the rotational

where U;—Ug are the normalized vectors corresponding toleMPerature to 298 K does not change this picture. The C-O
bond length is even less sensitive to the size of the steps. At

overall translation and rotation in mass weighted coordi- : £0.320 arf@bohr. 50 ired
nates. An alternate solution is to use internal coordinates fo step size of 0. a ohr, 50-55 steps are required for

the surface fitting to ensure translational and rotational in:[he 30-351fs ”eeo,'ed to reach the products. )
variance. This will be explored in a subsequent paper. , T_he conseryathn of the total energy as a function of step
size is shown in Fig. 3 in atomic units. The accumulated
NUMERICAL TESTS error in the energy is the sum of the absolute vz_ilues of the
changes in the total energy for each step. The final error in
The H,CO—H,+CO reaction has been used to examinethe total energy is about an order of magnitude lower than
the behavior of the Hessian based integration schemes. Thige accumulated error. The energy difference between the
reaction involves only a small number of atoms and, whenransition state and the products at this level of theory is
started from the transition state, trajectories reach the produgt166 hartree or 104 kcal/mol and energy is conserved to
region in ~35 fs. Thus numerous tests can be carried outjg~4—10" 8 hartree depending on the step size and the angu-
without excessive computational effort. The system containgar momentum. At 0 K, the fifth-order polynomial fit per-
a mixture of high- and low-frequency modes and the prodforms significantly better than the rational function fit. At
ucts are rotationally and vibrationally excited; hence it298 K the difference between the fifth order and rational
should provide a reasonable test for various aspects of th@nction methods is much less pronounced, but both integra-
trajectory calculations. The electronic structure calculations
were carried out at the RHF/3-21(@stricted Hartree—Fogk

level of theory with the current development version of the g LAE.06
. . . S~ ‘ -
GAUSSIAN series of program¥ As in the previous papér, 53 12806, WOthorderfi
the trajectoriestad K were started at the transition state with EE 10B06 DJRational fit
5.145 kcal/mol translational energy along the transition vec- 2 7 8.0E07
tor, zero-point energy in the other vibrational modes and no £ 2 6.0B-07
. . . e [=p
rotational energy. For the trajectories at 298 K, the transition 53 40E07
£ & 2.0B-07 1
27 0.0B+00 ﬂJ|—J|
35 - < 0.005 0080 0.160 0240 0320
= 3.0 _gt:g :zz 8?28 (a) Mass-weighted step size (amu*? bohr)
S . e Step size 0:320 =
= 251 £ 10E-04
2 ) M 5th order fit
S 2.0+ g 8 .
oy é £ 8.0E-05 ~ ORational fit
g =
2 157 2 T 6.0E-05
jus] S B
= 101 £ 5 40E05
: ; . . . . £
03 ® 2 2.0E-05 -
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<
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FIG. 2. Comparison of changes in the H—H bond length for trajectories of
H,CO—H,+CO starting at the transition state. For the step sizes indicated,
all of the trajectories are superimposable; points on the trajectory are markefelG. 3. Accumulated error in the conservation of energy as a function of
only for the largest step size. step size for trajectories at 0 and 298 K.

—
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CONCLUSIONS

FIG. 4. Accumulated error in the conservation of angular momentum as a . . . . .
function of step size for trajectories at 0 and 298 K. For a given step size, the fifth-order and rational function

fits significantly reduce the error relative to a simple qua-
dratic function. As can be seen from Fig. 5, the error in the
total energy is three orders of magnitude lower with essen-
tially no increase in computational cost. The fifth-order fit is
tors have errors that are one to two orders of magnitudgenerally somewhat better than the rational function fit, and
larger than at O K. The second-order method is not shown 0Btep sjzes of up to 0.320 aftbohr can be used with very
these plOtS, because the errors in the conservation of the tOt@bod Conservation of the total energy and angular momen-
energy are three to four orders of magnitude larger than thgm. With comparable conservation of the energy, integra-
fifth-order fit for step sizes up to 0.320 afffibohr. tion using the fifth-order polynomial is an order of magni-

The conservation of total angular momentum as a functude faster than the simple quadratic fit for the test cases
tion of step size is shown in Fig. 4 in units®f At 298 Kthe  considered in the present work.

total angular momentum is-14 #. Projection reduces the
error in the conservation of angular momentunrb¥ orders
o_f magnltude. The behavior with different step sizes is Very ) CKNOWLEDGMENTS
similar at both temperatures. As was found for the energy,
the rational function fit is somewhat inferior to the fifth-order This research was supported by a grant from the Na-
polynomial fit. Surprisingly, the second-order method withtional Science Foundation(CHE 9400678 and CHE
projection conserves total angular momentum somewhat be¢9740035 and by Gaussian, Inc. V.B. would like to thank the
ter than either of the fifth order or the rational polynomial Research Council of Norway for a travel grant in support of
fits. this work.

The order of a numerical differential equation integra-
tion scheme can be obtained by determining the average er-
ror as a function of the step size. Figure 5 is a log—log plot of
the average of the absolute value of the change in the tota
energy per stefi.e., the accumulated error divided by the Fifth-order polynomial fit
number of stepsas a function of the step size at 298 K.
Although the energy conservation is better at 0 K, the plots
of the errors as a function of step size are somewhat more ya(u)=1-10u°+15u"-6u°,
errat?c. Thg quadratic and the fifth-order fits yield slopes of y,(U)=s(u—6us+8u—3u’),
~3, indicating they are both second-order methods with re-
spect to the step size. The fifth-order polynomial fit has a  Ya(u)=s%2(u?—3u®+3u*-u°),
much smaller error as a result of the better fit to the pote_ntial- y(U)=10u3— 1504+ 61,
energy surface parallel to the step. However, perpendicular
to the step, this fit is only quadratic. Thus it is the error in the ys(u)=s(—4ud+7u*—ud),
component of the trajectory perpendicular to the overall step
that determines the order of the integrator using the fifth- Yo(U)=s%2(u=2u"+u%),
order fit. whereu=Ax, /s ands=|x?—x}|.

PPENDIX

The interpolating polynomials for fitting the surface are

(A1)



3804 J. Chem. Phys., Vol. 111, No. 9, 1 September 1999

Rational polynomial fit

The determination of the coefficients for the rationa
polynomial approximation is a bit more involved.

Po+ P1AX+ PrAXP+ psAXS+ paAx?
1+ AX+ rAX?

V(x)= (A2)

For a given perpendicular displacement, the energy, gradiencti

and Hessian at the beginning of the stéyx&0) and the
end of the step 4x=s) are E?, g3, h? andEP®, g° hP,
respectively, calculated by Ed5). Since there are seven
unknowns and only six pieces of data, an additional con-
straint is needed. Coefficientyy, p;, and p, can be ob-
tained readily by fittingv(x) to E2, g® andh?® at Ax=0.

Po=E? p;=E%+9?% p,=E%q,+g%;+1/2n%
(A3)

Fitting V(x) to E®, g®, andh® at Ax=s leads to three linear
equations with four unknown$ps, ps, qi, andg,). To
simplify the equations, all theg; dependence is put on the
right-hand-side of the equation

Cr=Fq,;+D,

r=dz, r2=pP3, r3=Pa4,
F,=s(EP—E?)—s?g?,
Fy=(E"—E®)+s(g°—2g%),
F3=2(g°—g*) +sh’,

D,=(E°—E%)—sg*~ is?h?, A4
D,=(g"~g?)—sh?, Ds=(h°—h?),
Cp=s*(E®~E"), Cy=5°, Cy=5s",
Cy=2s(E?—~EP)—s%g°, Cp=3s?, Cypu=4s’,
C3=2(E®—EP)—4sg’—s?hP, C;,=6s, Cg3=125%.
The solution to these equations dependsjgn

r=C 'Fq,+C D=Aq;+B. (A5)

When the denominator of the rational function goes to zero,’

there are singularities aixs=(—q;* (q,%>—44q,)¥?/2q,.
These singularities can be moved away from the interpolat-
ing regions by constraining; such that the discriminant is
as negative as possible.

(91— 4d2)= . (A6)
By combining this with Eq.(A5) for g, (i.e., g,=A.q;
+By), we get

q1=2A;* (4A2+ 4B, + ¢)*?,

Up=2A%+B;+ A (4A2+ 4B, + ¢p) 12 (A7)

To have real coefficients, (04%+ 4B;+ ¢) must be greater
than zero. Thus, we cannot choogearbitrarily; however,
¢= —4A§—4Bl is a unique and optimal choice, leading to

a1=2A;, Q,=2A%+B;. (A8)

1

Millam et al.

For the integration of the equations of motion, we also

Ineed the gradient of the fitted potential. For the fifth-order
polynomial surface, the derivatives of the interpolating poly-
nomials are required. For the rational function fit, the coef-
ficients depend on the perpendicular displacement. The de-
rivatives of the coefficients are obtained by solving the
erivative of Eqs(A4).
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