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Some of the factors affecting the accuracy of following reaction paths and calculating projected
frequencies perpendicular to the reaction path have been examined. The SN2 reaction of Cl2 with
CH3Cl computed at the HF/6-31G* level of theory has been used as a test case. The symmetric C–H
stretching mode couples strongly to the reaction path, and the projected frequency of this mode is
very sensitive to the numerical accuracy of the path following and frequency projection methods.
The transition state geometry must be converged very tightly so that the path steps in the correct
direction. For second order implicit algorithms, improved accuracy can be obtained by computing
the tangent used for path following and frequency projection from the displacement along the path
rather than from the gradient. An even greater increase in accuracy can be achieved by employing
the Hessian, used to compute the frequencies, to take a Newton–Raphson step to improve the
convergence of the reaction path following. Taken together, these techniques yield a one to three
order of magnitude decrease in the errors in the projected frequencies along the reaction path.
© 1997 American Institute of Physics.@S0021-9606~97!00846-5#
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INTRODUCTION

Accurate projected frequencies are needed to calcu
reaction rates by variational transition state theory1 ~VTST!
or reaction path Hamiltonian2 methods. In these methods, th
motion along the reaction path is handled classically, a
motions perpendicular to the path are treated quantum
chanically. To obtain the force constants and vibrational f
quencies perpendicular to the path, the tangent to the pa
used to project out the motion along the path. Thus any
accuracies in the path or the tangent can lead to errors in
projected frequencies and the reaction rates. In this pape
explore some of the problems of projected frequencies
outline a method for overcoming some of the errors.

Several methods have been developed to follow
minimum energy path~MEP! or intrinsic reaction coordinate
~IRC! on a potential energy surface.3–9 The MEP or IRC is
defined as the steepest descent path in mass-weighted
dinates from the saddle point downhill toward reactants
toward products. This definition of the reaction path can
written as a differential equation:

dx~s!

ds
52

g

ugu
, ~1!

wherex(s) is the reaction path,s is the arc length along the
path, andg is the gradient or first derivative of the potenti
energy surface. Reaction paths are notoriously difficult
follow accurately.3–9 Straightforward numerical methods fo
solving differential equations run into problems since t
definition of the reaction path corresponds to a stiff differe
tial equation. Implicit methods are better able to handle s
differential equations than explicit methods.10 We have de-
veloped a second order implicit algorithm8 and a family of
higher order implicit methods9 that are capable of following
reaction paths with larger step sizes than needed for typ
explicit methods.3–6 In this paper we focus on calculatin
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improved projected frequencies with our second order
plicit algorithm, but much of the discussion can be applied
other methods as well. Since steepest descent reaction
following methods must start at the transition state, we a
consider how the accuracy of the transition state optimi
tion affects the quality of the reaction path.

The identity SN2 reaction of chloride with methyl chlo
ride is a suitable test case for exploring the accuracy of p
jected frequencies,

Cl21CH3Cl→ClCH31Cl 2. ~2!

In the transition state, there is significant shortening of
C–H bonds, and hence the symmetric C–H stretching m
participates in the reaction path. As shown below, unl
considerable care is taken in the path following and proj
tion, the symmetric C–H stretching frequency can beha
rather erratically. Most of the difficulties can be traced to t
fact that the gradient is very small in the transition sta
region, resulting in larger uncertainties in the path followi
and frequency projection. In this paper we outline metho
for overcoming these difficulties and illustrate them withab
initio calculations on the chloride plus methyl chloride SN2
reaction. Similar behavior would be expected if an analyti
potential energy surface were used. It should be emphas
that the problems with the projected frequencies are the
sult of difficulties in reaction path following, and are not du
to anomalous features on the potential energy surface.
ther theab initio Born–Oppenheimer surface nor any of th
recent analytical surfaces for SN2 reactions11,12 show any
spurious minima near the transition structure.

METHOD

Second order reaction path following method

In our second order reaction path following metho8

~Scheme 1!,
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9414 A. G. Baboul and H. B. Schlegel: Frequencies along a reaction path
the path segment betweenxi 21 and xi is represented by an
arc of a circle tangent to the gradients atxi 21 andxi . Since
two tangents to a circle form an isosceles triangle, a sim
construction allowsxi to be found by a constrained optim
zation. A pivot pointxi* is obtained by stepping a distanc
s/2 from xi 21 along the tangent atxi 21 ~no calculation is
performed atxi* ). Normally the tangent is calculated from
the gradient~or from the transition vector ifxi 21 is at the
transition state and the gradient is zero!. A second step of
length s/2 is taken fromxi* to xi and the position ofxi is
optimized, subject to the step length constraint, until the g
dient is parallel to the step. Equivalently, the energy atxi is
minimized under the constraint of a fixed step lengthuxi

2xi* u5s/2. Thus xi 21 , xi* , and xi form an isosceles tri-
angle that by construction is tangent to the path atxi 21 and
xi . Hence, the reaction path betweenxi 21 and xi can be
approximated by an arc of a circle. It can be shown that
is a second order algorithm and that it yields the corr
curvature at the transition state.8 This method is similar to
the implicit trapezoid method for integrating stiff differenti
equations;10 however, we use an optimization to findxi more
accurately. For the corresponding version of the implicit E
ler method~cf. the Muller–Brown method7!, one would use
xi* 5xi 21 as the pivot point anduxi2xi* u5s as the con-
straint.

Calculation of the tangent and the projected
frequencies

For a point on the path, the tangent to the path can
calculated from the gradient at that point:

n05
dx~s!

ds
52

g

ugu
, ~3!

where mass-weighted coordinates have been used thro
out. The projected frequencies are then obtained by proj
ing and diagonalizingH, the mass-weighted Hessian or se
ond derivative matrix,

projected H5~ I2n0n0t!H~ I2n0n0t!. ~4!

If the gradient is small~e.g., near the transition state!,
calculating the tangent by Eq.~3! can lead to some uncer
tainty. A point on the path is obtained by a constrained
timization. The optimization is stopped when the resid
gradient perpendicular to the pathdg, and the change in
J. Chem. Phys., Vol. 107, N
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position, dx, are below some reasonable thresholds. Wh
the magnitude of the gradient is small, the residual grad
can cause significant error in the direction of the tangent,
n052(g6dg)/ug6dgu. An alternative choice is to comput
the tangent using the displacement from the pivot,

n05~xi2xi* !/uxi2xi* u. ~5!

This will have less uncertainty, provideduxi2xi* u.ugu
and/or dx,dg. This form of the tangent can be used
improve the projection in Eq.~4!. In addition, Eq.~5! can
also be used in the path following to give a better estimate
the next pivot and next point on the path,

xi 11* 5xi1s/2~xi2xi* !/uxi2xi* u

5xi* 1s~xi2xi* !/uxi2xi* u. ~6!

Since the Hessian is available atxi , it can be used to
improve the path further. A constrained Newton–Raphs
step can be taken to yield a more accurate point on the
ond order path:

xi85xi2~H i2lI !21~gi2l~xi2xi* !!, ~7!

wherel is chosen so thatuxi2xi* u5s/2. The new position
xi8 can be used in Eq.~5! for an improved tangent. The im
proved tangent andxi8 can be used to obtain the pivot for th
next step along the path via Eq.~6!.

Calculations were performed with a modified version
the GAUSSIAN 94 series of programs.13 Geometry optimiza-
tion, reaction path following, and projected frequency co
putations were carried out at the HF/6-31G* level of theory.
The chloride–methyl chloride SN2 reaction has been studie
at much higher levels,14 but the HF/6-31G* level is sufficient
to examine the sources of error in reaction path followi
and frequency projection, and to test the improvements o
lined above. Four sets of convergence criteria were used
the geometry optimization and reaction path followin
Regular, semitight, tight, and very tight thresholds are
1024, 231025, 1025, and 1026 a.u. for the root-mean-
square~rms! gradient~the threshold for the maximum grad
ent component is 1.5 times larger!. The corresponding
thresholds for the displacements~in a.u. or rad! are four
times the gradient thresholds. A step size of 0.01 amu1/2 bohr
was used for the present tests.

RESULTS AND DISCUSSION

The transition state geometries optimized with the re
lar, tight, and very tight criteria are given in Table I. Th
normal modes for the transition state are illustrated in Fig

TABLE I. Effect of optimization convergence criteria on the HF/6-31G*
geometries and energies of@Cl–CH3–CL#2 transition state.

Regular Tight Very Tight

R~C–Cl! 2.383 238 344 2.383 046 72 2.383 044 1
R~C–H! 1.061 073 94 1.061 249 57 1.061 252 68
,HCCl 90.0 90.0 90.0
Total energy 2958.613 461 395 2958.613 461 564 2958.613 461 564

aDistances are in angstroms, angles in degrees, and total energies in ha
o. 22, 8 December 1997
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9415A. G. Baboul and H. B. Schlegel: Frequencies along a reaction path
The projected frequencies for;0.2 Å along the reaction path
are shown in Fig. 2. The regular convergence criteria h
been used for the transition state optimization and the re
tion path following, and the tangents for the projection a
for stepping along the path have been computed using
gradient, Eq. ~3!. The symmetric C–H stretching mod
shows a 1400 cm21 deep minimum, despite the fact that th
potential energy surface is flat and without a minimum
this region. The symmetric Cl–C–Cl also has a minimum
~but it is only 15 cm21 deep!; all other modes are essential
constant in this region. It is apparent that the projected s
metric C–H stretch is being treated very poorly and the
mainder of the discussion concentrates on this mode.
problems can be traced to the convergence of the trans
state geometry optimization, the convergence of the path
lowing, and the accuracy of the tangent for the frequen
projection. The 1400 cm21 error results from the compound
ing of these three sources of error. In the following disc

FIG. 1. Normal modes of vibration for the transition state for the SN2
reaction of Cl2 with CH3Cl.

FIG. 2. Projected vibrational frequencies for the Cl21CH3Cl SN2 reaction
near the transition state.
J. Chem. Phys., Vol. 107, N
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sion, each factor is examined individually, with the erro
from the remaining sources greatly reduced~note that the
errors are not additive!.

Figure 3 shows the effect of optimizing the transitio
state with the regular, tight, and very tight criteria. In ea
case very tight optimization was used for the path and
tangent was computed using the gradients. With the reg
transition state optimization, there is a 20 cm21 drop in the
projected symmetric C–H stretch for the first few points
the path. For the tight and very tight cases, the drop is o
0.1–0.2 cm21. Unless the transition state has been det
mined very accurately, a few steps are required to get to
correct reaction path. For these first few steps, the tange
not parallel to the correct path~particularly in the C–H
stretching coordinate in this case!, and the projected frequen
cies are affected. The transition state geometry optimi
with very tight convergence is used for the remainder of
discussion.

The convergence of the reaction path optimization a
has a major effect on the projected frequencies. Regular c
vergence results in errors of over 100 cm21 in the projected
symmetric C–H stretch. Figure 4 show that the errors
semitight, tight, and very tight convergence are;4, 0.5, and
0.05 cm21, respectively, when started from the most accur
transition state geometry. When the optimization criteria

FIG. 3. Effect of transition state optimization convergence on the projec
symmetric C–H stretching frequency along the reaction path~regular—
dotted, tight—dashed, very tight—solid!.
o. 22, 8 December 1997
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9416 A. G. Baboul and H. B. Schlegel: Frequencies along a reaction path
not tight enough, the path following algorithm can take
poor step, and several steps may be required to get bac
the correct path. Together, a poorly converged step star
from a low accuracy transition state can result in a 14
cm21 error in the projected C–H stretching frequency. Ev
the very tight criteria for path following show some undes
able behavior. However, for larger systems and longer re
tion paths, it may be too costly to require even tighter co
vergence.

Some of the remaining problems can be traced to
computation of the tangent. If the displacements are use
Eq. ~5! to compute the tangent for the projection, a mod
improvement is seen in comparing Fig. 5~a! with Fig. 4.
However, much greater improvement is seen when the
placements are also used in Eq.~6! to compute the pivot for
the next step along the path. Figure 5~b! shows that the errors
in the projected frequencies are a factor of 5–10 smaller t
in Fig. 4 or Fig. 5~a!. Apparently, inaccuracies in the tange
computed from the gradient cause the path following al
rithm to step off the path significantly, resulting in errors
the position of the path, and consequently errors in the p
jected frequencies.

Further improvement of the accuracy of the reaction p
can be achieved by using Eq.~7!, a Newton–Raphson ste
with the analytical Hessian that is needed for the frequenc
Figure 6 shows that the improved paths are smooth and
sentially superimposable for the semitight, tight, and v
tight convergence criteria. The Newton–Raphson step
pears to clean up any remaining errors in the path follow
for each of the three levels of convergence considered. E
with semitight path optimization convergence, the error
the projected frequency is less than 0.002 cm21, an order of
magnitude better than the original method with very tig
convergence criteria, and three orders of magnitude be
than with the regular convergence criteria.

CONCLUSIONS

This paper illustrates the importance of accurate ca
lation of the transition state, reaction path, and tangent
the computation of reliable projected frequencies. For

FIG. 4. Effect of reaction path optimization convergence on the projec
symmetric C–H stretching frequency along the reaction path~semitight—
dot-dashed, tight—dashed, very tight—solid!.
J. Chem. Phys., Vol. 107, N
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gions of the potential energy surface where the gradien
small, the tangent for computing the projected frequenc
should be calculated from the displacement. In the sec
order implicit algorithm for reaction path following, the tan
gent computed from the displacement should also be used
stepping to the next pivot point. Since the Hessian is av
able from the frequency calculation, it can be used to tak
constrained Newton–Raphson step to improve the reac

d

FIG. 5. Effect on the projected symmetric C–H stretching frequency
using the displacements to calculate the tangent for~a! frequency projection
only and~b! stepping along the path and frequency projection~semitight—
dot-dashed, tight—dashed, very tight—solid!.

FIG. 6. Effect on the projected symmetric C–H stretching frequency
using the Hessian to take a Newton–Raphson step to improve converg
of the reaction path optimization~semitight—squares, tight—circles, ver
tight—X!.
o. 22, 8 December 1997
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9417A. G. Baboul and H. B. Schlegel: Frequencies along a reaction path
path and the tangent. This leads to a one to three orde
magnitude reduction in the error in the projected frequenc
~at essentially no additional cost over the calculation of p
jected frequencies via the original second order implicit
action path following algorithm!.

The sensitivity of the projected frequencies and the c
vature coupling matrix elements to the accuracy of the re
tion path and the tangents helps to explain the surpris
results of Melissas, Truhlar, and Garrett.15 They found that
the first order~explicit! stabilized Euler method3 was more
cost effective for computing variational transition theory ra
constants than a variety of higher order reaction path follo
ing methods. For the stabilized Euler method, they use s
eral short steps to calculate the reaction path between
sian calculations. However, for the second order impl
method, they took only one step and one Newton–Raph
iteration, rather than converging the path accurately.
shown above, careful attention to the accuracy of the p
and the tangent is needed for reliable projected frequen
and the needed accuracy can be achieved with very l
additional effort.
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