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A nonorthogonal CI treatment of symmetry breaking in
sigma formyloxyl radical

Philippe Y. Ayala and H. Bernhard Schlegel
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~Received 8 August 1997; accepted 2 February 1998!

Spatial symmetry breaking can occur in Hartree–Fock wave functions when there are two or more
close lying configurations that can mix strongly, such as in HCO2, NO2, and allyl radical. Like spin
contamination, spatial symmetry breaking can cause sizeable errors when perturbation theory is
used to estimate the correlation energy. With conventional methodology, very large MCSCF and
MRCI calculations are necessary to overcome the spatial symmetry breaking problem. This paper
explores an alternative approach in which a 232 nonorthogonal CI is used to recombine the two
symmetry broken Hartree–Fock determinants. The necessary matrix elements closely resemble
those used in the spin projection calculations. Second order perturbation theory is used to include
electron correlation energy in this approach. With perturbative corrections for correlation energy,
this approach predicts that the2B2 structure is a minimum, in agreement with the best available
calculations. ©1998 American Institute of Physics.@S0021-9606~98!00218-9#
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INTRODUCTION

The formyloxyl radical, HCO2, is of particular interest in
atmospheric and combustion chemistry as an intermedia
the OH1CO→H1CO2 reaction.1–5 The formyloxyl radical
is also a possible intermediate in the thermal decomposi
of formic acid.6–8 Despite its importance, relatively little i
known experimentally about HCO2, not even its equilibrium
structure. Formyloxyl radical is also a very difficult syste
to study by quantum mechanical methods. Most correla
methods based on single determinants incorrectly predict
the equilibrium geometry has nonequivalent C–O bonds2,8

Similar to the isoelectronic allyl radical,9,10 C3H5, and nitro-
gen dioxide,11–16 NO2, the Hartree–Fock wave function o
the formyloxyl radical16–22 suffers from spatial symmetry
breaking~also known as artifactual symmetry breaking11 or
doublet instability23,24!. However, aC2v equilibrium geom-
etry for HCO2 can be obtained with extensive and carefu
constructed multiconfiguration self-consistent field~MC-
SCF! and multireference configuration interaction~MRCI!
calculations16–20or large EOM-CC calculations using the a
ion as a reference configuration.21,22 In this paper we use the
broken symmetry Hartree–Fock orbitals to construct a co
pact, high symmetry wave functions for the2B2 and 2A1

states of thes radicals of HCO2, employing a 232 nonor-
thogonal configuration interaction10,13,26,27 combined with
second order perturbation theory~Scheme 1!.

Scheme 1. Localized, broken symmetry configurations combined to form
2B2 and2A1 states ofs-HCO2

The breaking of spatial symmetry in SCF wave functio
has been examined a number of times during the last
decades by numerous groups.9–46This problem is often stud
7560021-9606/98/108(18)/7560/8/$15.00

Downloaded 30 Apr 2001 to 141.217.27.39. Redistribution subject to A
in

n

d
at

-

e

s
w

ied in the context of polyenes, open shell oxygen contain
radicals, excited states and ions. Molecular systems
encounter symmetry-breaking problems in their wave fu
tion share a number of features. For a symmetry adap
HF wave function, minute antisymmetric displacemen
can cause discontinuous changes in the energy. Remov
the symmetry constraints on the HF wave function yie
two or more lower energy wave functions and results
extensive relaxation of the molecular orbitals. The poten
energy surfaces for these are continuous under distort
to lower symmetry and distortion to lower symmetry
energetically favored. Symmetry breaking in an HF wa
function can occur if there are two or more single determ
nantal wave functions that~a! are similar in energy but dif-
ferent in symmetry,~b! differ by a single excitation and~c!
can interact when the geometry is distorted to low
symmetry.12,13

McLean et al.17 have used He2
1 to clearly illustrate the

problem of symmetry breaking in the SCF solution and
pecially the effect of orbital relaxation. A symmetry broke
Hartree–Fock wave function,C05ufa

2fb8u, is shown in
Scheme 2; because the orbital localized on atoma has to
accommodate two electrons,fa is significantly larger~more
diffuse! thanfb8 , the one localized on atomb. The configu-
ration ufafb8

2u is considerably higher in energy because tw
electrons are placed in a smaller, more compact orbital
the other symmetry broken wave functionPC05ufa8fb

2u,
whereP is the appropriate symmetry operator!, fb

2 is larger
thanfa8 .

Scheme 2. Symmetry broken and symmetry constrained orbitals for H2
1.
0 © 1998 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Alternatively one can construct two symmetry adap
Hartree–Fock wave functions~geradeand ungerade! from
the localized orbitals on atomsa and b: Cg,u

5u(fa9mfb9)
2(fa-6fb-)u 5ufb9

2fa-u6ufa9
2fb-u1ufa9

2fa-u
6ufb9

2fb-u1 other contributions. By expanding the determ
nant, it can be clearly seen that the symmetry adapted w
functions contain configurations that resembleC0 andPC0 .
These terms, namely,ufb9

2fa-u and ufa9
2fb-u, interact in a

resonance fashion. However,Cg,u also containufa9
2fa-u and

ufb9
2fb-u which correspond to high energy, ionic configur

tions. These terms are inherent to the symmetry constra
and the SCF process must find optimal orbital sizes that
a compromise between maximizing the resonance effect
minimizing the destabilization effect of the high energy ion
configurations. In the symmetry broken wave functions, s
a compromise on orbital size is not necessary. The orde
of the orbital size isf.f9.f-.f8. This change in orbital
size along with the localization constitutes the substan
orbital relaxation that accompanies symmetry breaki
From this, it can be inferred that the artifactual symme
breaking problem appears when the two contradictory ob
tives of resonance and optimal orbital size cannot
achieved in a single determinant wave function. At shor
internuclear distances the resonance effect dominates an
symmetry adapted wave function is lower in energy; at lar
distances the resonance effect is diminished and the bro
symmetry wave function with its optimal size orbitals
more stable. Since single reference methods have prob
balancing these two objectives, multiconfiguration S
methods are usually used.

The MCSCF studies of the HCO2 potential energy sur-
face by Felleret al.,19 McLeanet al.,17 and Rauket al.18 are
among the most extensive. Feller, Davidson, a
co-workers19 used a split valence plus polarization basis
and 11 orbital/13 electron MCSCF restricted to no more th
double excitations, followed by MRCI calculations. McLea
et al.17 carefully constructed a larger active space
s-HCO2 that included the CO, CO8, and CHs and s* or-
bitals, the 3p orbitals and two in-planep orbitals of different
size on each oxygen to handle the orbital relaxation effec
the s lone pairs and included dynamic correlation by MR
calculations constrained to single and double excitations
the 12 most important reference functions. Rauket al.18 used
complete active space MCSCF calculations with 11 elect
in 13 orbitals, followed by multireference second order p
turbation theory ~CASPT2!.47 More recently, Stanton
et al.21,22 applied the EOM-CC method to HCO2, using the
anion as a reference determinant. This is effectively a mu
reference coupled cluster approach starting from all sin
ionized determinants that can be generated from HCO2

2.
Small MCSCF and MRCI calculations find the2B2 structure
to be a saddle point with respect to asymmetric C–O stre
ing; however, in larger MCSCF calculations, or with MRC
CASPT2, or EOM-CC methods, the2B2 state is a minimum
with an asymmetric C–O stretching frequency ne
1000 cm21 and, except for the CASPT2 calculations,
lower in energy than the2A1 structure.16–22 The surface
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around the2A1 structure is very flat, and different levels o
theory yield different results. With small to medium siz
basis sets,2A1 structure is a saddle point with respect
asymmetric C–O stretching,16–22 but it may be a minimum
with very large basis sets.22 The 2A1 structure can also dis
sociate to H1CO2, with or without a small barrier, depend
ing on the computational approach.18,19 The 2B2 and 2A1

regions of the surface are connected via a pairCs symmetry
reaction paths with unequal C–O bond lengths; there may
minima and/or a small barrier along this path, depending
the level of theory.16–22

There are a number of additional studies on other s
tems that are related to the present work. Bartlett a
co-workers15,35–37have studied spatial symmetry breaking
NO2 and NO3 using the Brueckner doubles method a
coupled cluster wave functions with quasirestricted op
shell orbitals. Hibertyet al.48 have used a two configuratio
valence bond method with breathing orbitals to handle
orbital size effect in two center, three electron bonds. Bur
et al.16 have examined the vibrational frequencies in N2
and HCO2 and have pointed out that the anomalously hi
frequencies for the asymmetric stretch found for symme
constrained HF calculations are due to wavefunction ins
bility with respect to symmetry breaking.

NONORTHOGONAL CI APPROACH

It would be very desirable to treat the symmetry brea
ing problem without having to resort to large MCSCF a
MRCI calculations. In the two symmetry broken Hartree
Fock solutions for HCO2, the orbitals are optimal size
whereas in the symmetry constrained2A1 and2B2 solutions,
the resonance effect competes with the energy raising e
of intermediate size orbitals. One way to cope with this is
combine the two symmetry broken solutions with a simp
232 nonorthogonal configuration interactio
scheme.10,13,26,27Jackels and Davidson13 found that a 232
nonorthogonal CI was not adequate to reproduce aC2v mini-
mum for the2B2 state of NO2, which is isoelectronic with
HCO2. Blahouset al.14 suggest that this is due to the near
crossing between the2A1 and 2B2 surfaces; extensive
CASSCF calculations show that additional configuratio
mix strongly, resulting in aC2v minimum for the2B2 surface
~but with a barrier of less than 1.8 kcal/mol for crossing
the 2A1 surface!. The HCO2 surface may show similar diffi-
culties, with added complications arising from transitio
states for C–H bond dissociation and 1, 2 hydrogen shif

A 232 nonorthogonal configuration interaction a
proach involves two sets of nonorthogonal orbitals and
similar to spin-coupled valence bond theory49 and resonating
GVB theory.10,26 Let C0 andC08 be the two symmetry bro-
ken, normalized Hartree–Fock solutions; a symme
adapted wave functionF0 can be constructed from a linea
combination ofC0 andC08 by solving a 232 nonorthogonal
CI problem
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FE0 H

H E08
G Fd0

d08
G5EF1 S

S 1G Fd0

d08
G ,

F05d0C01d08C08 , ~1!

E05^C0uHuC0&, E085^C08uHuC08&,

H5^C0uHuC08&, S5^C0uC08&.

The matrix elements can be obtained by expanding on
the wave functions in terms of ground state and excited
terminants of the obtained from the other wave function

C085a0C01( ai
aC i

a1( ai j
abC i j

ab1••• , ~2!

^C0uHuC08&5a0^C0uHuC0&1( ai j
ab^C0uHuC i j

ab&. ~3!

The coefficientsai
a , ai j

ab etc. can be obtained from the ove
laps between the two sets of orbitals, as outlined in the
pendix.

For symmetric geometries,C0 andC08 are energetically
equivalent and molecular orbitals ofC08 can be obtained by
applying the appropriate symmetry operator to the molec
orbitals ofC0 . For lower symmetry geometries, the orbita
are obtained from two separate SCF calculations; howe
converging two separate UHF localized solutions can be
ficult. A semiempirical initial guess for the wave functio
does not necessarily converge to the lowest energy bro
symmetry state, but a suitable initial guess for the sec
state can be obtained by permuting the orbital coefficie
from the converged solution of the first state. Both solutio
are stable with respect to quadratic displacements of the
coefficients~i.e., the orbital rotation hessians have only po
tive eigenvalues!.

Perturbation theory can be used to estimate the elec
correlation contributions to the wave functions associa
with each symmetry broken solution. Let the wave functi
for the system be a linear combination of the two pertur
tionally corrected symmetry broken solutions

C5C01C11C21¯; C85C081C181C281¯,
~4!

F5dC1d8C8.

The coefficients and correlated energy can be obtai
by solving a suitable 232 eigenvalue problem, in which th
matrix elements are evaluated in the spirit of perturbat
theory, i.e., retaining terms up to a given order~in some
respects, this is akin to quasidegenerate perturbation the!.
The diagonal elements are the respective perturbationa
ergies of the symmetry broken solutions and pose no p
lems. The off-diagonal matrix elements are taken as the
erage of the two possible forms so that the matrices
hermitian in the low symmetry cases. For second order
equations are

FEMP2 H

H EMP28 G F d
d8G5EF1 S

S 1G F d
d8G ,

F5d0~C01C1!1d08~C081C18!,
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EMP25^C0uHuC01C1&, EMP28 5^C08uHuC081C18&,
~5!

H5~^C0uHuC081C18&1^C08uHuC01C1&!/2,

S5~^C0uC081C18&1^C08uC01C1&!/2.

The off-diagonal Hamiltonian matrix element^C08uHuC1&
requiresC08 in Eq. ~2! to be expanded up to fourth order. Th
resulting expression resembles the CCSD equations, and
be evaluated with very little modification of the CCSD cod
The computational work is comparable to one CCSD ite
tion or an MP4SDQ calculation.

The correlation corrections to the 232 nonorthogonal CI
equations can also be approximated in a manner simila
spin projected Mo” ller–Plesset perturbation theory. In this a
proach, the energy expression is very similar to the appro
mate spin projected MP2 energy used in a number of pr
ous studies by Schlegel.50 Equation~2! can be rewritten as

C085^C0uC08&C01C̃, ~6!

whereC̃ is linear combination of excited determinants bu
from C0 . An approximate expression forC8 can be obtained
by assuming the perturbative corrections toC̃ are small

C85C081C18¯

'^C0uC08&~C01C1¯ !

1C̃~12^C̃uC1¯&/^C̃uC̃&!. ~7!

The last term is included to remove fromC̃ any contribu-
tions already contained inC1 . The approximate off-diagona
hessian can then be computed relatively simply

^C0uHuC8&'^C0uC08&^C0uHuC01C1¯&

1^C0uHuC̃&~12^C̃uC1¯&/^C̃uC̃&!. ~8!

For the high symmetry case when̂ C0uHuC0&
5^C08uHuC08&, the energy for the 232 CI reduces to

E'EMP21DE0~12^C̃uC18&/^C̃uC̃&!, ~9!

whereDE05^C0uHuC̃&/(11^C0 uC08&) is the energy low-
ering given by the 232 CI based on Hartree–Fock determ
nants, Eq.~1!. This scheme has a significantly lower comp
tational cost than Eq.~5!. These two schemes can be show
to yield a continuous PES, even as the symmetry bro
UHF solutions disappear. The energy gradient is continu
except at the onset of the symmetry breaking instability.

Calculations were carried out with theGAUSSIAN series
of programs51 using the spin unrestricted Hartree–Fo
~UHF! method with a split valence plus polarization basis
~6-31G* !. Additional code was written to compute the matr
elements needed for the nonorthogonal CI and the MP2
rections based on the symmetry broken determinants. Vi
tional frequencies were calculated by double numerical
ferentiation. Because thes and p states are very close in
energy, converging to the desireds UHF solutions required
some care.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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RESULTS AND DISCUSSION

UHF and single reference determinant calculations

The structures and energies of symmetry constrai
UHF calculations on the2B2 and2A1 states ofs-HCO2 are
collected in Tables I and II, along with the results of corr
lated methods based on these UHF reference determin
The results obtained with the hybrid density function
method B3LYP are also given. In the2B2 state, ana1 orbital
is doubly occupied and ab2 orbital is singly occupied; in the
2A1 state, the occupancy is reversed. Sketches of these o
als are shown in Scheme 3. The2B2 state is lower in energy
and has a smaller OCO angle than the2A1 state because th
a1 orbital is O–O bonding. Thea1 orbital also has C–H
bonding character; since this orbital singly occupied in2A1

state, the C–H bond is significantly longer bond than in
2B2 state. Subsequent improvements of the wavefunction
not change these qualitative differences between the2B2 and
2A1 states.

Scheme 3.b2 anda1 orbitals for HCO2.

TABLE I. Energies and optimized geometries of2B2 s-HCO2 calculated
with single reference, symmetry constrained wave functions and the 6-3*
basis set.

Method
CH
~Å!

CO
~Å!

HCO
~degree!

OCO
~degree!

Energy
~Hartree!

DEb

~kcal/mol!

HF 1.0859 1.2311 123.87 112.262188.094 168 29.78
B3LYP 1.1000 1.2564 123.44 113.112189.078 964 0.00
MP2 1.0945 1.2598 124.25 111.502188.578 110 10.81
QCISD 1.0986 1.2615 123.78 112.442188.592 387 22.86
QCISD~T!a 1.0995 1.2678 123.70 112.602188.600 209 14.00
CCSD 1.0978 1.2576 123.82 112.362188.587 621 0.93
CCSD~T! 1.0996 1.2647 123.70 112.602188.607 549 1.57
BDa 1.0983 1.2564 123.87 112.262188.574 838 0.02
BD~T!a 1.0996 1.2647 123.76 112.482188.596 869 0.02

aFrozen core calculation.
bEnergy of the symmetry broken solution minus the symmetry constra
solution at theC2v optimized geometry.
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At the C2v geometry, the symmetry broke
UHF/6-31G* solutions are 9.8 and 6.3 kcal/mol lower tha
the 2B2 and 2A1 symmetry constrained UHF calculation
respectively~Tables I and II!. With UMPn methods, the
symmetry broken states are much higher than the symm
constrained calculations, indicating that perturbative tre
ment of electron correlation can give rather misleading en
getics for spatial symmetry breaking, similar to UMPn ca
culations on spin contaminated systems50 ~i.e., spin
symmetry broken wave functions!. The energy difference be
tween the symmetry broken and constrained wavefuncti
is significantly less for UQCISD calculations, much less f
UCCSD and essentially zero for UBD. Perturbative corre
tions for the triples makes the energy difference significan
worse for UQCISD, but have little or no effect on the CC
BD calculations. This parallels the problems in QCISD~T!
calculations for other cases with largeT1 amplitudes.52–54

Geometry optimization of the symmetry broken sol
tions results in structures with unequal C–O bond leng
that are 1–13 kcal/mol lower in energy than the symme
structures~Table III!. The changes are largest at the UH
level, with C–O bond lengths that differ by 0.15 Å. Th
UMP2 calculations reduce this difference slightly. The d
ference in the C–O bond lengths is much smaller at
UQCISD level, but perturbative triples make matters wor
From the very small energy difference between the symm
try constrained and symmetry broken calculations at the
level in Tables I and II, one would expect the symme
broken BD calculations to yield a structure with nearly equ
C–O bond lengths. The energy is lower than either the2B2

or 2A1 solution and the difference in the bond lengths in t
BD calculation is nearly as large as at the UHF level. Th
the BD calculations do not solve the symmetry break
problem.

232 Nonorthogonal CI calculations

Tables IV and V present the results of the 232 nonor-
thogonal CI calculations. The potential energy surfaces
stabilized by about 18 kcal/mol compared to the UHF cal
lations and the2B2 state is lower in energy than the2A1

state. There is a noticeable change in geometry for
minima, especially for the2A1 state.

d

ry
TABLE II. Energies and optimized geometries of2A1 s-HCO2 calculated with single reference, symmet
constrained wave functions and the 6-31G* basis set.

Method
CH
~Å!

CO
~Å!

HCO
~degree!

OCO
~degree!

Energy
~Hartree!

DEb

~kcal/mol!

HF 1.1978 1.1943 106.24 147.52 2188.081 961 26.27
B3LYP 1.1551 1.2310 108.11 143.78 2189.077 678 0.00
MP2 1.1697 1.2328 106.85 146.30 2188.583 088 18.32
QCISD 1.1585 1.2339 107.95 144.10 2188.587 194 24.55
QCISD~T!a 1.1558 1.2421 108.25 143.50 2188.596 328 6.99
CCSD 1.1606 1.2299 107.81 144.38 2188.582 928 0.14
CCSD~T! 1.1586 1.2380 108.05 143.90 2188.604 086 1.49
BDa 1.1630 1.2287 107.73 144.54 2188.570 267 0.02

aFrozen core calculation.
bEnergy of the symmetry broken solution minus the symmetry constrained solution at theC2v optimized
geometry.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded 30 A
TABLE III. Energies and optimized geometries of2A8 s-HCO2 calculated with single reference, symmet
broken wave functions and the 6-31G* basis set.

Method
CH
~Å!

CO
~Å!

CO8
~Å!

HCO8
~degree!

OCO8
~degree!

Energy
~Hartree!

DEb

~kcal/mol!

HF 1.0890 1.3240 1.1770 126.20 124.60 2188.130 115 212.78
MP2 1.1064 1.3025 1.1908 125.97 125.50 2188.571 305 26.54
QCISD 1.0987 1.2817 1.2478 123.94 116.06 2188.598 024 20.68
QCISD~T!a 1.1012 1.3314 1.2228 115.93 116.31 2188.595 272 210.90
BDa 1.1083 1.3369 1.2048 126.27 125.49 2188.579 691 23.07

aFrozen core calculation.
bEnergy of the symmetry broken solution at the2A8 optimized geometry minus the symmetry broken soluti
at the2B2 optimized geometry given in Table I.

TABLE IV. Energies and optimized geometries of2B2 s-HCO2 calculated with multireference wave function

Method
CH
~Å!

CO
~Å!

HCO
~degree!

OCO
~degree!

Energy
~Hartree!

232 CIa 1.0828 1.2399 121.88 116.24 2188.131 144
232 CI~approx MP2!a,b 1.0956 1.2645 123.85 112.30 2188.580 546
232 CI~MP2!a,c 1.0943 1.2629 124.57 110.86 2188.582 284
MCSCFd 1.098 1.268 123.9 112.2 2188.328 968
MCSCFe 1.084 1.264 123.7 112.5 2188.345 42
MRCId 1.099 1.268 123.7 112.6 2188.402 308
CASPT2e 1.092 1.263 123.5 113.0 2188.726 99
EOM-CCf 1.100 1.258 123.6 112.8 2188.688 88

aUsing the 6-31G* basis set.
bApproximate MP2 corrected 232 CI using Eq.~9!.
cMP2 corrected 232 CI using Eq.~5!.
dFrom Ref. 17 using a Dunning DZP basis set.
eFrom Ref. 18 using an ANO basis set.
fFrom Ref. 22 using a Dunning DZP basis set.

TABLE V. Energies and optimized geometries of2A1 s-HCO2 calculated with multireference wave function

Method
CH
~Å!

CO
~Å!

HCO
~degree!

OCO
~degree!

Energy
~Hartree!

232 CIa 1.1105 1.2238 110.51 138.98 2188.118 165
232 CI~approx MP2!a,b,d 1.1543 1.2348 108.35 143.30 2188.569 962
232 CI~MP2!a,c,d 1.1519 1.2319 108.35 143.30 2188.572 399
CASPT2e 1.154 1.236 107.75 144.5 2188.729 33
EOM-CCf 1.149 1.233 108.1 143.9 2188.682 387

aUsing the 6-31G* basis set.
bapproximate MP2 corrected 232 CI using Eq.~9!.
cMP2 corrected 232 CI using Eq.~5!.
dValley–ridge inflection point.
eFrom Ref. 18 using an ANO basis set.
fFrom Ref. 22 using a Dunning DZP basis set.
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Figure 1 shows a series of potential energy curves a
function of the OCO angle. The2B2 state is lower in energy
at small bond angles, while the2A1 state is more stable a
larger angles. By varying the OCO angle, the effects of sy
metry breaking can be studied without the lowering in sy
metry that accompanies asymmetric C–O bond stretch
As expected, the symmetry broken UHF curve is lower
energy than both symmetry constrained solutions and
only one minimum at an intermediate angle. The 232 non-
orthogonal CI calculations yield two potential energy curv
of the correct symmetry and energy ordering. Surprising
the crossing between the2B2 and2A1 curves occurs at nearl
pr 2001 to 141.217.27.39. Redistribution subject to A
a

-
-
g.

as

s
,

the same angle at both the symmetry constrained UHF
232 nonorthogonal CI levels of theory.

Unlike the symmetry constrained UHF calculations, t
232 CI calculations are continuous over asymmetric la
displacements. In the MR-CI calculations of Peyerimh
and coworkers20 the energy decreases as one CO bond
lengthened and the other shortened. At the 232 CI level, the
2B2 state is stable with respect to asymmetric CO stret
However, a frequency calculation shows that the2B2 station-
ary point is a first order saddle point at the 232 nonorthogo-
nal CI level of theory. The transition vector contains a lar
HCO bend component and should be perhaps best desc
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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as an asymmetric deformation rather than an asymmetric
stretch.

Similar to Feller’s MCSCF study19 and Stanton’s
EOM-CC calculations with medium size basis sets,22 the
232 nonorthogonal CI level produce an2A1 structure is a
first order saddle point ~one imaginary frequency
2151i cm21!. The two mirror image2A8 minima are found
0.38 kcal/mol below the2B2 transition state with geometrie

FIG. 1. Energy curves for the2B2 , 2A1 , and 2A8 states ofs-HCO2 as a
function of the OCO angle.~a! UHF and 232 nonorthogonal CI,~b! UMP2
and 232 nonorthogonal CI with MP2 corrections@Eq. ~5!#.
Downloaded 30 Apr 2001 to 141.217.27.39. Redistribution subject to A
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closely resembling the Hartree–Fock structure. Very la
basis set calculations with the EOM-CC method22 suggest
that the2A1 structure may be a shallow minimum on a ve
flat potential energy surface. At the UHF level of theory, t
2A1 portion of the potential energy surface shows a ve
small barrier for CH dissociation~0.12 kcal/mol!. In the
CASSCF calculations by Rauket al.18 the 2A1 structure dis-
sociates to H1CO2 without a barrier. Attempts to locate th
2A1 transition state for H loss at the 232 CI level were
unsuccessful, since the instability of the UHF solution disa
peared before a saddle point for dissociation could
reached. One can argue that the 232 CI procedure may be
unsuited for this portion of the potential energy surface sin
inclusion of the C–H bond breaking configuration becom
more and more important and it should at least be treated
a 434 CI, for example.

MP2 corrections to the 2 32 nonorthogonal CI
calculations

Tables IV and V list the optimized geometries for th
2B2 and 2A1 structures using the MP2 corrected 232 CI.
Both procedures outlined in Eq.~5! and in Eq.~9! are in
good agreement with the CASPT2 results of Rauket al.,18

the MRCI results of McLeanet al.17 and the EOM-CC cal-
culations of Stanton.22 The geometries obtained with the co
related methods based on single reference determin
~Tables I and II! are also in good agreement with these c
culations. Vibrational frequencies in Tables VI show that t
2B2 configuration is a minimum at both MP2 corrected 232
CI levels, confirming that theC2v symmetry structure is a
minimum. The vibrational frequencies are in good agreem
with the MRCI, CASPT2 and EOM-CC values. The large
difference is for the asymmetric deformation mode. The c
culations listed in Tables VI, along with larger basis s
EOM-CC calculations22 indicate the frequency for this mod
should be between 1000 and 1300 cm21.

The CASPT2 and EOM-CC calculations of the2A1

structure are minima with respect to C–H dissociation. Ho
ever, a stationary point could not be located on the2A1 po-
tential energy with the MP2 corrected 232 CI calculations.
At larger CH distances and OCO angles, there is a sin
TABLE VI. Vibrational frequencies of2B2 s-HCO2 calculated with various theories.

Method
b2

asym. def.
a1

sym. bend
b1

oop bend
b2

asym bend
a1

sym. str.
a1

CH stretch

232 CIa 703i 790 1165 1426 1594 3328
232 CI~approx MP2!a,b 986 629 989 1228 1486 3259
232 CI~MP2!a,c 1215 701 1030 1332 1516 3186
MCSCFd 649 594 n/a 1313 1479 3184
MRCId 961 646 n/a 1314 1477 3197
CASPT2e 1287 624 1008 1287 1437 3053
EOM-CCf 1010 650 1027 1318 1513 3170
B3LYPa 1125 646 1029 1306 1509 3080

aUsing the 6-31G* basis set.
bApproximate MP2 corrected 232 CI using Eq.~9!.
cMP2 corrected 232 CI using Eq.~5!.
dFrom Ref. 17 using a Dunning DZP basis set.
eFrom Ref. 18 using an ANO DZP basis set.
fFrom Ref. 22 using a Dunning DZP basis set.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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minimum with respect to asymmetric deformation. At sh
CH distances and small OCO angles, the2A1 state is a maxi-
mum with respect to asymmetric deformation and there
two valleys either side of the ridge. Between these extrem
there is a branching point or valley–ridge inflection poi
The approximate location of this point~Table V! was ob-
tained by performing constrained optimizations at vario
OCO angles and testing the stability in the space of the
CO bond lengths and the HCO angle. Surprisingly,
branching structure is very similar to the stationary po
found by other methods. This apparent coincidence dese
further study.

CONCLUSIONS

This study shows that a 232 nonorthogonal CI along
with MP2 corrections can successfully treat systems
have spatial symmetry breaking of the SCF wave functi
The most important features of the2B2-HCO2 potential en-
ergy surface are properly described by this procedure. C
pared to the large MCSCF, MRCI, CASPT2, or EOM-C
calculations typically needed for these systems, the 232
nonorthogonal CI with perturbative corrections for dynam
correlation requires little computational effort, similar to o
or two MP4SDQ calculations or CCSD iterations. The c
of the simpler model is comparable to two MP2 calculatio
This procedure may be useful in the studies of chemical s
tems with symmetry breaking problems or Jahn–Teller in
actions.
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APPENDIX

The matrix elements between nonorthogonal deter
nants can be evaluated by expanding the orbitals for
determinant in terms of the orbitals for the other determina
The spin orbitals for both wavefunctions can be written
terms of basis functionsxm

f i5( cm ixm ; ^f i uf j&5d i j ;
~A1!

f i85( cm i8 xm ; ^f i8uf j8&5d i j .

The spin orbitals of one wave function can then be expres
in terms of the spin orbitals of the other wave function a
the overlap between the orbitals

f i85( Sipfp5( si j f j1( s̃iafa ;
~A2!

Spq5^fp8ufq&5( cmp8 cnq^xmuxn&,

where indicesi , j , etc., run over occupied orbitals,a, b, etc.,
run over unoccupied orbitals andp, q, etc., run over all
orbitals. For convenience, the overlap betweenf and f8 is
split into the occupied–occupied block,s, and the occupied–
Downloaded 30 Apr 2001 to 141.217.27.39. Redistribution subject to A
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virtual block, s̃. The wave functionC08 can be expanded in
terms ofC0 and single, double and higher excitations ofC0

C085US ( S1pfpD S ( S2qfqD¯S ( Snrf r DU
5a0C01( ai

aC i
a1( ai j

abC i j
ab1¯ . ~A3!

The matrix elements between two nonorthogonal configu
tions is given by55

^C0uHuC08&5( ^f i uhuf j&C~ i u j !

1( ^f if j ufkf l&C~ i j ukl !,
~A4!

^C0uC08&5Det~s!,

whereC( i u j ) is the cofactor arising froms by deleting rowi
and columnj , andC( i j ukl) from deleting rowsi and j , and
columnsk and l . C( i u j ) is given by

C~ i u j !5~s21! i j Det~s!5~s21! i j ^C0uC08&. ~A5!

By further application of Kramer rule for matrix inversion o
by use of the Jacobi ratio theorem56 C( i j ukl) can be ex-
pressed as

C~ i j ukl !5@C~ i uk!C~ j u l !2C~ i u l !C~ j uk!#/Det~s!

5~~s21! ik~s21! j l 2~s21! i l ~s21! jk!^C0uC08&.

~A6!

Alternatively, the necessary matrix elements can
evaluated readily if the amplitudes are known

^C0uHuC08&5a0^C0uHuC0&1( ai j
ab^C0uHuC i j

ab&.

~A7!

After rearrangement of the expressions for the cofactors,
amplitudes can be written as:

a05Det~s!,

ai
a5( C~ku i !s̃ka5( ~s21!kis̃kaa0 , ~A8!

ai j
ab5~ai

aaj
b2aj

aai
b!/a0 .

This result can be shown more directly by considering
overlap betweenC08 and each excited determinant of inte
est. Figari and Magnesco57 and VerBeek and VanLenthe58,59

have given more general expressions for matrix elements
tween nonorthogonal configurations. Once the expansion
efficients are known, the off-diagonal CI matrix elements c
be constructed in a way similar to the MP2 procedure.
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