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Methods for geometry optimization of large molecules. I. An O „N2
…

algorithm for solving systems of linear equations for the transformation
of coordinates and forces

Ödön Farkasa) and H. Bernhard Schlegel
Department of Chemistry, Wayne State University, Detroit, Michigan 48202

~Received 1 June 1998; accepted 28 July 1998!

The most recent methods in quantum chemical geometry optimization use the computed energy and
its first derivatives with an approximate second derivative matrix. The performance of the
optimization process depends highly on the choice of the coordinate system. In most cases the
optimization is carried out in a complete internal coordinate system using the derivatives computed
with respect to Cartesian coordinates. The computational bottlenecks for this process are the
transformation of the derivatives into the internal coordinate system, the transformation of the
resulting step back to Cartesian coordinates, and the evaluation of the Newton–Raphson or rational
function optimization ~RFO! step. The corresponding systems of linear equations occur as
sequences of the formyi5M ixi , where M i can be regarded as a perturbation of the previous
symmetric matrixM i 21 . They are normally solved via diagonalization of symmetric real matrices
requiring O(N3) operations. The current study is focused on a special approach to solving these
sequential systems of linear equations using a method based on the update of the inverse of the
symmetric matrixM i . For convergence, this algorithm requires a number of O(N2) operations with
an O(N3) factor for only the first calculation. The method is generalized to include redundant
~singular! systems. The application of the algorithm to coordinate transformations in large molecular
geometry optimization is discussed. ©1998 American Institute of Physics.
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I. INTRODUCTION

Improvements in computer hardware and in quant
chemical software have enabled theoretical investigation
much larger molecules than ever before. Studies of la
molecules require very efficient geometry optimizations, a
the best methods use internal coordinates to describe the
lecular structure.1,2 The cost of computing a geometry opt
mization step is typically negligible compared to the eva
ation of the energy and gradient byab initio quantum
chemical calculations. However, through the use of fast m
tipole moment~FMM! methods,3 sparse matrix techniques
and conjugate gradient density matrix search~CG-DMS!
techniques for solving the self-consistent field~SCF!
problem,4 electronic structure calculations for large mo
ecules can now be done with O(N) operations, whereN is a
measure of the molecular size~e.g., the number of atoms o
electrons!. In these cases, a complex geometry optimizat
process can become the bottleneck for the overall comp
tion. Furthermore, for semiempirical or mixed molecu
mechanics/quantum chemical calculations,5 the cost of pre-
dicting the next geometry in an optimization can be ve
high relative to the cost of determining the energy and
rivatives, even for molecules containing as few as 100 ato
This paper outlines a new, faster algorithm for computing
coordinate transformations that are needed for geometry
timization in internal coordinates.

a!Permanent address: Department of Organic Chemistry, Eo¨tvös University
of Budapest, 1518 Budapest, 112 P.O. Box 32, Hungary.
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A. Regular coordinate transformations †O„N3
…‡

The use of internal coordinates for geometry optimiz
tion necessitates the transformation of the forces or gr
ents, calculated in Cartesian coordinates, into internal co
dinates and the back-transformation of the inter
coordinate optimization step into Cartesians. Usually b
transformations are carried out with the WilsonB-matrix6

used in vibrational spectroscopy. The connection betw
the Cartesian and internal coordinate spaces is given by

du5Bdq, ~1!

wheredu anddq are the infinitesimal changes in the intern
and Cartesian coordinates, respectively, andB is the matrix
of derivatives of the internal coordinates with respect to
Cartesian coordinates. The corresponding connection
tween the internal forces,w, and Cartesian forces,f, is

f5BTw. ~2!

The forces are the negative of the potential energy gradie
Since the WilsonB-matrix6 is not square, the transformatio
of the Cartesian force vector,f, into the internal coordinate
space is usually written in terms of the inverse of theG
matrix, whereG5BBT ~the atomic masses are chosen to
unity!,

w5G21Bf. ~3!

A generalized inverse should be used, sinceG is singular if
the internal coordinate system contains redundancy.2~b!–2~d!
0 © 1998 American Institute of Physics
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The generalized inverse can be calculated via diagona
tion, which requires a number of O(N3) operations.

The forces in internal coordinates are used to update
Hessian and to predict the change in geometry using eith
Newton–Raphson or rational function optimization~RFO!7

step. The transformation of the optimization step in inter
coordinates~Du! back to Cartesian coordinates~Dq! is cur-
vilinear, but can be carried out by iterating the followin
equation until the final Cartesian coordinates yield the
sired internal coordinates.2~a!

Dq5BTG21Du. ~4!

In practice, the inverse ofG is typically formed only once
and is used to iterate Eq.~4! until Dq converges. This ap
proach can be used for a small step, but the transformatio
a large step or the generation of a new structure may ne
sitate the recalculation ofB, G, andG21 at each iteration.

II. AN O„N2
… ALGORITHM FOR SOLVING RELATED

SETS OF LINEAR EQUATIONS

All of the computational effort described above is no
mally expended in each optimization step, even if the ma
ces change by only a small amount between successive s
In this section we outline an efficient method for solvin
closely related sets of linear equations by using an appr
mate inverse, obtained from solving the previous set of eq
tions. This method can be used with singular and nondefi
matrices, which is a significant advantage over the wid
used factorization methods8 for solving systems of linea
equations.

A. Formulation

We seek an iterative algorithm to solve a system of l
ear equations in the following matrix equation form:

y5Mx , ~5!

wherey is a known vector andM is a known symmetric rea
matrix.

If the matrix of the equation system is singular we d
note it asA. The singularity ofA indicates that the rank o
the equation system is less than the dimension ofA. Further-
more, only certainx andy vectors can be represented in t
space spanned by the rows or columns of matrixA. This
space will be denoted as representable subspace and its
tors as representable vectors. The equations can be so
exactly only if y is representable. The solutionx is the pro-
jection of the possible solutions onto the representable s
space. Wheny is representable, we can find a representa
solution by solving the following equation forx8,

y5A2x8, ~6!

and then obtainingx as

x5Ax8. ~7!

Equation~6! is solved using the algorithm outlined below b
replacingM with A2 andx with x8. If the original vector to
be transformed, denoted asy8, is nonrepresentable, it can b
projected onto the representable subspace and the equa
can be solved in the same manner,
a-
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Ay85A3x8. ~8!

In the algorithm below,y is replaced withAy8, M with A3,
andx by x8, andx is computed by Eq.~7!.

We note that even if the equations look the same a
replacingM by A2 or A3, the numerical stability and effi-
ciency of the algorithm depend on the eigenvalue spect
of M . Therefore, whenever possible, the equations should
reformulated and solved directly in the representable s
space.

B. Algorithm

~1! Initialize the counter ask50, the solution vector asx0

50, and the error in vectory ~Dy! as Dy5y. Obtain a
guess for the inverse,M0

21, or initialize it as the inverse
of the diagonal of matrixM .

~2! Form intermediate vectorsD x̃, D ỹ, and compute the
scaling factors,

Dx̃5M k
21Dy,

~9!
Dỹ5MD x̃,

s5
DyTD ỹ

D ỹTD ỹ
. ~10!

Dx̃ is the guess for the step in the solution vectorx,
while Dỹ is the corresponding change iny. We note that
if the scaling factor is small at any step~e.g., smaller
than 1023), Dx̃ may be replaced byDy. This is effec-
tively the use of a unit matrix as the guess inverse
that particular iteration.

~3! Form the next approximation to the solution vector,

xk115xk1sD x̃. ~11!

~4! Update the inverse matrix using the symmetric rank o
~SR1! update9 to satisfy the condition

Dx̃5M k11
21 D ỹ. ~12!

In this particular case, the SR1 update is

M k11
21 5M k

211
~D x̃2M k

21D ỹ!~D x̃2M k
21D ỹ!T

~D x̃2M k
21D ỹ!T

•D ỹ
. ~13!

~5! Calculate the new error iny,

Dy5y2Mx k11 . ~14!

~6! Update the counter (k5k11) and go to step~2! until Dy
converges to0 within a useful threshold for the norm
and/or maximum absolute value.

The SR19 update is the simplest update to correct a sy
metric matrix and the only one which converges well to t
exact matrix. Other choices, such as Broyden, Fletch
Goldfarb, and Shanno~BFGS!,10 have been tested and hav
not been found to be as successful. However, the SR1 up
may be singular; therefore, when the denominator in Eq.~13!
is relatively small the update should be skipped. The conv
gence properties of the algorithm depend on the structur
matricesM andM21 and on the initial guess for the invers
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Our experience has shown that the algorithm is much m
efficient for diagonally dominant matrices. In these cases
initial O(N3) cost can be avoided by computing the fir
solution with a diagonal guess forM0

21.

III. APPLICATION TO GEOMETRY OPTIMIZATION
USING REDUNDANT INTERNAL COORDINATES

A. Transformation of the forces using the fast O „N2
…

method

For redundant internal coordinates, theG matrix is sin-
gular. So that the O(N2) method can be used to transfor
and project the forces from Cartesian to internal coordina
Eq. ~2! can be written in the form of Eqs.~6! and ~7!,

Bf5G2w8, ~15!

w5Gw8. ~16!

However, this approach expands the eigenvalue spectru
the originalG matrix. Therefore, we reformulate the tran
formation in a way that is numerically more stable and m
efficient. For this purpose we define a matrixP as

P5Bext
T Bext, ~17!

whereBext is theB-matrix extended to contain rows for mo
lecular translations and rotations. This definition leads t
nonsingular matrix with the same dimensions as the Ca
sian coordinates. Although theP matrix is singular in 3D for
linear molecules, no change is necessary to handle this in
algorithm. TheP matrix can be used instead ofG in the
coordinate transformations by rewriting Eq.~2! in the fol-
lowing form:

f5PB21w. ~18!

Assuming thatf has no translational or rotational contamin
tion, the equations can be solved using the algorithm
scribed above by replacingy with f, M with P, andx with
B21w. The internal forces~w! can be calculated simply b
multiplying x ~i.e., B21w) by B.

B. Back-transformation of the optimization step using
the fast O „N2

… method.

To use the O(N2) method to solve Eq.~4!, the transfor-
mation is reformulated to use the previously defined ma
P,

BTDu5PDq, ~19!

and the solution is obtained by substitutingBTDu for y, P for
M , andDq for x in the algorithm. Because of the curvilinea
behavior of the bond angle, out-of-plane angle, and dihe
angle coordinates, the transformation of the change in in
nal coordinates is performed by iterating Eqs.~4! or ~19!
until the error in the internal coordinates and/or the Cartes
coordinates converges. For these outer iterations, the
size should be controlled in a manner similar to step~2! of
the algorithm. So that larger changes in internal coordina
can be transformed accurately, theB matrix should be recal-
culated for each outer iteration.

Both the transformation of the forces and the ba
transformation of the optimization step use the sameP ma-
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trix and update its inverse. After the first solution has be
obtained, subsequent transformations can start with a v
good approximation of the inverse ofP; therefore, only a few
matrix-vector multiplications and updates are required
solve the equations.

C. The treatment of the frozen internal coordinates

Constrained internal coordinates need extra attention
cause of possible redundancy in the coordinates and, th
fore, potential overlap between the variable and frozen s
space. We found it practical to form an orthonormal froz
coordinate space by applying a Gram–Schmidt orthogo
ization on the corresponding rows of theB-matrix and then
substracting the overlap from the rows related to varia
internal coordinates. If the number of frozen variables
much less than the total number of coordinates, this e
treatment does not effect the scaling of the transformatio

IV. COMPARISON OF THE COORDINATE
TRANSFORMATIONS CARRIED OUT BY DIFFERENT
METHODS DURING GEOMETRY OPTIMIZATIONS

In Table I we compare the present method for the tra
formation of forces and back-transformation of optimizati
step during a geometry optimization cycle to the regu
technique for a few medium to large molecules, ranging
size from 56 atoms to 642 atoms. Because of the differ
formalism, the regular method scales as a function of
number of internal coordinates while the new, fast transf
mation scales as a function of the number of Cartesian c
dinates. This is a very significant advantage when the in
nal coordinate system is highly redundant and allows
effective use of even a full set of distances as coordina
The plot of the square root of average CPU time spent for
transformations during the optimizations versus the num
of atoms~shown in Fig. 1! confirms that the present metho
scales as O(Natoms

2 ).
The test molecules have been selected to represe

range of systems, with different structural properties.~a!
Buckminsterfullerene, C60, has a network of fused five an
six membered rings; even an optimization in Cartesian co
dinate system should behave satisfactorily for this fairly rig
system. Consequently, only a few optimization cycles
needed from a moderately unsymmetrical geometry~dis-
torted by a random displacement from the optimized geo
etry resulting in an root-mean-square~rms! error of 0.1 Å!.
~b! Taxol is a sizable organic molecule, with a number
fused rings and several rotatible bonds. The present a
rithm is more than 200 times faster than the regular trans
mation, when averaged over the 54 optimization steps.~c!
Ala5 , Ala10, and Ala20 have been chosen to explore the b
havior of the present methodology with increasing si
while keeping the structural properties similar. The peptid
form a-helices stabilized by hydrogen bonds and ben
from the use of redundant internal coordinates to describe
potential energy surface. The ratio of the CPU usage us
the regular method versus the present algorithm increa
essentially linearly with the size of the molecules, not on
for the average CPU time per cycle but also for the fi
optimization cycle.~d! RNA segments surrounded by wat
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TABLE I. Comparison of the CPU time used for the force and coordinate transformations in each geo
optimization cycle using the regular method and the presented O(N2) technique.a

Molecule
No. of
atoms

No. of
coordinates

Level of
theory

Machine
type

CPU time usage in seconds during
geometry optimization

Regular

Current study

First cycle Averageb

C60 60 630 AM1 IBM RS6k/560 169.81 1.59 0.40~10!
Taxol 113 668 AM1 IBM RS6k/560 200.47 7.38 0.91~54!
For-Ala5-NH2 56 280 AM1 IBM RS6k/560 8.04 1.16 0.21~29!
For-Ala10-NH2 106 546 AM1 IBM RS6k/560 99.51 6.53 0.80~77!
For-Ala20-NH2 206 1068 AM1 IBM RS6k/560 890.32 45.60 2.37~184!
RNA1waters 368 1918 MNDO IBM RS6k/560 5373.43 331.83 6.64~359!
Crambinc 642 2673 UFF-MMd Cray J90 4672.44 460.40 8.65~323!

aThe CPU usage is listed separately for the regular method that uses a generalized inverse, for theN2)
method for the first optimization cycle and averaged over the number of optimization cycles need
convergence. All calculations have been carried out usingGANSSIAN 98 Rev. A.1 ~Ref. 12!.

bNumber of optimization steps are in parentheses.
cOptimization started from the geometry published in Ref. 13.
dReference 11.
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molecules~8 bases in 4 segments, 4 sodium ions and
water molecules! is a problematic test case regardless of
choice of the coordinate system. The optimization had to
restarted a few times to rebuild the coordinate system,
cause of the reorientation of the water molecules a
changes in the network of hydrogen bonds. The data in Ta
I have been extracted from the last restart which converge
the final optimized structure. The internal coordinate syst
can be built automatically during the geometry optimizatio
but this feature has not been used in the current study for
purpose of easier comparison.~e! Because of the availability
of high resolution x-ray structures, the small protein cram
has been used frequently as a test for macromolecular ge
etry optimizations with molecular mechanics force field
With recent improvements in theab initio quantum chemica
methods, molecules of this size can be studied and optim
at ab initio Hartree–Fock13 or density functional theory
~DFT! level of theory. Our algorithm is more than 500 tim
faster for crambin. Even molecules as large as plasmino

FIG. 1. The square root of the average CPU time spent for the transfo
tion of forces and coordinates in each optimization cycle vs the numbe
atoms.
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and HIV protease can now be optimized in the framework
redundant internal coordinates.14

V. SUMMARY

This paper outlines an efficient, O(N2) method for per-
forming the coordinate transformations during quantu
chemical geometry optimizations. The improvements
speed cause no loss of accuracy and are suitable for
complete, redundant, or nonredundant internal coordin
system. The present method involves three major change
the regular algorithm:~1! use of an updated inverse to solv
the systems of linear equations,~2! avoidance of the redun
dancy problem by transforming the equations into a non
dundant space, and~3! Gram–Schmidt orthogonalization o
the subspace of constrained internal coordinates to rem
the overlap with the variable subspace. Further accelera
can be expected for larger molecules by using sparse m
and limited memory update storage techniques. The use
conjugate gradient or DIIS15 based optimizer in the algo
rithm may also speed up the convergence. The algorithm
been implemented as a part of the default optimizat
method for large molecules into the latest release of
GAUSSIAN12 series of programs. An O(N2) method for solv-
ing of the rational function optimization7 ~RFO! step in ge-
ometry optimization will be discussed in a subsequ
paper.16 Another potential application of the present coord
nate transformation method is in NMR structure determi
tion. This approach is an alternative to the distance geom
methods17 for generating geometries that satisfy distance a
other internal coordinate constraints obtained from NM
data.
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9400678!. Ö.F. thanks the Hungarian Fellowship Board f
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