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Mapping out a reaction mechanism involves optimizing the reactants and products, finding the
transition state and following the reaction path connecting them. Transition states can be difficult to
locate and reaction paths can be expensive to follow. We describe an efficient algorithm for
determining the transition state, minima and reaction path in a single procedure. Starting with an
approximate path represented Wypoints, the path is iteratively relaxed until one of tRepoints
reached the transition state, the end points optimize to minima and the remaining points converged
to a second order approximation of the steepest descent path. The method appears to be more
reliable than conventional transition state optimization algorithms, and requires only energies and
gradients, but not second derivative calculations. The procedure is illustrated by application to a
number of model reactions. In most cases, the reaction mechanism can be described well using 5 to
7 points to represent the transition state, the minima and the path. The computational cost of
relaxing the path is less than or comparable to the cost of standard techniques for finding the
transition state and the minima, determining the transition vector and following the reaction path on
both sides of the transition state. 97 American Institute of Physi¢§0021-960627)01226-9

I. INTRODUCTION available!®~2° Even though some algorithms allow for rea-
sonable step sizes and are very rohiest)., the Gonzalez—
Equilibrium geometries, transition states, and reactiorsch|ege| methdd), following the reaction path requires
paths are central in the study of chemical reactions. Gradienpnany steps and is generally computationally expensive. In
based methods have made the search for equilibrium geomggition to the effort of determining the reaction path, the
etries for small and medium size molecules almost routinejnnerent drawback of following the steepest descent path is
However, finding transition states can still be quite challengtnat it must start at thésometimes very difficult to locate
ing. The use of redundant internal coordindtéshas im-  yransition state and requires the direction of the transition
proved the efficiency of these methods, but following reacector (usually necessitating a frequency calculation
tion paths can still take a large number of steps. Algorithms  j5isen and Shepdfddescribe a method for fitting the
to find these features on potential energy surfaces have be%tential energy surface around an approximate reaction path
reviewed recently** In this paper, we present a combined ysing energies, first and second derivatives of the energy.
algorithm that efficiently determines minima, transition stateTne fitted surface is used to improve the reaction path and
and the reaction path connecting them in a given region of afhe process is repeated until it converges to the steepest de-
ab initio potential energy surface. scent path. Elber and Karpfis?® developed a method for
A transition state or first order saddle point is a Station‘obtaining a good approximation of the reaction path that
ary point that is an energy maximum in one direction and &jpes not require prior knowledge of the transition state and
minimum in all others. Quasi-Newton methods usually showne potential energy surface curvature. This technique con-

a small radius of convergence because the specific directiag)sts in minimizing the integral of the energy along the reac-
for maximization is generally not known in advance andijgp path using amN-point discretization,

there is no guarantee that the optimization converges to the
desired transition state. Combining synchronous transit and
guasi-Newton methods to find transition staf@$) proves 1 quﬂ
to be an efficient technique addressing some of thesg_ L % i<
problemst?3|n this technique, the first few steps search for (1)
a maximum along an arc of circle connecting reactants and
products and a minimum in all other directions. In the re-
maining optimization steps, a quasi-Newton based eigenvec-
tor following optimizatiort* is guided by the tangent to the
arc of circle passing through the putative TS and minima.
Once the transition state is located, mechanistic informa-
tion about the chemical reaction can be obtained by follow-
ing the steepest descent pathonnecting reactants to prod-
ucts through the transition state. Various techniques for Reaction Coordinate
integrating the steepest descent path differential equation are Scheme 1 Elber—Karplus method.

18 E(q)+E(g_y)
E(Q)ds”tz I Y > i |gi—ai_1l.
1

Energy
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376 P. Y. Ayala and H. B. Schlegel: Reaction paths, minima

At convergence, a good approximation for the location of themlzed to the closest minimum. The remaining points on the

transition state can be obtained by interpolation which in turrP ath are optimized to lie on the steepest descent path. After

can be refined by quasi-Newton methods. Typically 10 Oreach optlmlzatlon ste_p, the energies and_gradlents are calcu-
. : lated again, the Hessians are updated using the available gra-
more points are used to represent the path and special care

L . . Ilents and the optimization is repeated until each point has
(such as maintaining equal spacing and adding a self-
X . . converged.
avoidance potenti&l) must be taken so that the points do not . . L
; L i S . A key feature of this approach is that the optimizations
collapse into minima during the optimization and to take into

account rigid-body motions. The convergence of the integra?gimg Igglrnttr?eorlljtg:i?/ept? ;r;s?trigngsligedthbgtrtgr?sigilr?ng-”ng
optimization is very slow; McDouakt al?’ noted that mini- P ) P £

mizing the two penalty functions to eliminate uneven pathtor is assumed to be the tangent of the arc of circle passing

segments and rigid-body motions can be the most costly pawrough it and thg ne|ghbor|n.g point in each valley, ,, .
X ; . . g, and g;,,. This tangent is used to guide the quasi-

of the algorithm. Because of the dimensionality of the prob-_! .1 . S I
Newton/eigenvector following optimization of the transition

lem (3* n*N, wheren is the number of atoms in the molecu- . : .
. . state (the conventional eigenvector following approach can
lar system and\ is the number of points along the path e N ) .
have difficulties in maintaining the proper uphill search di-

quasi Newton_opumlzatlon technlqu.es other thfan COn]ugaterectmr‘). For the steepest descent portion of the path, the
gradient algorithn®® cannot be readily used to improve the . )

g o - second order Gonzalez—Schlegel path following me'thisd
convergence. Hence, the method in its unmodified form is

only suitable for inexpensive levels of theory such as semiysed; each segment the reaction path connecting a ot

empirical or molecular mechanics methods. A vafiathat its uphill neighboring point; —, is approximated by an arc

concentrates on the saddle point is somewhat more e1‘ficier(1)tf circle defined by the position af;, ¢, , and the tangent

and using a different approach ElBtalso showed that a tou;Zerart)iitgi&alcfzeéjosCheé?e.)zch e;;tc_h sEe(gTeft, &chal

good representation of the steepest descent path can be o “12AGH Ag s uselg ’to rSIlax theql o;n soqéhat tr?ie gtlee i

tained by representing the path by a series of straight lines qiHingi. 1S ) point NP P

defined by a set a points and iteratively refining this ap- est descent path differential EQ) (Ref. 15 is satisfied, i.e.,
T e . . : the tangent to the path; is the parallel to the gradier ,

proximation by minimizing the potential energy in the direc-

tions perpendicular toq;_; — gi;41). The weakness of this dg/ds=—g(q)/|9(q)|. 2

method is the small radius of convergeriEegossibly due The following steps provide an outline of the present proce-

mamly'to. the lack of spacing constraints. dure. Various aspects are discussed in more detail below.
Building upon these ideas, we have developed a com-

bined procedure to find a transition state and follow the(l) Using a two or three-structure input, construct an
reaction path that is efficient enough fab initio molecular N-point approximation of the path by linear interpola-

orbital calculations. This procedure locates the transition tion. Obtain an initial estimate of the Hessian at each
state connecting two input structures and can represent point.

the steepest descent path between them with as few as 3 () Compute the energy and gradient for each point that
5 points. The computational cost comparable to a regular moved significantly from its position in the previous

transition state optimization plus reaction path following, path approximation. If allowed, update the trust radius
but is intrinsically more reliable than the conventional  for the optimizations and the path relaxation. On the first
approach. The algorithm is implemented in the develop- step, elect which points will be allowed to move toward

ment version oGAUSSIAN 94 (Ref. 29 and tested on a series the TS and minima.

of simple reactions that show a range of transition staté3) Update the Hessian for each point. First, update using

geometries and reaction path properties+H—H+HF; gradients at neighboring points along the current path.
CH;0—CH,0OH; SiH,+H,—SiH,;; CH,—CH,+HF; CH, For the first four relaxation steps, if the points along the
=—CH,+ CH,—=CH-CH=CH,—cyclohexene (Diels—Alder path are too far apaftypically, separated by more than
reactior); CH,—CH,+CH,—=CH-CH;—pentene(ene reac- 0.6 a.u), update the second derivative along the path
tion).

IIl. METHOD

sphere used in
constrained
The present procedure refines an initial guess of the re- optimization.
action path until the transition state and the steepest descen
path are found. The initial guess of the points along the re-
action path is obtained by interpolating between t(oo
three input structures; the energy and gradient are calculated
at each point and an empirical estimate of the Hessian is
-Obtained for eaqh point. The higheSt energy pO_int on the pa'thcheme 2 Segment of the reaction path approximated by an arc of circle
is chosen to optimize to the closest TS. This divides the pat assing througly,_; andq; with tangentsT, , andT,. The approximation

into two downh?” segments. If the |0W energy end point Of'can be refined by displacirg on the surface of a sphere centered’aand
each segment is not already at a minimum, it can be optiminimizing its energy.

approx. reaction path

actual reaction path
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P. Y. Ayala and H. B. Schlegel: Reaction paths, minima 377

using a quintic fit to the energies and gradients along the g
path. Second, update using the gradients from the current
and previous position for each point.

(4) Move the end points toward the minima, if allowed, us-
ing conventional quasi-Newton algorithfine default al-

b Reactant

2-structure input

gorithm in GAUSSIAN 94 (Ref. 29 is RFO (Ref. 30 pre- TS Product
ceded by a linear search whenever possible 3-structure input

(5) Use the tangent to the arc of circle passing through the .
highest point and its two immediate neighbors to guide T q
the eigenvector-following TS search.

(6) Perform microiterations for each point on the path using Scheme 3nitial approximation to the reaction path.

the local quadratic surface until convergence criteria are
met or the trust radius exceeded.

(7) Check the convergence of the d_isplacement and gradierﬂ)tending on the shape of the potential energy surface, the
Lqr tlhe opu(;pmatlons gnd thi dls_placement and PETPeNGitial guess of the TS may not be the highest point along the
icular gradient reaction path refinement. initial path; either the highest energy point or the initial

(8) If not converged, update th_e positions of the points Ozpuess for the TS can be chosen to optimize to the TS.
the path and go to step 2; if converged, print summar

and stop.

A. Coordinates C. Path relaxation

To describe a reaction path, internal coordinates are pre-  The minimag, are optimized using the standard quasi-
ferred over Cartesian coordinates, since this avoids problemgewton method inGAUSSIAN 94 The transition state; is
with rigid body rotations and translations along the path.gptimized using the standard quasi-Newton/eigenvector fol-
Because a set of nonredunddatmatrix) internal coordi-  |owing method, where the choice of the eigenvector is
nates most appropriate for describing the bonding in onguided by the tangent at the transition state. This tangent is

region of the potential energy surface can be a very poor slomputed from the arc of a circle pasting through 4,
in another region, redundant internal coordinates appear t@j, andg;. 1,

be better suited for treating the whole reaction path. The

present method utilizes the redundant internal coordinates in Tj’:(qj+l—qj)/|qj—qj+1|2—(qj,1—qj)/|qj—qj,1|2;
GAUSSIAN 942° These are based on the identification of bonds

using covalent radii; valence angles and dihedral angles are Tj:TJ.’/|TJ.’|_ (39
generated for all appropriately bonded triplets and quadru-

plets of atoms. The reactantlike structure at one end of théfter each optimization step, the path connecting two ex-
path generates one set of redundant internal coordinates, atféma is relaxed in a series of microiterations. Equat®ris
the productlike structure at the other end generates a seconéplaced by a set of finite difference equations, @), for
set. The union of these two sets defines the redundant intethe points between the T and minimumg, (j < k),

nal coordinates used throughout the path relaxation process. )

The user can alter the final set of redundant internal coordi-  1i= & /|g|+Error(i). (3b)

nates_ by adding or removing coordinates. The fmgl set Orn the spirit of the Gonzalez—Schlegel reaction path follow-
coordinates should be inspected closely for potential prob-

lems, e.g., valence angles and dihedrals incompatible with'd algorithm, the path between., andg; is represented by

the symmetry of the reaction path, or two linear angles jn 2N arc of a circle, as shown in Schemédte thaky;, is the

stead of a valance angle and a dihedral. uphill point). Giveng;_4, q; ,'andTi,l (the normallzed'tan-
gent atq;_4), one can readily construdt; (the normalized

tangent ay;), since two tangents to a circle form an isosceles
B. Input triangle,

Either two or three structures can be used to specify the 1. 4y T.=(q—q_,);
initial approximation to the reaction path. If two structures
are given, the initial guess of the reaction path is obtained by . =(q,—q,_,)%[2T,_1- (q;—qi_1)], (30)
linear interpolation between the reactant and product in re-
dundant internal coordinates. If a third structure is input as a TA=[(q—q_1)—Ti_41/r;.
guess for the transition state, the initial path is then approxi-
mated by two linear interpolations, first between reactant aniiVhenever the angle formed bg;(— ¢;_;) andT;_, exceeds
TS and second, between TS and prodsee Scheme)3and  45°, an arc of a circle is probably a poor approximation to
an equal number of points is distributed on each leg of thehe reaction path. In this case, the path can be approximated
path. The final set of redundant internal coordinates is théy a parabola passing through_; and g; with a tangent
same in both the two-structure and three-structure input. DeF;_; atq;_;, in the manner shown in Scheme 4.
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378 P. Y. Ayala and H. B. Schlegel: Reaction paths, minima

_ New path

arc of circle q; (before redistribution)

Old path ~

New q.

1
(after redistribution)
Old q.
parabola %

q

i+1

Scheme 4 When the change in direction of the reaction path is too large, N . . . .

the segment of the reaction path is approximated by a parabola passin%Cheme 5 N!|cr_0|te_rat|on step for one point showing relaxation of the path
g; and redistribution along the path.

throughg; _; andg; with tangentsT;_, andT; rather than an arc of a circle.
TP N, —tan( §—45)(T,_1— Ny): path foIIowmgn is solved on _the model quadratlg surface

about each point. Then the points along the approximate path

Thara T/ parg|/para (3d) are redistributed to satisfy the spacing constraints. This mi-

croiteration is repeated until all the displacements and the

where components of the gradient perpendicular to the tangent are
N;=(0i—0i—1)—(ai—Gi—1)'Ti—1Ti—1); below threshold(default, half of the corresponding criteria
for the stationary point searghor until the total displace-
Ny =N//|N;], (3¢ ment for each point has exceeded the trust ragiegault 0.3
and a.u).
The equation for the constrained optimization for the
cog 0)=(qi—0i-1)'Ti—1/|gi—qi_4|. (3f  reaction path following is
The construction in Scheme 4 allows for a smooth change
from the tangent to the arc of a circle to the tangent of a g+ H;Aqi=\(s;T;+Aq;) (48

parabola as the angle betweep - g;_;) andT;_; increases

beyond 45°. If this construction is needgd for more than ongnq corresponds to the search for a point lying on a sphere of

or two points of the converged reaction path, then morgagiyss; such that the normal and the gradient are parallel.

points should be used for a more accurate representation §ke | agrangian multipliek; is chosen so thds T, + Ag|

the path. _ _ _ = s (i.e., the point lies on the spherand\; is negative for
The constraints on the spacing of the points along thene steepest descent directfnNote that the Hessian for

path are given by Eq3g), where thea;'s are the desired each point needs to be diagonalized only once, since it is
ratios of distances between the points in redundant internglonstant during the microiterations.

coordinatesa; = 1 for alli, corresponding to equal spacing In practice, the iteration of Eq4a) needs to be stabi-
is used herg lized to prevent oscillations. First, a small maximum step
loi— i —1]/a;= |0 — Ol + 1]/ 4 1. (3g)  size is used in each microiteration, typically two to four

o . times the convergence criterion for displacements. Secondly,
The convergence criteria used for the path refinement arg, iterations are damped by replacing the tangerftalcu-

similar to the regular criteria for the optimization; less than| ;o from the arc of a circle or a parabpleith the average
0.000 45 and 0.000 30 a.u. for the maximum component angs o tangent and the normalized gradient

root mean square of the gradient perpendicular to the tan-

gent, less than 0.001 8 and 0.001 2 a.u. for the maximum -~ ~ o~

component and root mean square of the displacement, re- Ti=Ti—a/lal; Ti=T{/T{|. (4b)

spectively.

When the microiterations have converged, the reaction

path betweery;_; and g; can be represented by an arc of

a circle or by a parabola. However, during the course of
The equations for the path relaxati@@b) and the spac- the microiterations, it is not always possible to ligk

ing constraintg3g) form a strongly coupled set of equations. to g; by a single arc of circle tangent f,_; andT;. The

With care, these can be solved in a series of microiterationgath can always be represented by two arcs, as shown in

as shown in Scheme 5. First, the constrained optimization foBcheme 6, where the radiss is the positive solution of

the reaction |gi_1+sTi_1—qi+sTi|=2s;.

D. Microiterations
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P. Y. Ayala and H. B. Schlegel: Reaction paths, minima 379
GAUSSIAN 94 To keep a consistent and conservative trust

radius update along the path, the root mean square of the
updated trust radii is assigned to each point.

F. Hessian update

Reaction path The success of the reaction path relaxation procedure
Scheme 6 Reaction path segment represented by two arcs during théiepeﬂdS critically O_ﬂ the quality of the Hes_5|an at each pOIht.
microiterations. However, calculation of the exact Hessian at each point

would make the algorithm inappropriate for most levels of

Both the damping given by E¢4b) and the use of the two theory. The present method starts with an empirically esti-
smaller arcs of circles constructed in Scheme 6 lead to morgated Hessialt®? for each point and updates it using the
conservative Steps and better Stab”lty in the minOiterationSava”ab]e gradientsl In contrast to Sing|e-structure optimiza_
Despite these precautions, hysteris-type oscillations can stiflon, a lot of information about the shape of the potential
occur. To overcome these, the most downhill point involvedenergy surface along the path is available and the standard
in the oscillation needs to have its diSpIacement dampeﬂqethods of updating of the Hessian can be improved_ The
heavily?’ In the present implementation, whenever the anglaipdating is done in two stages; the first uses the gradients at
formed byAq;_; andAq; is greater than 160°Aq; is ze-  neighboring points along the path, and the second uses the
roed. gradients for a given point at the current and previous itera-

After each microiteration relaxing the path, the pointstions of relaxing the path. This provides better estimates of
along the path need to be redistributed to maintain the rethe Hessians and thus better convergence, especially for the
guested spacing. First(_1 — q; 1) is projected out of dis- TS search.

placementAq; . Then the position of each point is iteratively  |n the first stage of updating, the points along the path
adjusted along the path by E) until all the constraints are  mjight be too far apart to insure a good update using the
satisfied, standard formulas. For the first four iterations only, a quintic
_ _ o polynomial is used to update the second derivative along the
Ginew=0iF @i(Gi-1~Gi+1) J<i<k, (53 path. The path is approximated by an arc of a circle passing
whereg; is chosen such that throughg;_,, g;j, and g;;,. The energies and gradients
along the path atj;_,, g;, andqg; ., are fitted to a quintic
|Ginew 0~ 1| = | Ainew™ G+ 1 - (5B polynomial and yield a second derivatiyealong the path at

To avoid problems when the end poiptis not optimized or i - The updated Hessian gf is approximated by

not on the steepest descent path, the redistribution of the

Sgg;gkt;; must be treated differently, and E¢pb) is re- Hinew= (1= TiTHHigq(1-TiTH + % T, T1, (73
| A 1new— Gk—2l = (Gk— Ak 1new " (A 1new— Gk—2)/ where the tangent af; is given by
| O 1new— Ok 2!- (50) T/ =(Gi+ 1= 9)/[0i— i+ 1l = (qi—1— )/
lgi—qi-4% Ti=T{/T]]. (7b)

E. Trust radius update
In the second stage, the gradients from the current and

Control of the step size for the optimization and the pathprevious iteration of each point are used to update the Hes-
relaxation is essential for proper performance. The trust ra-

: . ; sian. For the points elected to optimize toward minima, a
dius can be fixed or can be updated before the Hessian UBEGs updat®3is emploved. For points alona the path. a
date and the microiterations are performed. For the poin P ployed. b g path,

tls_, S
. ", - owell update could be used so that the Hessian is not forced
?rt)sntgretgﬁj Spétigixc(lj:?gégatg?gf;ﬁntcs)t(’IiEt(eﬁ)and mininghe e positive definite. In the spirit of Bofill's updatésome

i P 9 ' improvement over the Powell update can be obtained using a
BFGS/Powell mixture,

Bi:(ginew_giold)t'[Hi(qinew_qiold)]/ HneW:HoId+(1_¢)AH(BFGS+ d’AH(Powell)v (8a)
|Hi(inew™ Giod)| (6a) AH gros = (AQ)(AQ)AGAG— (HgeAQ)
, X(HoigA)'/Aq'Hg6AQ, (8b)
Tinew:0-57'iold if (IB|<07 or ,3|>13), (6b)

AH (powen =[(Ag—HogAq) (AQ)'+(AQ)(Ag
—HoeAa)'/Ag'Ag—(Ag
—HogAQ)'Aq(A)(AQ)/(Ag'AG)?, (80

TineW:‘/?Tiold if (B|>085 and,8|<125) (GC)

For the transition state and the minima the trust radius is
updated in the same manner as for regular optimizations iwith
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380 P. Y. Ayala and H. B. Schlegel: Reaction paths, minima

&= (Ohew- A0/ (|Gnenl|Aa]))? if AgtAg>0 40 Aﬂl‘“"

a
=1 if Ag*Aq<0 or AQ'H,4AQq<0. (8d)
3.04

This Hessian updating mixture favors a BFGS updatesi- TS
tive semidefinite changefor displacements nearly perpen- 2o
dicular to the path and a Powell update along the path. ' - g

For the point elected to optimize toward TS, a Bofill ® <— Anchor
update (a mixture of the Murtagh—Sargent upd&teand
Powell updat®®) would be appropriate. Again, the update " 0 0 o
can be made more effective by using a BFGS-type update if HH/ au
the displacement is perpendicular to the transition vector. For
the fifth and later steps the Hessian for the TS is updategG. 1. Reaction path for y+F—H+HF in intenal coordinates without

using Egs(8a—(8c) and Eq.(8e), mass weightingsolid line, GS algorithm; crosses, Euler algorithm; filled
squares, 7 point relaxatipn

HF/ au
N

1.0

¢=(TL.Aq/|Aq)? if Ag-Ag>0

I1l. APPLICATIONS
=1 if Ag*Agq<0 or AQ'H,4AQq<0. (8¢ The procedure outlined above has been implemented in
] ) the development version @AUSSIAN 94 (Ref. 29 and has
G. Branching of reaction paths been tested for a number of chemical reactions. The calcula-

On some potential energy surfaces, the reaction pattions were performed at the HF/3-21G level of theory. Un-
branches into two paths that descend into valleys on eithdess stated otherwise, 7 points, including transition state and
side of a ridge. Branching along a steepest descent path iBinima, were used to represent the reaction path.
characterized by a valley ridge inflectiéWRI) point, where The efficiency and accuracy of the algorithm was tested
one or more eigenvalues of the projected Hessian are*?ero.against the widely used Gonzalez—Schlegel reaction path fol-
Valley ridge inflection points are often encountered when thdowing method usingZ-matrix internal coordinates. Just as
point group symmetry is lowered along the reaction paththe steepest descent path in internal coordinates depends on
such as in the Ch=CH,+HF reaction, where th€, transi-  the choice of internal coordinates, the present algorithm will
tion state leads vi&€, structures to staggered fluoroethane.converge to different path approximations depending on the
The reaction path bifurcation can be handled in a number ot¢hoice of redundant internal coordinates. However, the sta-
ways* 43 A steepest descent path near the ridge will followtionary points along the path will be the same.
the ridge for a conside_rable distange before descend into o ' F+Hy—HF+H
of the two valleys. It is therefore important that the relax-
ation process keeps the points either on the ridge or on the Figure 1 depicts the non-mass-weighted reaction path for
product side of the ridge. As illustrated in Scheme 7, whenthis simple bimolecular reaction representative of atom ab-
ever the point being relaxed is on the side of the ridge opstraction, Sy2 reactions and group transfer reactions. The
posite to the desired product, even slightly, then stepping ifieaction coordinate was followed using both the Gonzalez—-
the direction perpendicular to the tangent takes it furtheSchlegel(GS) second order algorithm and using the Euler
down the wrong side, irrespective of the choice for the tan-

gent(T; parallel toq; — qY , g — Qi—1, OrGj+1 — Gi_1, €tc).

However, the sequence of microiterations described above L0S0A S 1122
can bring the point back on the ridge. 4090
:
3548
displacement other o 3'0_*‘3’
perp. to tangent reaction 3
path oo
© 25
---------- ridge
a4 2.0
L
1.5 T T T 1
sphere for 2.0 2.5 3.0 35 4.0
constrained opt. reaction path CH/ au

to desired product

_ o _ ) FIG. 2. Reaction path for C/©OH—CH;0 in redundant internal coordinates
Scheme 7:Reaction path relaxation in the neighborhood of a valley-ridge without mass weightingcrosses, Euler algorithm; open squares, 5 point
inflection (VRI) point. relaxation; filled squares, 7 point relaxatjon
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the reaction. The reaction path is fairly curved with a very
late TS(i.e., close to the Sik#H, cluster minimum and an

1.106 A equally good representation of the path is given using 5 or 7
points.

1.542 A

2924

SiH' / au

This simple example of a reaction with a 4-membered
ring transition state might be one of the more challenging
reactions of our test suite. A loo$&,, cluster with the HF

o bond perpendicular to the CC bond is present on the product
Hs " o - . M side. On the reactant side the actual IRC as obtained by the
SiH / au GS algorithm converges to a staggered conformation of fluo-

roethane. Starting from the thr€x structures of Ref. 13 and

enforcingCg symmetry throughout the relaxation procedure,
FIG. 3. Reaction path for SiH-[SiH,+H,]" in nonredundant internal co-  the reactant and product are found after 28 and 5 steps, the
or(_iinates Wit_hout_mass weightimgoliq line, GS glgorithm; open squares, 5 TS is found after 11 steps, and the path is fully converged
point relaxation; filled squares, 7 point relaxafion .

after 28 steps. The limiting factor for the performance of the

algorithm appears to be the poor choice for the initial guess
algorithm with a step size of 0.1 a.u. The two algorithmsOf the producHF bond lies parallel to the CC bondJsing
agree up to large HH distances where the Euler algorithn? better guess for product structutee HF bond is perpen-
begins to oscillate. Starting from a linear synchronous transiglicular to the CC bondyields much better results. The TS is
(LST) approximation with anchor points away from the IRC found in 11 steps, the reactant is found in 5 steps, the product
path, the relaxation procedure converges quickly onto thés found in 8 steps, and the path is fully converged in 14
steepest descent path in six iterations, the same number steg§PS-

needed for the optimization of the TS. The agreement with ~ Figure 4 shows the reaction path in redundant internal
the IRC obtained by the GS method is very good. coordinates from the transition state descending to the stag-

gered fluoroethane. The relaxed path successfully follows the
ridge and then, past the valley ridge inflection point turns
towards the correct product structure. Also shown in Fig. 4 is
This 1,2 hydrogen shift reaction is a simple model forthe reaction path for the methyl group rotation. Figure 5
1,n group shift reactions. The transition state is a 3-membetompares the relaxed path with the reaction path in nonre-
ring which can be problematic in regular nonredundant interdundant internal coordinates as obtained by the GS algorithm
nal (Z-matrix) TS optimizations. As shown in Table |, using using a 0.1 a.u. step size. Even though the path is very
redundant internal coordinates and the 3-structure inputurved, a very good agreement is found. It should be noted
found in Ref. 13, the TS is optimized in 8 steps, the reactanthat, with a step size of 0.5 a.u., the GS algorithm fails to
and product are optimized in 4 and 7 steps, respectively, ancbnverge at CF distances greater than 4.16 a.u. This is likely
the path is fully converged after 8 steps. Also, there is littledue to two facts. First, the GS algorithm carries the Hessian
difference in the efficiency of a 5-point and 7-point relax- from one point to the next, and for large step sizes this
ation, in both cases the path is converged in 8 steps. Figure@auses problems. Second, the GS algorithm first steps in the
shows the relaxed reaction path and the IRC obtained bgirection of the gradient and this becomes inappropriate for
Euler integration in redundant internal coordinates. The
agreement is very good for both the 7-point and 5-point

2.0+

paths.
1.200 A
C. SiH,—SiH,+H, 1.0 1,406 A 1856 A o
g o
This 1,1 elimination or insertion reaction is an other ex- = 14134 ° e
ample for 3-member ring transition state. Just as for the 1,2 5 001 Tsﬂ A D B A P
shift reaction, optimizing this TS can be challenging for % ‘5’% 1538 A% TS

regularZ-matrix optimizations-. The combined use of redun- -1.0 ngy oA JTat0A
dant internal coordinates and guided eigenvector following
algorithm makes the TS search very efficient. Only 7 steps 20 ' .
are needed to optimize the TS, 3 steps for Sikhd 8 steps L0 2.0 10
for the reaction path. Nonredundant internal coordinates FH/au
were also used to assess the quality of description given by

the relaxation method. Flgure 3 ,ShOWS the agreement b%IG. 4. Reaction path fofC,H,+HF]'—C,HsF (open squares, 5 point re-
tween the GS IRC following algorithm and the relaxed pathjaaion; triangles, 6 point relaxation:; filled squares, 7 point relaxatou
in nonredundant internal coordinates on the reactant side @éaction path for methyl rotatiofopen circles, 7 point relaxation

4.0 5.0 6.0
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231,60 -
2.0
-231.62
-231.64 |
2 1.8 ]
- 1.200 A ;
&} S'-231.66 ]
@) 1.406 A 1.856 A c
o6 i
-231.68 4
1413A !
14 23170 O -®
32 42 52 62
CF/aun -231.72
FIG. 5. Reaction path fofC,H,+HF]"—cluster in nonredundant internal -231.74 . .
coordinates without mass weightifgrosses, GS algorithm; filled squares, 7 1.0 15 20 25

point relaxation.
R/A

FIG. 6. Energy profile for the Diels—Alder reaction obtaingdeb7 point
path relaxation in redundant internal coordinates without mass weighting.

cases of large path curvature and large step size. This reac-

tion path is clearly a challenging one. However, it is impor- . _
tant to note that the use of the mixed Hessian update of EqE.' Diels—Alder reaction
(8) over the Powell update decreases the number of steps by Reference 1 showed that the combined use of redundant
35%][17.3 steps per point using Powell update vs 11.3 stepmiternal coordinates and the tangent to the quadratic synchro-

per point using Eq(8)]. nous transi{QST) improves dramatically the transition state
40
R(1,6)=3.184
R(6,5)=1.083 RU1.62.801
R(5:4)=1.539 6)=2.
4 R@43)=1548 R(65=1.083 H,C/y--H, - - H,C
R(3,2)=1.509 R(54)=1.546 2 (1) (6) 2 (5)
R(2,1)=1.316 R(4,3)=1.553
R(3,2)=1.508
RE2,1)=1317
@ HCp __.-ThCw
R(1,6)=2.405 L
3.0 R(6,5)=1.080 .-
R(5,4)=1553 H2C(3)
R(4,3)=1.561
< R(3.2)=1.509
~ R 1)=1317
© | R(1,6)=1.800 R(L6)=1349
- R(6.5)=1.127 R(6,5)=1.447
T R(5.4)=1516 R(5,4)=1397
~~ ﬁ(‘;’g)f}'Z? R(4,3)=2.110 R(1,6)=1.222
X (32)=1.473 R(32)=1374 R(6,5)=1.608
O R@.1=1.326 R@.1)=1402 R(5.4)=1357 R(L,6)=1.137 R(L6)=L105
R(4,3)=2.259 R(6.5)=1.785 R§6’5):1'961
2.0 4 R(3,2)=1.344 R(5,4)=1.332 R(5’4):1.323
R(2.1)=1.45 R(43)=2.421 R(43)=2.596
R(3.2)=1327 R(.2)=1321
\ R(2,1)=1.481 R(2,1)=1.498
\
kY
o Guess TS — o o fows ofo 4 < Anchor
M T I T I T I T I T I ¥ |
1.4 1.6 1.8 2.0 22 24 2.6
C4)Cc@)/A

FIG. 7. Reaction path for the ene reaction in redundant internal coordinates without mass weésshey line, interpolated starting guess for the path, filled
diamonds, 7 point relaxationSelected bond length@n A) are listed for each converged structure.
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TABLE I. Number of steps required to converge to the stationary points and\/, CONCLUSIONS
to the reaction path.

We have outlined an efficient procedure to find the tran-
Path relaxatioh Regulaf sition state and reaction path connecting two structures. An

Reactiof TS RP Total TS Totaf approximate path represented by a small number of points is

iteratively relaxed until it converges to the transition state

gi'ﬁ(igicHHioHH ? 4'; 571 1112 s;gg and the steepest descent reaction path. The method combines
CHAHFclustet 11 58 73 16 oaoe  the efficiency of redundant internal coordinates for geometry
Diels—Alder reaction 7 6 41 56 1222 optimization, the robustness of the quadratic synchronous
ene reactioh 14 101 fail >126 (36) transit guided approach for finding transition states and the

— _ stability of the Gonzalez—Schlegel algorithm for reaction
aStructure given in Ref. 13; all calculations at the HF/3-21G level of theory.

bPath represented by 7 points, not including anchor poins for bimoleculapath foIIowmg. Only gradlents are used; analytlcal HeS_S|anS
reactions. are not necessary. The procedure appears to be particularly
‘Using one structure and nonredundant internal coordinates. well suited for studying reactions involving flexible and
Empirical estimate of the Hessian with two to four prellml_nary steps to polycyclic transition states.

calculate key rows and columns of the Hessian by numerical differentia-
tion.
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