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Identification and treatment of internal rotation in normal mode
vibrational analysis

Philippe Y. Ayala and H. Bernhard Schlegel
Department of Chemistry, Wayne State University, Detroit, Michigan 48202

~Received 24 July 1997; accepted 4 November 1997!

A procedure that automatically identifies internal rotation modes and rotating groups during the
normal mode vibrational analysis is outlined, and an improved approximation to the corrections for
the thermodynamic functions is proposed. The identification and the characterization of the internal
rotation modes require no user intervention and make extensive use of the information imbedded in
the redundant internal coordinates. Rigid-rotor internal rotation modes are obtained by fixing
stretching, bending, and out-of-plane bending motions and solving the vibrational problem for the
constrained system. Normal vibrational modes corresponding to internal rotations are identified by
comparing them with the constrained modes. The atomic composition of the rotating groups is
determined automatically and the kinetic energy matrix for internal rotation is given by either the
constrained Wilson-G matrix or the Kilpatrick and Pitzer protocol. The potential periodicity, the
rotating tops’ symmetry numbers, and the well-multiplicity are obtained using simple rules. These
parameters can be altered by user input. An improved analytical approximation to the partition
function for a one-dimensional hindered internal rotation has been developed that reproduces the
accurate values tabulated by Pitzer and Gwinn to60.4% with a maximum error of 2.1%. This
approximation is shown to behave better than previously available approximations over a wider
range of regimes. The one-dimensional rotor treatment is generalized to give useful approximations
to the multidimensional rotor thermodynamic functions that can be a good start for more thorough
studies. ©1998 American Institute of Physics.@S0021-9606~98!02006-6#
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I. INTRODUCTION

Statistical thermodynamics can be used to calculate
enthalpy, heat capacity, and entropy of a gas-phase mole
using its geometry and vibrational frequencies. Howev
significant errors can result if the harmonic oscillator a
proximation is used to calculate the partition function for lo
frequency modes that represent hindered internal rotation
shown in Scheme 1.

Treating internal rotation is especially important in tra
sition states, where several motions may have to be treate
hindered rotors, as in the hydrogen abstraction reac
CH41OH→CH31H2O shown in Eq.~1!.1–4 Conversely, in-
ternal rotation degrees of freedom may disappear as a r

Scheme 1: A representation of the partition functionQ for a free rotor,
hindered rotor, and harmonic oscillator as a function ofu5hn/kT, wheren
is the vibrational frequency andT is the temperature.
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tion takes place and failure to treat them properly causes
nificant errors. For instance, the harmonic oscilla
treatment of the three internal rotations in 1,5-hexadiene
thought to cause an overestimation of the entropy in
Cope reaction, Eq.~2!, by as much a 7 cal/mol-K.5

~1!

~2!

The general quantum mechanical problem of multi
mensional internal rotation can be complicated and cumb
some to solve. In particular, it requires the multidimensio
torsional potential which can be expressed in terms of F
rier series.6 The case of a one-dimensional but asymme
internal rotation7,8 can even involve a level of complexit
that makes solving the hindered rotor problem impracti
for many applications. In many cases, however, reducing
multidimensional problem to a product of one-dimension
rotors with simple cosine torsional potentials would cons
tute a good approximation. Here, we seek, first, to iden
the internal rotation modes and, second, to generalize
4 © 1998 American Institute of Physics
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treatment of a single rotor to the general case of multi
internal rotors, and, third, to develop a useful approximat
to the thermodynamic functions without requiring the use
intervention.

Pitzer and co-workers8 long ago tabulated the thermody
namic functions for the minimal case of a molecule with
rigid symmetric, or nearly symmetric, rotating top. Formul
are available to interpolate the partition function betwe
that of a free rotor, hindered rotor, and harmon
oscillator.8–10 The approximation by Truhlar9 has been used
in many studies in recent years.11–13 This formula has the
desirable feature of being a smooth approximation from f
rotor to harmonic oscillator, a useful feature for treating tra
sitional bending modes.14 Another formula, by McClurg,
Flagan, and Goddard,10 is based on the asymptotic behavi
of the quantum mechanical partition function at low te
perature and the classical partition function at high tempe
ture. Pitzer and Gwinn’s formula8 is an improvement of the
classical hindered rotor treatment. These three approxi
tions have a well defined range of applicability within whic
they perform remarkably well.

For large electronic structure calculations, one wo
ideally like to recognize internal rotations without requirin
the user’s intervention or expertise, and automatically co
pute a correction to the thermodynamic functions. In t
work, we are only concerned about internal rotation arou
clearly defined chemical bonds. For simple systems suc
acyclic molecules, the internal rotations can take place ab
each nonterminal single bond. The rotating subgroups of
oms can then be determined and the reduced momen
inertia for internal rotation can be computed, with or witho
approximations.7–10,15–21 Making this rotor identification
procedure automatic for a general molecule can be com
cated and can involve many special cases, since it wo
require first the identification of rings and multiple bond
Most of the problem, however, resides in the identification
the internal rotation modes. Large molecules can hav
large number of low frequency modes which can include
only internal rotations but also large amplitude collecti
bending motions of atoms. Moreover, some of the low f
quency modes can be a mixture of the aforementioned
tions, and the expertise of the user is needed to identify
internal rotations.

Generally, the necessary information required for ch
acterization of internal rotations cannot be obtained so
from the linear displacements represented by the Carte
normal modes. In particular, one cannot determine wh
subgroups of atoms are rotating about each other and ca
obtain the information needed to calculate the axis of ro
tion and/or the moment of inertia of each rotating subgro
To solve this problem, we have used redundant inter
coordinates22,23 to describe the vibrations in terms of bon
stretches, valence angle bends, and dihedral angle cha
The internal rotations can be described by linear comb
tions of dihedral angle changes, which can be isolated fr
stretching and bending motions. Therefore, a vibratio
analysis in redundant internal coordinates offers the poss
ity of automatically identifying the internal rotation mode
Downloaded 30 Apr 2001 to 141.217.27.39. Redistribution subject to A
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and treating them as free or hindered rotors rather than
monic oscillators.

II. IDENTIFICATION OF ROTATIONAL MODES

The treatment of a vibrational mode as an internal ro
tion has been studied by many authors over the years
most of the mathematical details have long be
documented.15–21 The primary task is to find which sub
groups of the molecule are rotating so that one can define
kinetic energy matrix of the rotating system. Then, one ne
to identify which of the vibrational modes are internal rot
tions. Inspection of the normal modes in Cartesian coo
nates does not yield this information easily and various pr
lems can arise. For example, in a hypothetical four-at
molecule~A-B-B-A with mA!mB! such as in Scheme 2,

one can see that without knowing how the atoms are bon
to each other, the normal modes in Cartesian coordinates
lead to the wrong conclusion. Problems of this sort can
overcome easily by using internal coordinates, since this m
tion can be described by a A-B-B-A dihedral angle chang

A. Transformation of force constants from Cartesian
to internal coordinates

In mostab initio molecular orbital packages the energ
derivatives are computed in Cartesian coordinates. Be
performing the vibrational analysis in internal coordinates
is thus necessary to transform the energy derivatives f
Cartesian to internal coordinates. In the Wilson, Decius, a
Cross definition,24 internal coordinates are coordinates th
are unaffected by translation and rotation of the molecu
One such set of coordinates$q% can be made up of bond
lengths, bond angles, and torsion angles. For a nonlin
molecule withN atoms, there are 3N-6 linearly independent
internal coordinates. However, it may be desirable to us
larger numberof internal coordinates,~i.e., redundant interna
coordinates! to represent the bonding in the molecule.

Redundant internal coordinates are used in theGAUSSIAN

94 suite of programs25 for geometry optimization.23 Given

Scheme 2: In alltrans conformation ofA–B–B–A, using the Cartesian
normal mode, one can correctly assign the B–B bond as the axis of rota
and the two A–B groups as rotors. However, acis conformation, the Car-
tesian normal mode would indicate that the two A atoms rotate around
axis perpendicular to the B–B bond.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Cartesian coordinates for the molecule, a suitable set o
dundant internal coordinates is generated automatically
reflects the bonding and connectivity of the molecule. Ato
A and B are considered bonded if the interatomic distanc
less than 1.3 times the sum of the covalent radii. A vale
angle coordinate is assigned to A, B, and C if A is bonded
B and B is bonded to C. If the value of a bond angle l
between 175 and 180°, the valence angle and any rel
dihedral angle are replaced by a pair of linear angle coo
nates. Finally, a dihedral angle~or torsion angle! is assigned
to A, B, C, and D if A is bonded to B, B is bonded to C, an
C is bonded to D. If no dihedral angles can be generate
the previous procedure, as is the case for a molecule suc
H2CO, the A-B-C-D and D-B-C-A dihedral angles are add
to the set of internal coordinates in order to account for o
of-plane motions.

For the purpose of identifying internal rotations, the
internal coordinates are modified slightly. In a molecule su
as ethylene, the out-of-plane bending motions of the C2

groups are described by linear combinations of the four
hedral angle changes, and the bond torsion is also re
sented by a linear combination of the same four dihed
angles. Since our goal is to identify bond torsions by insp
tion of the changes in the dihedral angles of the molecu
out-of-plane bending motions would clearly interfere w
this process. To avoid this problem, explicit out-of-pla
bending coordinates are added for each tricoordinate pl
center ~i.e., if A is bonded to B, C, and D, then dihedr
angles B-A-C-D and D-A-C-B are added!. When these out-
of-plane motions are frozen, then the remaining change
dihedral angles can only describe bond torsion. Identifica
of a planar center is simply made by inspecting the sum
the three valence angles. If the sum of the valence angle
between 355 and 360°, the two extra dihedral angles
added.

Transformation from infinitesimal Cartesian coordina
displacements to internal coordinate displacements is sim
dq5Bdx, using the WilsonB matrix (B5]q/]x). Transfor-
mations of the forces or gradients,g, and force constants o
Hessian matrix,H, from Cartesian~subscriptx! to internal
~subscriptq! are more complicated,

gq5~B21!gx ; Hq5~B21!Hx~B21! t1S dB21

dq Dgx . ~3!

A generalized inverse must be used sinceB is rectangular,

G5BuBt; B215G~2 !Bu, ~4!

whereu is an arbitrary nonsingular matrix. If the set of in
ternal coordinates is redundant, i.e.,$q% contains more than
3N-6 variables,G(2) can be formed by diagonalization an
inverting only the 3N-6 nonzero eigenvalues,

VtGV5FL 0

0 0G ; G~21!5V FL21 0

0 0GVt. ~5!

The transformation of the force constants can be re
mulated so that

Hq5~B21!S Hx2
dB

dx
gqD ~B21! t. ~6!
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The (dB/dx) gq term is needed for general Hessian calcu
tions, but it is zero for vibrational frequencies at stationa
points or perpendicular to a mass-weighted reaction path

When a redundant set of internal coordinates is used,
redundancy is projected out of the displacements, gradi
and force constant matrix by usingP5GG(2) as a projector.
For optimizations using redundant internal coordinates, a
trarily large eigenvalues are assigned to the remaining sp

H85PHP1~ I 2P!A~ I 2P!5PHP1a~ I 2P!, ~7!

whereA is the identity matrixI times a ~a large constant,
e.g., 1000. au!.

B. Normal modes of vibration in internal coordinates

The vibrational normal mode problem at a stationa
point can be solved easily in mass-weighted Cartesian c
dinates. IfHMx is the mass-weighted Cartesian Hessian w
rigid-body translations and rotations projected out,L Mx

i the
mass-weightedi th normal mode andm, a diagonal matrix
consisting of the inverse square root of the nuclear mas
then,

HMx5mHxm,

L Mx
i 5mL x

i ,

HMxL Mx
i 5l iL Mx

i . ~8!

In internal coordinates, the kinetic energyT of the mol-
ecule can be written as 2T5dqt/dt G(2)dq/dt if u in Eq.
~4! is diagonal and consists of triplets of the inverse nucl
masses~i.e., u5m2!. The secular equation for the norm
modes$Lq

i % can then be written as24

HqLq
i 5G~21!l iLq

i . ~9!

This is not a standard eigenvalue problem. However,
means of symmetric orthogonalization, the problem can
transformed into an eigenvalue problem in mass-weigh
coordinates,

G1/2HqG1/2L Mq
i 5l iL Mq

i ,

and

Lq
i 5G1/2L Mq

i . ~10!

Alternatively, if the normal modes in Cartesian coordina
$L x

i % are available, the normal modes in internal coordina
can be easily obtained by

Lq
i 5BL x

i . ~11!

For problems such as variational transition sta
theory,26 one needs to perform a normal mode analysis
the vibrations perpendicular to the reaction path. In this ca
in addition to rigid body translation and rotation, the motio
along the path needs to projected out of the mass-weig
Hessian.27 If the path corresponds to a steepest descent r
tion path in mass-weighted coordinates, i.e., an intrinsic
action coordinate,28 then the mass-weighted gradient is pa
allel to the path and is projected out. Hence, the projec
(dB/dx) gq term is zero and is not needed for the transf
mation of the projected Hessian to internal coordinates.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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C. Internal rotor identification: Method 1

A normal vibrational mode corresponding to a hinder
internal rotation has unusually large components for so
dihedral angles. Figure 1~a! shows some of the norma

FIG. 1. ~a! First two normal modes of ethane at the HF/STO-3G level
theory.~b! First six normal modes ofn-butane at the HF/STO-3G level o
theory.
Downloaded 30 Apr 2001 to 141.217.27.39. Redistribution subject to A
e

modes of ethane and butane. For instance, in the cas
ethane, the torsion components of the normal mode acc
for 100% of the motion in the lowest frequency vibration
mode by symmetry. An internal rotation is generally we
described under the rigid rotor approximation, but beca
most molecules do not have as much symmetry as eth
and/or posses more than one rotating group, the nor
modes representing internal rotation may have nonzero c
ponents for bond stretches and angle bending. Howe
these components should be much smaller in magnitude
the torsions@see Fig. 1~b!#. Table I shows the minimum
amount of torsion present in the normal modes typically
signed as hindered internal rotation for five simple test m
ecules.

Based on Table I, it should be possible to identify
internal rotation by using a cut-off valuea ~close to 100%!
for the minimum amount of torsion present in a norm
mode. For thej th mode, one can tabulate the magnitude
the dihedral components for each bond@i.e., T(B–C,j )
5(( (A,D)L j (A,B,C,D)

2 )1/2# for each unique~B,C!, where the
L j ’s are the dihedral components for modej !. Provided that
the cut-off value is chosen so as to identify the correct nu
ber of torsional modes~equal to the number of rotating
groups!, the bonds about which rotation occurs can be de
mined by inspecting the dihedral components. The bo
involved in internal rotation would then be the bonds whi
have the largest(T(B–C,j ) when summed over the interna
rotation modes.

For each bond about which internal rotation occurs,
two rotating groups can be identified using the bonding
formation present in the set of internal coordinates. Once
rotors~the rotating groups! have been identified, one can s
up the kinetic energy matrix according to Kilpatrick an
Pitzer19 and obtain the reduced moments of inertia by diag
nalizing the kinetic energy matrix.15

Even though this approach is successful in identifyi
both the internal rotation modes and the rotors, it is sensi
to the cut-off value used. Furthermore, there can be instan
where vibrational modes mix extensively with the intern
rotation modes, making their characterization very difficu
The normal modes of 3-hexene illustrate this point. As c
be seen in Fig. 2, mode 4 and mode 6 are virtually indis
guishable on the basis of their torsional components. On
1.5% difference exists in the amount of torsion in these t
modes. Modes 4 and 6 both correspond to the rotation of
methyl groups. However, mode 6 features a greater mix
with theC–C–Cbending and out-of-plane bending motion
Also, because thesp2 carbons are not exactly planar, th

f

TABLE I. Minimum percentage of torsion present in hindered rotation.

Number of modes Min. torsion %

Ethane 1 100.0
Ethanol 1 97.3
Propane 2 97.9
Butane 3 97.3
Pentane 4 92.0
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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out-of-plane bending and bond torsion motions are hea
mixed in mode 3.

The case of 3-hexene provides an opportunity to str
an important point in the relationship between hindered
ternal rotation and harmonic vibrational frequency. For
simple hindered rotor with a periodic potentialV5V0(1
2cos(st))/2, wheret is the twist angle ands the periodicity
of the potential, the harmonic vibrational frequency,n, is
given by

I r

d2t

dt2
1

V0s2

2
t50; t5t0 cos~2pnt !, ~12!

whereI r is the reduced moment of inertia for internal rot
tion. Clearly, the internal rotation barrier height is propo
tional to the square of the vibrational frequency and to
reduced moment of inertia,

V058p2n2I r /s2. ~13!

In the case of a carbon–carbon double bond, the rota
barrier heightV0 is large ~50 to 60 kcal/mol! and mostly
independent of the nature of the substituents attached to
olefin; however, the reduced moment of inertiaI r will de-
pend on the mass of these substituents and can take
values, such as in the case of hexene, where an ethyl gro
attached at each end of the double bond. This explains
the vibrational frequency for the double bond torsion mode
so small in 3-hexene~150 cm21 compared to 1250 cm21 in

FIG. 2. First six normal modes oftrans3-hexene at the HF/STO-3G level o
theory.
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ethylene!. Likewise, the C–C bond torsion frequency
ethane is approximately 2.5 times greater than that in but
Trying to identify the internal rotation modes on the basis
the vibrational frequencies can thus be misleading. A be
diagnostic would be based upon an estimate of the torsio
barrier height. The CvC double bond torsional mode is no
an internal rotation and is best treated as a harmonic osc
tor no matter how small the associated frequency. Alter
tively, one can treat this torsional mode as an internal ro
tion using thermodynamic functions that reach the pro
harmonic oscillator limit for high rotational barrier heigh
Clearly, in difficult cases like this one, using the precedi
approach would require some user intervention. An alter
tive, perhaps more automatic, procedure is described ne

D. Internal rotor identification: Method 2

Instead of identifying internal rotations by inspection
the normal mode components, one can separate the inte
rotations out before the normal mode problem is solved. T
internal coordinates consist of stretches, bends, out-of-p
bends, and dihedrals; one can construct a projector tha
moves all of the stretches, bends, and out-of-plane motio
leaving only the bond torsions. IfP is the projector for the
allowed internal motions@P5GG(2) for redundant inter-
nals#, then the stretches, bends, and out-of-plane bends
be constrained by using the projectorP8 given by,23,24

P85P2PC~CPC!21CP, ~14!

where C is a diagonal matrix with 1’s for the constraine
coordinates and 0’s for the remaining coordinates. The c
strainedG matrix, G8, is constructed likewise. The secula
equation for the projected normal mode problem for the
ternal rotors is,

G8Hq8L 8q
i 5l8 iL 8q

i ,

Hq85P8HqP8, ~15!

and transformed to mass-weighted coordinates, it becom

G81/2H8qG81/2L 8Mq
i 5l8 iL 8Mq

i . ~16!

The mass-weighted Hessian for internal rotatio
G81/2H8qG81/2, is singular with a rank equal to the numb
of bonds about which internal rotation is possible. In mo
cases, the projected vibrational frequencies will be very si
lar to the actual ones~see Table II!. A significant shift in
frequency would indicate coupling with stretching, bendin
and out-of-plane modes.

Next, one must identify which of the actual norm
modes are internal rotations by determining which have
greatest similarity with the modes of the projected, inter
rotation problem, Eq.~16!. This is simply done by consider
ing their overlap. Using this procedure, the internal rotat
modes are identified without ambiguity.

Central to the statistical thermodynamical treatment
hindered internal rotation are the periodicity of the poten
and the symmetry number of the rotating top. Assuming
single cosine potential, the ratio of periodicity over the sy
metry number represents the degeneracy of the energy le
For example, if the potential is threefold and the three po
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded 30 A
TABLE II. Harmonic vibrational frequencies for internal rotation and projected frequencies~in cm21! for
selected molecules at the HF/STO-3G level of theory.

Molecule
Frequencies for
torsional modes

Projected
frequencies Overlap

Ethane 317.6 317.6 1.00
Methanol 399.0 400.2 0.99
n-butane 123.8, 232.4, 267.0 126.0, 238.5, 267.3 0.99, 0.99, 0.99
1,5-hexadienea 63.5, 97.5, 103.74 71.9, 107.2, 114.9 0.99, 0.99, 0.96
3-hexane 55.4, 124.0, 198.1, 59.8, 133.2, 237.9, 0.99, 0.99, 0.98,

248.5 241.5 0.99
1,2-dichloroethane 108.76 111.12 0.99

aAt the B3LYP/6-31G* level of theory.
e
t

rg

-
e
, l

to
a
rly

y

at
th
th
na
u

c

de
o
-

arte-
and
to
ed.
an
ng
s
ol-
the
be-

ed
t
od-
ple
ere
rd

ac-

tly
lled
or-
here
ergy
of
ne
a

y-
by
ing
s
2-

on
the
pure
are

ns.
scil-

ch
ery
the

th
tions ~0, 120, and 120°! correspond to indistinguishabl
structures, such as in ethane, one only needs to accoun
the energy levels in the region 0660°. However, if the three
positions are distinguishable, to account for all the ene
levels, one can consider the full range (06180°) or, alterna-
tively, consider the range 0660°, but count the energy lev
els three times. Failure to recognize this can be the sourc
large errors in the thermodynamic functions. For instance
us consider the internal rotation about the C3–C4 bond
1,5-hexadiene. The potential energy profile for this bond
sion was obtained using the method described in Ref. 29
is shown in Fig. 3. Even though the rotating top is clea
asymmetric~symmetry number equal to 1!, to a good ap-
proximation, the torsional potential can be represented b
single cosine function with a periodicity of 3.

In order to identify the symmetry number of each rot
ing top, one first needs to identify which atoms belong to
top. As mentioned earlier, this can be done by using
bonding information present in the set of redundant inter
coordinates. If one chooses to do this, special attention m
be paid for ring-containing molecules. A simpler approa
consists of incrementing, by a small quantity, such asp/12
or p/6, all the dihedral angles pertaining to the bond un
consideration and solving for the new set of Cartesian co
dinates given byDq5BDx. The old and new set of Carte

FIG. 3. Torsional potential for the C3–C4 bond in 1,5-hexadiene at
HF/STO-3G level of theory in thegauche–gaucheconformation.
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sian coordinates can then be compared using a fixed C
sian orientation defined by the bond under consideration
a bond within one of the rotating group; an atom belongs
the rotating top if its Cartesian coordinates have chang
Once the composition of the rotating top is known, one c
simply identify the symmetry number by repeatedly rotati
~by p/12 or p/6, for instance! the Cartesian coordinate
around the bond connecting the top to the rest of the m
ecule until the difference between the starting set and
new set of Cartesian coordinates and atomic numbers is
low threshold.

The periodicity of the torsional potential can be obtain
by performing a series ofab initio energy calculations a
different conformations. In most cases, however, the peri
icity of a torsional potential can be obtained by using sim
rules depending on the hybridization of the bond atoms. H
we followed the rules set by Mayo, Olafson, and Godda
for their generic force field DREIDING.30 The coordination
of an atom is used in order to assign a hybridization char
ter. For instance, a tricoordinated carbon is assumedsp2

whereas a doubly coordinated oxygen is assumedsp3.
In many cases, the torsional potential differs grea

from a single cosine function; the parameter that we ca
periodicity up to now remains nevertheless of great imp
tance. Just as in the standard case of a particle in a box w
the energy levels depend upon the size of the box, the en
levels for the hindered rotor will depend upon the width
the potential energy well. In the case of 1,2-dichloroetha
for instance, the torsional potential differs greatly from
single cosine function with a periodicity of 3~see Fig. 4!. As
it will be seen later, a good approximation to the thermod
namic function of 1,2-dichloroethane can be obtained
considering only the deepest well, that is by only consider
the regiont5180660°. It is thus important to still use 3 a
a periodicity number for the torsional potential in 1,
dichloroethane.

No discrimination against bonds like carbon–carb
double bonds has been made so far. As mentioned for
case of hexene, there are instances where there is no
bond torsion mode, but there are, instead, modes that
varying mixtures of out-of-plane bending and bond torsio
Since these modes are best treated using the harmonic o
lator approximation, there is no need to try to identify whi
one of these modes is more akin to a bond torsion. A v
hindered bond torsion can be detected by inspection of

e
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diagonal element of the force constant matrix,ktt . Assum-
ing no coupling with the other internal rotations, the to
sional barrier height is given byV052s2ktt . If V0 is higher
than threshold~20 kcal/mol at 300 K, for instance!, the bond
torsion is not considered.

Once the rotating groups have been identified, one
proceed to calculate the reduced moments of inertia u
Kilpatrick and Pitzer’s protocol.19 Alternatively, one can ex-
tract this information from the projectedG matrix, G8, since
it corresponds to the kinetic energy matrix of the molec
under the rigid-rotor approximation with overall translatio
and rotation projected out. The periodicity of the intern
rotation potential can be taken into account by scalingG8 by
s, where s is a diagonal matrix consisting of invers
nm-tuplets of the bond periodicity numbers~i.e., G9
5s1/2G8s1/2!.

Since the rotation about a given bond is equally w
described by any one of the dihedral angles associated
this bond, the dimension ofG8 can be reduced to ann by n
matrix. This can be done by making the appropriate varia
change in the kinetic energy matrix to leaven2 terms, or by
simply dropping the rows and columns ofG8 corresponding
to the extra dihedral angles, as noted by Wilsonet al.24

Throughout this section, we have assumed thatn, the
number of degrees of freedom for the constrained system
equal to the number of bonds about which internal rotatio
possible. This is always the case for acyclic molecules; h
ever, for cyclic molecules featuring rings bigger than s
membered rings there are ring torsional modes~the ring-
puckering modes have been projected out since they w
involve bending!. The presence of these ring torsions is us
ally recognizable from the fact that the projectorP8 has non-
zero off-diagonal components for dihedral angles abou
number of bonds, since such motions involve correlated m
tions about several bonds. Similar to internal rotations, r
torsions can cause problems in the evaluations of thermo
namic functions. In the present analysis they are not trea

FIG. 4. Torsional potential for 1,2-dichloroethane at the HF/6231G* level
of theory.
Downloaded 30 Apr 2001 to 141.217.27.39. Redistribution subject to A
n
g

e

l

l
ith

le

is
is
-

-

ld
-

a
o-
g
y-
d.

III. CORRECTION TO THERMODYNAMIC FUNCTIONS

If a low vibrational frequency mode, such as a hinder
rotation, is treated as a harmonic oscillator, the partit
function is too large, approaching infinity as the frequen
goes to zero. If this mode is treated as a free rotor, the
tition function is correct for a zero frequency, but is overe
timated for a nonzero frequency~see Scheme 1!. Determin-
ing an accurate density of states for multiple hindered rot
is a difficult problem and is not our objective. Here, we pr
pose to use some simple approximations to obtain suita
estimates of the partition function.

For a free rotor, the classical partition function is

Qfree rot.5S 2pkT

h2 D 1/2E
0

2p/s

I r
1/2dt.

For a simple hindered rotor with a periodic potentialV
5V0(12cos(st))/2, the classical limit to the partition func
tion is

Q5S 2pkT

h2 D 1/2E
0

2p/s

I r
1/2

3exp@2V0~12cos~st!!/2kT#dt. ~17!

For the rotation of a symmetric top, the reduced momen
inertia I r is constant. For the rotation of an asymmetric to
I r can vary greatly with the twist angle. In the case of 1
dichloroethane, the reduced moment of inertia more th
doubles as the twist angle is varied. Although the redu
moment of inertia varies, the partition function for free rot
tion can often be reliably approximated byQfree rot.

'(8p3kT/s2h2)1/2I r
1/2. In the case of 1,2-dichloroethane

using a simple 25-point trapezoid integral, the error is e
mated to be 1.9%. For the free rotation of an asymmetric t
however, the moments of inertia for overall rotation,I aI bI c ,
would vary with the twist angle as well, and one needs
also consider the variation of the overall rotation partiti
function. In the case of 1,2-dichloroethane, neglecting
variation of the moments of inertia for both external a
internal rotation produces an error of approximately 12.3
Even though treating the internal rotation of asymmetric to
can be complicated, it is important to recognize that in ma
cases the same formalism used to treat the rotation of s
metric tops can provide a fairly good approximation.

If the reduced moment of inertia is constant, then t
classical partition function in Eq.~17! can be expressed in
terms of the Bessel functionJ0( iV0/2kT),8

Qhin. rot.5S 8p3kT

s2h2 D 1/2

I r
1/2 exp@2V0/2kT#J0~ iV0/2kT!

5Qfree rot. exp@2V0/2kT#J0~ iV0/2kT!. ~18!

As mentioned in the Introduction, Pitzer and Gwin8

solved for the energy levels for a cosine potential repres
ing the hindered rotation of a symmetrical top attached t
rigid frame, and tabulated the thermodynamic functions fo
one-dimensional internal rotation using the barrier height
internal rotationV0 and 1/Qfree rot. as reduced variables. Th
quantum and classical partition functions for the harmo
oscillator with a vibrational frequencyn are given by,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Qh.o.q.5
e2u/2

12e2u ; Qh.o.cl5
1

u
with u5

hn

kT
. ~19!

The thermodynamic functions for the free energy, ener
the entropy, and the heat capacity of the gas-ph
molecule31 are

G52kT ln~Q!; E5kT2
] ln~Q!

]T
,

S5k ln~Q!1kT
] ln~Q!

]T
,

CV52kT
] ln~Q!

]T
1kT2

]2 ln~Q!

]T2 . ~20!

Using the relationship in Eq.~13!, it is possible to directly
compare the thermodynamic functions for the harmonic
cillator to the ones for the hindered rotor as tabulated
Pitzer and Gwinn. BothG/T and S start to differ signifi-
cantly for rotational barrier heights,V0 , of the order ofkT
and very large errors occur forV0!kT, as the free-rotor
limit is approached. Although the entropy for hindered ro
tion can be much smaller than for the corresponding h
monic oscillator, it is never more than 0.5 cal/mol-K grea
than that of the harmonic oscillator for the range covered
the Pitzer and Gwinn tables.

Pitzer and Gwinn solved for the energy levels for a
gion 2p/(sa) wide, wheres is the symmetry number of th
top andsa is the periodicity of the potential, as explained
Sec. II D. The free-rotor partition function is thus taken a

Qfree rot.5S 2pkT

h2 D 1/2E
0

2p/sa

I r
1/2dt

rather than the correct

Qfree rot.5S 2pkT

h2 D 1/2E
0

2p/s

I r
1/2dt.

In the instances where the potential periodicity is grea
than the top symmetry number, the tabulated values foS
and 2G/T need to be increased byk ln(a). It should be
emphasized thatk ln(a) should only be added in the cas
where the potential resembles very closelyV5V0(1
2cos(sat))/2.

In 1,2-dichloroethane, for example, the rotating top ha
symmetry number of one and the torsional potential is thr
fold, but differing greatly fromV5V0(12cos(3t))/2, as was
shown in Fig. 4. We have seen earlier that a good appr
mation for the free-rotor partition function is given b
Qfree rot.5(8p3kT/h2)1/2I r

1/2. At the HF/6-31G* level of
theory, the vibrational frequency corresponding to the int
nal rotation is 128 cm21. Using Eq.~13! with a symmetry
number of 3 yields a rotational barrier height of 5.3 kcal/m
which is very close to the actualantigauchebarrier. Ac-
counting for the energy levels in the region 180660° con-
stitutes a fair approximation, as long askT is less than the
antigaucheendothermicity~2 kcal/mol!. With a rotational
barrier of 5.3 kcal/mol andI r558.9 amuA2, the entropy
contribution due to internal rotation is estimated to beS
53.12 cal/mol-K at 298 K using Pitzer and Gwinn’s table
Downloaded 30 Apr 2001 to 141.217.27.39. Redistribution subject to A
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Chung-Phillips7 solved for the internal rotation energy leve
of 1,2-dichloroethane; using the first 18 nondegenerate
ergy levels, the entropy contribution isS53.16 cal/mol-K.
Using the next 12 doubly degenerate energy levels, the
of which being at 730 cm21 ~2.1 kcal/mol!, increases the
entropy by 0.25 cal/mol-K. The doubly and triply degenera
energy levels would only contribute significantly whenkT
@2 – 3 kcal/mol, that is, when the free-rotor regime is a
proached and whenI r558.9 amuA2 is the value that need
to be used.

Determining how many wells need to be considered
best decided upon inspection of the actual torsional poten
The asymmetry of the torsional potential is, however, of
due to strong steric hindrances, and the expense of deter
ing the actual torsional potential is not always justified.
order to help in the determination of the well multiplicity
one can consider the variation of a van der Waals poten
with the twist angle. In the case of 1,5-hexadiene for
stance, assumingV5V0(12cos(3t))/2 is valid between
2180 and 60° only; the third well in the model torsion
potential is missing due to the steric hindrance because
two double bonds are too close to each other, as show
Fig. 5. This steric hindrance is reflected in the van der Wa
potential as well. In the present implementation of our p
cedure, we have used the same van der Waals paramete
in the DREIDING force field. A well is judged too high in
energy or missing if the van der Waals energy change
greater than 2 RT. We should emphasize that this protoco
only meant to address the most obvious cases of steric
drance.

FIG. 5. Torsional potential for the C2–C3 bond in 1,5-hexadiene at
HF/STO-3G~open squares! and van der Waals energy~filled diamonds!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Truhlar9 noted that a great number of approximations
made in treating internal rotation, and suggested a sim
way to evaluate the partition function with minimal effort b
interpolating between the harmonic oscillator and free-ro
limits,

Qi
hin'Qi

h.o.q tanh~Qi
free rot./Qi

h.o.cl!

5Qi
h.o.q tanh~~pV0 /kT!1/2!, ~21!

whereQi
h.o.q andQi

h.o.cl are the quantum and classical par
tion function, the harmonic oscillator for thei th normal
mode being treated as an internal rotation. This function
proaches the free-rotor partition function forui→0 and the
harmonic oscillator partition function forui→`. It repro-
duces the results tabulated by Pitzer and Gwinn with an
erage absolute deviation of 6.9% forQfree rot

5$0.05,0.25,0.50% and V0 /kT5$0.2,0.4,0.8,1,3,5,10,20%,
which is acceptable for most applications.9 Truhlar’s interpo-
lating function can be compared with the (pV0 /kT)1/2

3 exp@2V0/2kT#J0( iV0/2kT) factor which plays the sam
role in the approximation proposed by Pitzer and Gwinn,8

Qi
hin.5~Qi

h.o.q/Qi
h.o.cl!S 8p3kT

s2h2 D 1/2

I 1/2

3exp@2V0/2kT#J0~ iV0/2kT!

5Qi
h.o.q~pV0 /kT!1/2 exp@2V0/2kT#J0~ iV0/2kT!.

~22!

When the vibrational frequency for internal rotation is sm
and/or the temperature is high, the ratio (Qi

h.o.q/Qi
h.o.cl) is

close to one and Eq.~22! is nearly identical to the classica
hindered rotation partition function which requires only t
rotational barrier heights and the reduced moments of ine
The approximation in Eq.~22! is good for large systems or a
high temperature, when the classical treatment is justifi8

BecauseJ0( iV0/2kT) grows as (pV0 /kT)21/2 exp@V0/2kT#
for high values ofV0/2kT, Pitzer and Gwinn’s formula ap
proaches the harmonic oscillator limit for very hindered
ternal rotation, just as Truhlar’s formula does. McClurg a
co-workers10 use Pitzer and Gwinn’s formula along with
Padéapproximant, Eq.~23!, to correct for the overestimatio
of the zero point energy in the harmonic oscillator partiti
function,

Qi
hin.5exp@DE/kT#Qi

h.o.q~pV0 /kT!1/2

3 exp@2V0/2kT#J0~ iV0/2kT!

with DE5
hn2

2hn116V0
. ~23!

In Figs. 6 and 7, the accurate values for the hindered r
partition function tabulated by Pitzer and Gwinn are co
pared to the harmonic oscillator partition function, Truhla
approximation, Eq.~21!, and Pitzer and Gwinn’s approxima
tion, Eq. ~22!. For V0 /kT.1, the harmonic oscillator treat
ment of the hindered rotation is within 10%–15% of t
tabulated values, but for 0,V0 /kT<1, Eqs. ~21! or ~22!
should be used. Truhlar’s formula does poorly for high v
ues ofQfree rot. and Pitzer and Gwinn’s formula deteriorat
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as bothQfree rot. and V0 /kT become small. Not shown in
Figs. 6 and 7 is the behavior of the formula of McClu
et al., Eq. ~23!. Equation~23! reproduces the tabulated re
sults remarkably well for values ofQfree rot. greater than 3 to
4 and V0 /kT less than 10. Over this range of values, t
maximum error is no more than 8%. However, for values
Qfree rot. less than 4, the error is consistently greater than
and the good behavior of Eq.~23! deteriorates very quickly.
This approximation can thus be viewed as a modest impro
ment over Pitzer and Gwinn’s. In defense of McClurget al.,

FIG. 6. Comparison between the tabulated hindered rotor partition func
the harmonic oscillator partition function~filled squares!, the free-rotor par-
tition function ~open squares!, Truhlar’s approximation~Ref. 9! ~open
circles!, and Pitzer and Gwinn’s approximation~Ref. 8! ~filled circles! as a
function of the reduced barrier heightV0 /RT for Qfree rot.520.

FIG. 7. Comparison between the tabulated hindered rotor partition func
the harmonic oscillator partition function~filled squares!, the free-rotor par-
tition function ~open squares!, Truhlar’s approximation~Ref. 9! ~open
circles!, Pitzer and Gwinn’s approximation~Ref. 8! ~filled circles!, and the
present work~filled triangles! as a function of the reduced barrier heig
V0 /RT for Qfree rot.52.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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one could argue that their formula is most effective in
range of values most often encountered. For instance,
free-rotor partition function for the internal rotation in etha
is 3.35 at 500 K.

As shown in Table III, over the full range of Pitzer an
Gwinn’s tables ~1.818<Qfree rot.<20.0 and 0.2<V0 /kT
<14, a total of 220 values!, Truhlar’s formula has a mea
absolute deviation of 4.5%~maximum deviation517.4% for
Qfree rot.520 andV0 /kT51!. That Truhlar’s formula is in
error for high values ofQfree rot. is not surprising. However
even for low values ofQfree rot. ~e.g.,Qfree rot. approximately
2!, Truhlar’s formula is in error by more than 10% for
<V0 /kT<3. Pitzer and Gwinn’s formula has a mean abs
lute deviation of 1.3%~maximum deviation512.2% for
Qfree rot.51.818 andV0 /kT50.2! and does well over the
whole range of the table. Even though Truhlar’s formula h
slightly larger errors, it has the very desirable feature of
ing a smooth approximation over the entire range from f
rotor to harmonic oscillator. However, as it will be seen b
low, the use of Truhlar’s formula causes large errors in
entropy estimation, in contrast to Pitzer and Gwinn’s form
which performs remarkably well. Pitzer and Gwinn’s fo
mula seems to reproduce the tabulated values fairly well
cept for lower values of bothQfree rot. andV0 /kT.

Since our aim is to treat the case of a molecule w
multiple internal rotors, it is desirable to have a formalis
that accurately treats the single rotor case so as to minim
compounding errors. Using the tabulated accurate value
is possible to improve upon Pitzer and Gwinn’s formula. F
small values of values ofV0 /kT, Eq. ~22! can be written as

Qi
hin.5~Qi

h.o.q/Qi
h.o.cl!Qi

free rot.

3exp@2V0/2kT#J0~ iV0/2kT!

5Qi
free rot.~11P1 exp@2V0/2kT# !, ~24!

where P1 is a polynomial function of 1/Qi
free rot. and

(V0 /kT)1/2. Likewise, the accurate values for the hinder
rotor partition function can be fitted for small values
V0 /kT to

Qi ~accurate!
hin. 5Qi

free rot.~11P2 exp@2V0/2kT# !, ~25!

where P2 is another polynomial function of 1/Qi
free rot. and

(V0 /kT)1/2. A new approximation to the hindered rotor pa
tition function is then given by,

TABLE III. Deviation from Pitzer and Gwinn’s tabulated accurate valu
for the hindered rotor partition function for various approximations.

Truhlara McClurgb Pitzer and Gwinnc
Present
work

Abs. mean deviation 4.5% 4.3% 1.3% 0.4%
Maximum deviation 17.4% 23.8% 12.2% 2.1%
Qfree rot. at max. dev. 20.0 1.818 1.818 1.818
V0 /kT at max. dev. 1.0 14.0 0.2 8.0

aSee Ref. 9.
bSee Ref. 10.
cSee Ref. 8.
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Qi
hin.5~Qi

h.o.q/Qi
h.o.cl!Qi

free rot ~11P2 exp@2V0/2kT# !

~11P1 exp@2V0/2kT# !

3exp@2V0/2kT#J0~ iV0/2kT!. ~26!

This type of function keeps the good characteristics of E
~22! for high V0 /kT while improving its behavior for low
V0 /kT. Using fifth-order polynomials32 for P1 and P2 over
the range 1.818<Qfree rot.<20.0 and 0.2<V0 /kT<3, Eq.
~26! reproduces the tabulated values with an average de
tion of 0.4% ~maximum deviation52.1% for Qfree rot.

51.818 andV0 /kT58! over the whole range of Pitzer’
table. Figure 6 shows the behavior of Eq.~26! for low values
of Qfree rot..

The formulas discussed above are for one mode invo
ing a single rotating group with a clearly defined reduc
moment of inertia. For a system involving several coup
rotating groups~and, therefore, several normal modes!, to the
best of our knowledge, similar approximations do not ex
The rotors are coupled by both the kinetic and potential
ergy terms, and little may be known about the potential
ergy surface. Nevertheless, it would be very desirable to
tain an estimate of the coupled hindered rotor partit
function that is better than the harmonic oscillator appro
mation.

For a system withn free rotors, Eidinoff and Alston15

expressed the classical partition function of the system
terms of the determinant of the kinetic energy matrix f
rotation and translation. If the rigid-body motions are pr
jected out, the kinetic energyT is expressed as

2T5(
i j

n

Ai j ṫ i ṫ j , ~27!

then the partition functionQ for free rotors is given by:

Q5S 2pkT

h2 D n/2E
2a1

b1
...E

2an

bn
~Det@A# !1/2dt1•••dtn .

~28!

In a first approximation, the determinant ofA can be as-
sumed to be constant and the partition function for free
ternal rotation is given by

Qfree rot.5S 8p3kT

h2 D n/2

~Det@A# !1/2

5S 8p3kT

h2 D n/2

)
i 51

n

I i
1/2. ~29!

The projectedG(2) matrix used in Sec. IID corresponds t
the kinetic energy matrixA,n is the number of internal rotors
~equal to the rank of this matrix!, and theI j ’s are the reduced
moments of inertia~equal to the nonzero eigenvalues of t
kinetic energy matrix!.

For cases with multiple hindered rotors, the potential c
take very complicated forms. If the potential is known, o
could solve for the energy levels of then-dimensional sys-
tem and obtain the partition function. Since the potentia
not known in most cases, one must make some approxi
tions. Often, there is little potential energy coupling betwe
rotors, and the potential energy for a given internal rotat
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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is well represented by a single cosine function for each
sion. Assuming that the potential energy can be expresse
V5S i 51

n Vi(12cos(siti))/2, the classical approximation o
Pitzer and Gwinn8 can be extended to multiple rotors,

Qhin.5)
i 51

n

~Qi
h.o.q/Qi

h.o.cl!S 8p3kT

s2h2 D 1/2

I j
1/2

3exp@2Vi /2kT#J0~ iVi /2kT!. ~30!

Like Eq. ~22!, this formula should be suitable for low barr
ers and does go to the harmonic oscillator limit as the ba
ers increase. In order to use Eq.~22!, for a given vibrational
frequency, the correspondence between the reduced
ments of inertia and the rotational barrier heightVi needs to
be established. For low barriers, most of the coupling
tween rotors is due to kinetic energy terms. If the poten
energy coupling is ignored, then the barriers can be appr
mated by an extension of Eq.~13!,

s i
2Vi5L 9q

i tHqL 9q
i I i , ~31!

whereL 9q
i is the eigenvector of the projectedG(2) matrix

that corresponds toI i . Alternatively, one can include th
local potential coupling but treat the kinetic coupling in
approximate way by using the effective reduced momen
inertia for each normal mode. Provided that the redunda
in G8 has been removed, the effective reduced momen
inertia for thei th mode,I eff,i is given by

I eff,i51/~~G81/2L 8Mq
i ! t

•~G81/2L 8Mq
i !!1/2. ~32!

The associated barrier heightVi is then obtained by using
I eff,i in Eq. ~13!. Thus, a reasonable extension of Truhla
formula, which switches from the quantum harmonic osc
lator partition function at high frequencies, to the classi
rotor partition function for low frequencies, to the couple
internal rotation problem, is

Qhin5)
i 51

n

Qi
h.o.q tanh~~pVi /kT!1/2!

5)
i 51

n

Qi
h.o.q tanhS 2pv i~2pI eff,i /kT!1/2

s i
D . ~33!

This extended formula depends only on the reduced
ments of inertia and vibrational frequencies of the mod
identified as internal rotors. Likewise, using Eq.~32!, the
multiple rotor analog of Eqs.~22! and ~26! can be formu-
lated. Although the coupling between rotors is treated o
approximately, it should be suitable for most applications

Qhin.5)
i 51

n

~Qi
h.o.q/Qi

h.o.cl!S 8p3kT

s2h2 D 1/2

3I eff,i
1/2 exp@2Vi /2kT#J0~ iVi /2kT!, ~34!
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Qhin.5)
i 51

n

~Qi
h.o.q/Qi

h.o.cl!Qi
free rot

3
~11P2 exp@2Vi /2kT# !

~11P1 exp@2Vi /2kT# !

3exp@2Vi /2kT#J0~ iVi /2kT!. ~35!

Obtaining a good approximation for the hindered ro
partition function is critical for applications of the transitio
state theory. We have seen that Eqs.~21!, ~22!, or ~26! can
help achieve good results. However, in many studies,
temperature dependence of the partition function plays
important role in determining the corrections to the ener
entropy, and heat capacity. We have mentioned earlier
Truhlar’s formula offers only a small improvement on th
evaluation of the entropy for a single hindered rotor over
free-rotor approximation. The entropy is consistently und
estimated with an average deviation of20.13 cal/mol-K and
a maximum deviation of20.51 cal/mol-K forQfree rot.520
and V0 /kT52.5. Although such a deviation is intrinsicall
small, the use of Truhlar’s formula for multiple uncouple
rotors can give rise to large compounded errors. In contr
Pitzer and Gwinn’s formula reproduces the tabulated val
with an absolute deviation of 0.007 cal/mol-K~maximum
deviation 50.04 cal/mol-K for Qfree rot.52 and
V0 /kT51.5!. The mean absolute deviation for Eq.~26! is
0.05 cal/mol-K. Given the good overall performance of E
~22!, there is probably no need for improvements.

IV. EXAMPLE

Throughout this paper we have used the case of inte
rotation in 1,5-hexadiene to illustrate key aspects of o
treatment. Here, we give quantitative results for the acti
tion entropy of the Cope rearrangement of 1,5-hexadien
500 K using B3LYP/6231G* vibrational frequencies. The
internal rotation about the C2–C3, C3–C4, C4–C5 bond
assumed threefold with a symmetry number of one. The v
ues for the free-rotor partition functions and reduced bar
heights are shown in Table IV. The correction to the entro
is a modest 1.16 cal/mol-K.

As we have seen earlier, the multiplicity of the wells
33232, which adds an extra correction of 4.94 cal/mol
to the entropy. The total correction is thus 6.1 cal/mol-K.
the optically equivalent structures need to be taken into
count, one should note that the four wells for the rotati
about the C2–C3 and C4–C5 bonds are equivalent un
external rotation and the mirror image of the reactant str
ture is obtained after rotation about the C3–C4 bond. T

TABLE IV. Entropy correction for internal rotation in 1,5-hexadiene at 5
K.

Mode
Shin-Sh.o.q.

~cal/mol-K! Qfree rot.
Frequency

(cm21) V/RT

1 0.346 12.749 63.474 1.726
2 0.398 8.844 97.485 1.959
3 0.416 10.934 103.765 3.393
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quantityR ln(23232) thus needs to be subtracted from t
total correction, giving a correction of 1.96 cal/mol-K to th
entropy obtained using the harmonic oscillator model. T
entropy factor for the Cope@3,3# sigmatropic rearrange
ment of 1,5-hexadiene is thus estimated toDS‡

5214.0 cal/mol-K at 500 K and can be compared to t
experimental value33 of DS‡5213.8 cal/mol-K.

V. CONCLUSIONS

We have outlined a procedure to identify internal ro
tion modes and provide a first approximation to the corr
tions for the thermodynamic functions without requiring an
lytical expressions of the torsional potential. Th
identification of the internal rotation modes requires no u
intervention and makes extensive use of the information
bedded in the redundant internal coordinates. The pote
periodicity, the rotating tops’ symmetry numbers, and
well-multiplicity are determined using simple rules. The
parameters can be altered by the user at will. We propos
analytical approximation to the partition function for a on
dimensional hindered internal rotation that reproduces
accurate values tabulated by Pitzer and Gwinn. Generali
the one-dimensional rotor treatment gives a useful appr
mation to the multidimensional rotor thermodynamic fun
tions that constitutes a good start for more thorough stud
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