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A combined method for determining reaction paths, minima, and transition
state geometries
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Wayne State University, Department of Chemistry, Detroit, Michigan 48202

~Received 4 February 1997; accepted 2 April 1997!

Mapping out a reaction mechanism involves optimizing the reactants and products, finding the
transition state and following the reaction path connecting them. Transition states can be difficult to
locate and reaction paths can be expensive to follow. We describe an efficient algorithm for
determining the transition state, minima and reaction path in a single procedure. Starting with an
approximate path represented byN points, the path is iteratively relaxed until one of theN points
reached the transition state, the end points optimize to minima and the remaining points converged
to a second order approximation of the steepest descent path. The method appears to be more
reliable than conventional transition state optimization algorithms, and requires only energies and
gradients, but not second derivative calculations. The procedure is illustrated by application to a
number of model reactions. In most cases, the reaction mechanism can be described well using 5 to
7 points to represent the transition state, the minima and the path. The computational cost of
relaxing the path is less than or comparable to the cost of standard techniques for finding the
transition state and the minima, determining the transition vector and following the reaction path on
both sides of the transition state. ©1997 American Institute of Physics.@S0021-9606~97!01226-9#
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I. INTRODUCTION

Equilibrium geometries, transition states, and react
paths are central in the study of chemical reactions. Gradi
based methods have made the search for equilibrium ge
etries for small and medium size molecules almost rout
However, finding transition states can still be quite challe
ing. The use of redundant internal coordinates1–5 has im-
proved the efficiency of these methods, but following re
tion paths can still take a large number of steps. Algorith
to find these features on potential energy surfaces have
reviewed recently.6–11 In this paper, we present a combine
algorithm that efficiently determines minima, transition sta
and the reaction path connecting them in a given region o
ab initio potential energy surface.

A transition state or first order saddle point is a statio
ary point that is an energy maximum in one direction an
minimum in all others. Quasi-Newton methods usually sh
a small radius of convergence because the specific direc
for maximization is generally not known in advance a
there is no guarantee that the optimization converges to
desired transition state. Combining synchronous transit
quasi-Newton methods to find transition states~TS! proves
to be an efficient technique addressing some of th
problems.12,13 In this technique, the first few steps search
a maximum along an arc of circle connecting reactants
products and a minimum in all other directions. In the
maining optimization steps, a quasi-Newton based eigen
tor following optimization14 is guided by the tangent to th
arc of circle passing through the putative TS and minima

Once the transition state is located, mechanistic inform
tion about the chemical reaction can be obtained by follo
ing the steepest descent path15 connecting reactants to prod
ucts through the transition state. Various techniques
integrating the steepest descent path differential equation
J. Chem. Phys. 107 (2), 8 July 1997 0021-9606/97/107(2)/375
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available.16–20 Even though some algorithms allow for re
sonable step sizes and are very robust~e.g., the Gonzalez–
Schlegel method16!, following the reaction path require
many steps and is generally computationally expensive
addition to the effort of determining the reaction path, t
inherent drawback of following the steepest descent pat
that it must start at the~sometimes very difficult to locate!
transition state and requires the direction of the transit
vector ~usually necessitating a frequency calculation!.

Jaisen and Shepard21 describe a method for fitting the
potential energy surface around an approximate reaction
using energies, first and second derivatives of the ene
The fitted surface is used to improve the reaction path
the process is repeated until it converges to the steepes
scent path. Elber and Karplus23–26 developed a method fo
obtaining a good approximation of the reaction path t
does not require prior knowledge of the transition state a
the potential energy surface curvature. This technique c
sists in minimizing the integral of the energy along the re
tion path using anN-point discretization,

S5
1

L E
q0

qN11
E~q!ds'

1

L (
i51

N
E~qi !1E~qi21!

2
uqi2qi21u.

~1!

Scheme 1: Elber–Karplus method.
375/10/$10.00 © 1997 American Institute of Physics
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At convergence, a good approximation for the location of
transition state can be obtained by interpolation which in t
can be refined by quasi-Newton methods. Typically 10
more points are used to represent the path and special
~such as maintaining equal spacing and adding a s
avoidance potential24! must be taken so that the points do n
collapse into minima during the optimization and to take in
account rigid-body motions. The convergence of the integ
optimization is very slow; McDouallet al.27 noted that mini-
mizing the two penalty functions to eliminate uneven pa
segments and rigid-body motions can be the most costly
of the algorithm. Because of the dimensionality of the pro
lem ~3* n*N, wheren is the number of atoms in the molecu
lar system andN is the number of points along the pat!
quasi-Newton optimization techniques other than conjug
gradient algorithms28 cannot be readily used to improve th
convergence. Hence, the method in its unmodified form
only suitable for inexpensive levels of theory such as se
empirical or molecular mechanics methods. A variant25 that
concentrates on the saddle point is somewhat more effic
and using a different approach Elber26 also showed that a
good representation of the steepest descent path can b
tained by representing the path by a series of straight l
defined by a set a pointsqi and iteratively refining this ap
proximation by minimizing the potential energy in the dire
tions perpendicular to (qi21 2 qi11). The weakness of this
method is the small radius of convergence,26 possibly due
mainly to the lack of spacing constraints.

Building upon these ideas, we have developed a co
bined procedure to find a transition state and follow
reaction path that is efficient enough forab initio molecular
orbital calculations. This procedure locates the transit
state connecting two input structures and can repre
the steepest descent path between them with as few as
5 points. The computational cost comparable to a reg
transition state optimization plus reaction path followin
but is intrinsically more reliable than the convention
approach. The algorithm is implemented in the devel
ment version ofGAUSSIAN 94 ~Ref. 29! and tested on a serie
of simple reactions that show a range of transition st
geometries and reaction path properties: H21F→H1HF;
CH3O→CH2OH; SiH21H2→SiH4; CH2vCH21HF; CH2
vCH21CH2vCH–CHvCH2→cyclohexene ~Diels–Alder
reaction!; CH2vCH21CH2vCH–CH3→pentene~ene reac-
tion!.

II. METHOD

The present procedure refines an initial guess of the
action path until the transition state and the steepest des
path are found. The initial guess of the points along the
action path is obtained by interpolating between two~or
three! input structures; the energy and gradient are calcula
at each point and an empirical estimate of the Hessia
obtained for each point. The highest energy point on the p
is chosen to optimize to the closest TS. This divides the p
into two downhill segments. If the low energy end point
each segment is not already at a minimum, it can be o
J. Chem. Phys., Vol. 10
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mized to the closest minimum. The remaining points on
path are optimized to lie on the steepest descent path. A
each optimization step, the energies and gradients are ca
lated again, the Hessians are updated using the available
dients and the optimization is repeated until each point
converged.

A key feature of this approach is that the optimizatio
of the points on the path are guided by the neighbor
points. For the putative transition stateqj , the transition vec-
tor is assumed to be the tangent of the arc of circle pas
through it and the neighboring point in each valley,qj21 ,
qj , and qj11 . This tangent is used to guide the qua
Newton/eigenvector following optimization of the transitio
state~the conventional eigenvector following approach c
have difficulties in maintaining the proper uphill search d
rection!. For the steepest descent portion of the path,
second order Gonzalez–Schlegel path following method16 is
used; each segment the reaction path connecting a pointqi to
its uphill neighboring pointqi21 is approximated by an arc
of circle defined by the position ofqi , qi21 , and the tangent
to the pathT i21 ~see Scheme 2!. For each segment, a loca
quadratic surface aboutqi , E(qi 1 Dqi) 5 E(qi) 1 gi

tDqi
1 1/2Dqi

tHiDqi , is used to relax the point so that the stee
est descent path differential Eq.~2! ~Ref. 15! is satisfied, i.e.,
the tangent to the pathT i is the parallel to the gradientgi ,

dq/ds52g„q…/ug„q…u. ~2!

The following steps provide an outline of the present pro
dure. Various aspects are discussed in more detail below

~1! Using a two or three-structure input, construct
N-point approximation of the path by linear interpol
tion. Obtain an initial estimate of the Hessian at ea
point.

~2! Compute the energy and gradient for each point t
moved significantly from its position in the previou
path approximation. If allowed, update the trust rad
for the optimizations and the path relaxation. On the fi
step, elect which points will be allowed to move towa
the TS and minima.

~3! Update the Hessian for each point. First, update us
gradients at neighboring points along the current pa
For the first four relaxation steps, if the points along t
path are too far apart~typically, separated by more tha
0.6 a.u.!, update the second derivative along the pa

Scheme 2: Segment of the reaction path approximated by an arc of cir
passing throughqi21 andqi with tangentsT i21 andT i . The approximation
can be refined by displacingqi on the surface of a sphere centered atqi* and
minimizing its energy.
7, No. 2, 8 July 1997
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using a quintic fit to the energies and gradients along
path. Second, update using the gradients from the cur
and previous position for each point.

~4! Move the end points toward the minima, if allowed, u
ing conventional quasi-Newton algorithm~the default al-
gorithm inGAUSSIAN 94 ~Ref. 29! is RFO~Ref. 30! pre-
ceded by a linear search whenever possible!.

~5! Use the tangent to the arc of circle passing through
highest point and its two immediate neighbors to gu
the eigenvector-following TS search.

~6! Perform microiterations for each point on the path us
the local quadratic surface until convergence criteria
met or the trust radius exceeded.

~7! Check the convergence of the displacement and grad
for the optimizations and the displacement and perp
dicular gradient reaction path refinement.

~8! If not converged, update the positions of the points
the path and go to step 2; if converged, print summ
and stop.

A. Coordinates

To describe a reaction path, internal coordinates are
ferred over Cartesian coordinates, since this avoids probl
with rigid body rotations and translations along the pa
Because a set of nonredundant~z-matrix! internal coordi-
nates most appropriate for describing the bonding in
region of the potential energy surface can be a very poor
in another region, redundant internal coordinates appea
be better suited for treating the whole reaction path. T
present method utilizes the redundant internal coordinate
GAUSSIAN 94.29 These are based on the identification of bon
using covalent radii; valence angles and dihedral angles
generated for all appropriately bonded triplets and quad
plets of atoms. The reactantlike structure at one end of
path generates one set of redundant internal coordinates
the productlike structure at the other end generates a se
set. The union of these two sets defines the redundant in
nal coordinates used throughout the path relaxation proc
The user can alter the final set of redundant internal coo
nates by adding or removing coordinates. The final se
coordinates should be inspected closely for potential pr
lems, e.g., valence angles and dihedrals incompatible
the symmetry of the reaction path, or two linear angles
stead of a valance angle and a dihedral.

B. Input

Either two or three structures can be used to specify
initial approximation to the reaction path. If two structur
are given, the initial guess of the reaction path is obtained
linear interpolation between the reactant and product in
dundant internal coordinates. If a third structure is input a
guess for the transition state, the initial path is then appro
mated by two linear interpolations, first between reactant
TS and second, between TS and product~see Scheme 3! and
an equal number of points is distributed on each leg of
path. The final set of redundant internal coordinates is
same in both the two-structure and three-structure input.
J. Chem. Phys., Vol. 10
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pending on the shape of the potential energy surface,
initial guess of the TS may not be the highest point along
initial path; either the highest energy point or the initi
guess for the TS can be chosen to optimize to the TS.

C. Path relaxation

The minimaqk are optimized using the standard qua
Newton method inGAUSSIAN 94. The transition stateqj is
optimized using the standard quasi-Newton/eigenvector
lowing method, where the choice of the eigenvector
guided by the tangent at the transition state. This tangen
computed from the arc of a circle pasting throughqj21 ,
qj , andqj11 ,

T j85~qj112qj !/uqj2qj11u22~qj212qj !/uqj2qj21u2;

T j5T j8/uT j8u. ~3a!

After each optimization step, the path connecting two e
trema is relaxed in a series of microiterations. Equation~2! is
replaced by a set of finite difference equations, Eq.~3b!, for
the points between the TSqj and minimumqk ( j , k),

T i52gi /ugi u1Error~ i !. ~3b!

In the spirit of the Gonzalez–Schlegel reaction path follo
ing algorithm, the path betweenqi21 andqi is represented by
an arc of a circle, as shown in Scheme 2~note thatqi21 is the
uphill point!. Givenqi21 , qi , andT i21 ~the normalized tan-
gent atqi21!, one can readily constructT i ~the normalized
tangent atqi!, since two tangents to a circle form an isosce
triangle,

r iT i211r iT i5~qi2qi21!;

r i5~qi2qi21!
2/@2T i21•~qi2qi21!#, ~3c!

T i
arc5@~qi2qi21!2r iT i21#/r i .

Whenever the angle formed by (qi 2 qi21) andT i21 exceeds
45°, an arc of a circle is probably a poor approximation
the reaction path. In this case, the path can be approxim
by a parabola passing throughqi21 and qi with a tangent
T i21 at qi21 , in the manner shown in Scheme 4.

Scheme 3: Initial approximation to the reaction path.
7, No. 2, 8 July 1997
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Scheme 4: When the change in direction of the reaction path is too lar
the segment of the reaction path is approximated by a parabola pa
throughqi21 andqi with tangentsT i21 andT i rather than an arc of a circle

T i
para5Ni2tan~u245!~T i212Ni !;

T1
para5T i8

para/uT i8
para, ~3d!

where

N185~qi2qi21!2~qi2qi21!
tT i21T i21);

Ni85Ni8/uNi8u, ~3e!

and

cos~u!5~qi2qi21!
tT i21 /uqi2qi21u. ~3f!

The construction in Scheme 4 allows for a smooth cha
from the tangent to the arc of a circle to the tangent o
parabola as the angle between (qi 2 qi21) andT i21 increases
beyond 45°. If this construction is needed for more than o
or two points of the converged reaction path, then m
points should be used for a more accurate representatio
the path.

The constraints on the spacing of the points along
path are given by Eq.~3g!, where theai ’s are the desired
ratios of distances between the points in redundant inte
coordinates~ai 5 1 for all i , corresponding to equal spacin
is used here!,

uqi2qi21u/ai5uqi2qi11u/ai11 . ~3g!

The convergence criteria used for the path refinement
similar to the regular criteria for the optimization; less th
0.000 45 and 0.000 30 a.u. for the maximum component
root mean square of the gradient perpendicular to the
gent, less than 0.001 8 and 0.001 2 a.u. for the maxim
component and root mean square of the displacement
spectively.

D. Microiterations

The equations for the path relaxation~3b! and the spac-
ing constraints~3g! form a strongly coupled set of equation
With care, these can be solved in a series of microiteratio
as shown in Scheme 5. First, the constrained optimization
the reaction
J. Chem. Phys., Vol. 10
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Scheme 5: Microiteration step for one point showing relaxation of the pa
Dqi and redistribution along the path.

path following is solved on the model quadratic surfa
about each point. Then the points along the approximate p
are redistributed to satisfy the spacing constraints. This
croiteration is repeated until all the displacements and
components of the gradient perpendicular to the tangent
below threshold~default, half of the corresponding criteri
for the stationary point search!, or until the total displace-
ment for each point has exceeded the trust radius~default 0.3
a.u.!.

The equation for the constrained optimization for t
reaction path following is

gi1H iDqi5l i~siT i1Dqi ! ~4a!

and corresponds to the search for a point lying on a spher
radiussi such that the normal and the gradient are paral
The Lagrangian multiplierl i is chosen so thatusiT i 1 Dqi u
5 si ~i.e., the point lies on the sphere! andl i is negative for
the steepest descent direction.26 Note that the Hessian fo
each point needs to be diagonalized only once, since
constant during the microiterations.

In practice, the iteration of Eq.~4a! needs to be stabi
lized to prevent oscillations. First, a small maximum st
size is used in each microiteration, typically two to fo
times the convergence criterion for displacements. Secon
the iterations are damped by replacing the tangentT i ~calcu-
lated from the arc of a circle or a parabola! with the average
of the tangent and the normalized gradient,

T̃ i85T i2gi /ugi u; T̃ i5T̃ i8/uT̃ i8u. ~4b!

When the microiterations have converged, the react
path betweenqi21 and qi can be represented by an arc
a circle or by a parabola. However, during the course
the microiterations, it is not always possible to linkqi21

to qi by a single arc of circle tangent toT i21 andT i . The
path can always be represented by two arcs, as show
Scheme 6, where the radiussi is the positive solution of
uqi211siT i212qi1siT i u52si .
7, No. 2, 8 July 1997
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Scheme 6: Reaction path segment represented by two arcs during
microiterations.

Both the damping given by Eq.~4b! and the use of the two
smaller arcs of circles constructed in Scheme 6 lead to m
conservative steps and better stability in the microiteratio
Despite these precautions, hysteris-type oscillations can
occur. To overcome these, the most downhill point involv
in the oscillation needs to have its displacement dam
heavily.27 In the present implementation, whenever the an
formed byDqi21 andDqi is greater than 160°,Dqi is ze-
roed.

After each microiteration relaxing the path, the poin
along the path need to be redistributed to maintain the
quested spacing. First (qi21 2 qi11) is projected out of dis-
placementDqi . Then the position of each point is iterative
adjusted along the path by Eq.~5! until all the constraints are
satisfied,

qinew5qi1a i~qi212qi11! j, i,k, ~5a!

wherea i is chosen such that

uqinew2qi21u5uqinew2qi11u. ~5b!

To avoid problems when the end pointqk is not optimized or
not on the steepest descent path, the redistribution of
point qk21 must be treated differently, and Eq.~5b! is re-
placed by

uqk21new2qk22u5~qk2qk21new!
t
•~qk21new2qk22!/

uqk21new2qk22u. ~5c!

E. Trust radius update

Control of the step size for the optimization and the p
relaxation is essential for proper performance. The trust
dius can be fixed or can be updated before the Hessian
date and the microiterations are performed. For the po
along the path~excluding transition state and minima! the
trust radiust i is updated according to Eq.~6!,

b i5~ginew2giold!
t
•@Hi~qinew2qiold!#/

uHi~qinew2qiold!u2, ~6a!

t inew50.5t iold if ~b i,0.7 or b i.1.3!, ~6b!

t inew5&t iold if ~b i.0.85 andb i,1.25!. ~6c!

For the transition state and the minima the trust radius
updated in the same manner as for regular optimization
J. Chem. Phys., Vol. 10
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GAUSSIAN 94. To keep a consistent and conservative tr
radius update along the path, the root mean square of
updated trust radii is assigned to each point.

F. Hessian update

The success of the reaction path relaxation proced
depends critically on the quality of the Hessian at each po
However, calculation of the exact Hessian at each po
would make the algorithm inappropriate for most levels
theory. The present method starts with an empirically e
mated Hessian31,32 for each point and updates it using th
available gradients. In contrast to single-structure optimi
tion, a lot of information about the shape of the potent
energy surface along the path is available and the stan
methods of updating of the Hessian can be improved. T
updating is done in two stages; the first uses the gradien
neighboring points along the path, and the second uses
gradients for a given point at the current and previous ite
tions of relaxing the path. This provides better estimates
the Hessians and thus better convergence, especially fo
TS search.

In the first stage of updating, the points along the p
might be too far apart to insure a good update using
standard formulas. For the first four iterations only, a quin
polynomial is used to update the second derivative along
path. The path is approximated by an arc of a circle pass
through qi21 , qi , and qi11 . The energies and gradien
along the path atqi21 , qi , andqi11 are fitted to a quintic
polynomial and yield a second derivativeg i along the path at
qi . The updated Hessian atqi is approximated by

Hinew5~12T iT i
t! tHiold~12T iT i

t!1g iT iT i
t , ~7a!

where the tangent atqi is given by

T i85~qi112qi !/uqi2qi11u22~qi212qi !/

uqi2qi21u2; T i5T i8/uT i8u. ~7b!

In the second stage, the gradients from the current
previous iteration of each point are used to update the H
sian. For the points elected to optimize toward minima
BFGS update33–36 is employed. For points along the path,
Powell update could be used so that the Hessian is not fo
to be positive definite. In the spirit of Bofill’s update,37 some
improvement over the Powell update can be obtained usin
BFGS/Powell mixture,

Hnew5Hold1~12f!DH ~BFGS!1fDH ~Powell! , ~8a!

DH ~BFGS!5~Dg!~Dg! t/DgtDq2~HoldDq!

3~HoldDq! t/DqtHoldDq, ~8b!

DH ~Powell!5@~Dg2HoldDq!~Dq! t1~Dq!~Dg

2HoldDq! t#/DqtDq2~Dg

2HoldDq! tDq~Dq!~Dq! t/~DqtDq!2, ~8c!

with
7, No. 2, 8 July 1997
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f5~gnew
t .Dq/~ ugnewuuDqu!!2 if Dgt.Dq.0

51 if Dgt.Dq,0 or DqtHoldDq,0. ~8d!

This Hessian updating mixture favors a BFGS update~posi-
tive semidefinite change! for displacements nearly perpen
dicular to the path and a Powell update along the path.

For the point elected to optimize toward TS, a Bofi
update ~a mixture of the Murtagh–Sargent update38 and
Powell update39! would be appropriate. Again, the upda
can be made more effective by using a BFGS-type upda
the displacement is perpendicular to the transition vector.
the fifth and later steps the Hessian for the TS is upda
using Eqs.~8a!–~8c! and Eq.~8e!,

f5~T j
t .Dq/uDqu!2 if Dgt.Dq.0

51 if Dgt.Dq,0 or DqtHoldDq,0. ~8e!

G. Branching of reaction paths

On some potential energy surfaces, the reaction p
branches into two paths that descend into valleys on ei
side of a ridge. Branching along a steepest descent pa
characterized by a valley ridge inflection~VRI! point, where
one or more eigenvalues of the projected Hessian are ze40

Valley ridge inflection points are often encountered when
point group symmetry is lowered along the reaction pa
such as in the CH25CH21HF reaction, where theCs transi-
tion state leads viaC1 structures to staggered fluoroethan
The reaction path bifurcation can be handled in a numbe
ways.41–43A steepest descent path near the ridge will follo
the ridge for a considerable distance before descend into
of the two valleys. It is therefore important that the rela
ation process keeps the points either on the ridge or on
product side of the ridge. As illustrated in Scheme 7, wh
ever the point being relaxed is on the side of the ridge
posite to the desired product, even slightly, then steppin
the direction perpendicular to the tangent takes it furt
down the wrong side, irrespective of the choice for the t
gent~T i parallel toqi 2 q1* , qi 2 qi21 , orqi11 2 qi21 , etc.!.
However, the sequence of microiterations described ab
can bring the point back on the ridge.

Scheme 7:Reaction path relaxation in the neighborhood of a valley-rid
inflection ~VRI! point.
J. Chem. Phys., Vol. 10
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III. APPLICATIONS

The procedure outlined above has been implemente
the development version ofGAUSSIAN 94 ~Ref. 29! and has
been tested for a number of chemical reactions. The calc
tions were performed at the HF/3-21G level of theory. U
less stated otherwise, 7 points, including transition state
minima, were used to represent the reaction path.

The efficiency and accuracy of the algorithm was tes
against the widely used Gonzalez–Schlegel reaction path
lowing method usingZ-matrix internal coordinates. Just a
the steepest descent path in internal coordinates depend
the choice of internal coordinates, the present algorithm w
converge to different path approximations depending on
choice of redundant internal coordinates. However, the
tionary points along the path will be the same.

A. F1H2˜HF1H

Figure 1 depicts the non-mass-weighted reaction path
this simple bimolecular reaction representative of atom
straction,SN2 reactions and group transfer reactions. T
reaction coordinate was followed using both the Gonzale
Schlegel~GS! second order algorithm and using the Eu

FIG. 1. Reaction path for H21F→H1HF in internal coordinates without
mass weighting~solid line, GS algorithm; crosses, Euler algorithm; fille
squares, 7 point relaxation!.

FIG. 2. Reaction path for CH2OH→CH3O in redundant internal coordinate
without mass weighting~crosses, Euler algorithm; open squares, 5 po
relaxation; filled squares, 7 point relaxation!.
7, No. 2, 8 July 1997
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algorithm with a step size of 0.1 a.u. The two algorithm
agree up to large HH distances where the Euler algori
begins to oscillate. Starting from a linear synchronous tra
~LST! approximation with anchor points away from the IR
path, the relaxation procedure converges quickly onto
steepest descent path in six iterations, the same number
needed for the optimization of the TS. The agreement w
the IRC obtained by the GS method is very good.

B. CH2OH˜CH3O

This 1,2 hydrogen shift reaction is a simple model f
1,n group shift reactions. The transition state is a 3-mem
ring which can be problematic in regular nonredundant in
nal ~Z-matrix! TS optimizations.1 As shown in Table I, using
redundant internal coordinates and the 3-structure in
found in Ref. 13, the TS is optimized in 8 steps, the react
and product are optimized in 4 and 7 steps, respectively,
the path is fully converged after 8 steps. Also, there is li
difference in the efficiency of a 5-point and 7-point rela
ation, in both cases the path is converged in 8 steps. Figu
shows the relaxed reaction path and the IRC obtained
Euler integration in redundant internal coordinates. T
agreement is very good for both the 7-point and 5-po
paths.

C. SiH4˜SiH21H2

This 1,1 elimination or insertion reaction is an other e
ample for 3-member ring transition state. Just as for the
shift reaction, optimizing this TS can be challenging f
regularZ-matrix optimizations.1 The combined use of redun
dant internal coordinates and guided eigenvector follow
algorithm makes the TS search very efficient. Only 7 st
are needed to optimize the TS, 3 steps for SiH4, and 8 steps
for the reaction path. Nonredundant internal coordina
were also used to assess the quality of description given
the relaxation method. Figure 3 shows the agreement
tween the GS IRC following algorithm and the relaxed pa
in nonredundant internal coordinates on the reactant sid

FIG. 3. Reaction path for SiH4→@SiH21H2#
† in nonredundant internal co

ordinates without mass weighting~solid line, GS algorithm; open squares,
point relaxation; filled squares, 7 point relaxation!.
J. Chem. Phys., Vol. 10
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the reaction. The reaction path is fairly curved with a ve
late TS~i.e., close to the SiH21H2 cluster minimum! and an
equally good representation of the path is given using 5 o
points.

D. CH3–CH2F˜CH2vCH21HF

This simple example of a reaction with a 4-member
ring transition state might be one of the more challeng
reactions of our test suite. A looseC2v cluster with the HF
bond perpendicular to the CC bond is present on the prod
side. On the reactant side the actual IRC as obtained by
GS algorithm converges to a staggered conformation of fl
roethane. Starting from the threeCs structures of Ref. 13 and
enforcingCs symmetry throughout the relaxation procedu
the reactant and product are found after 28 and 5 steps
TS is found after 11 steps, and the path is fully converg
after 28 steps. The limiting factor for the performance of t
algorithm appears to be the poor choice for the initial gu
of the product~HF bond lies parallel to the CC bond!. Using
a better guess for product structure~the HF bond is perpen
dicular to the CC bond! yields much better results. The TS
found in 11 steps, the reactant is found in 5 steps, the pro
is found in 8 steps, and the path is fully converged in
steps.

Figure 4 shows the reaction path in redundant inter
coordinates from the transition state descending to the s
gered fluoroethane. The relaxed path successfully follows
ridge and then, past the valley ridge inflection point tur
towards the correct product structure. Also shown in Fig. 4
the reaction path for the methyl group rotation. Figure
compares the relaxed path with the reaction path in non
dundant internal coordinates as obtained by the GS algori
using a 0.1 a.u. step size. Even though the path is v
curved, a very good agreement is found. It should be no
that, with a step size of 0.5 a.u., the GS algorithm fails
converge at CF distances greater than 4.16 a.u. This is li
due to two facts. First, the GS algorithm carries the Hess
from one point to the next, and for large step sizes t
causes problems. Second, the GS algorithm first steps in
direction of the gradient and this becomes inappropriate

FIG. 4. Reaction path for@C2H41HF#†→C2H5F ~open squares, 5 point re
laxation; triangles, 6 point relaxation; filled squares, 7 point relaxation! and
reaction path for methyl rotation~open circles, 7 point relaxation!.
7, No. 2, 8 July 1997
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cases of large path curvature and large step size. This r
tion path is clearly a challenging one. However, it is impo
tant to note that the use of the mixed Hessian update of
~8! over the Powell update decreases the number of step
35% @17.3 steps per point using Powell update vs 11.3 st
per point using Eq.~8!#.

FIG. 5. Reaction path for@C2H41HF#†→cluster in nonredundant interna
coordinates without mass weighting~crosses, GS algorithm; filled squares,
point relaxation!.
J. Chem. Phys., Vol. 10
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E. Diels–Alder reaction

Reference 1 showed that the combined use of redun
internal coordinates and the tangent to the quadratic sync
nous transit~QST! improves dramatically the transition sta

FIG. 6. Energy profile for the Diels–Alder reaction obtained by a 7 point
path relaxation in redundant internal coordinates without mass weightin
led
FIG. 7. Reaction path for the ene reaction in redundant internal coordinates without mass weighting~dashed line, interpolated starting guess for the path, fil
diamonds, 7 point relaxation!. Selected bond lengths~in Å! are listed for each converged structure.
7, No. 2, 8 July 1997
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optimization for this reaction~56 steps required for a regula
Z-matrix optimization, compared to 14 for redundant intern
QST3!. This good performance is improved further by t
reaction path relaxation procedure; 7 steps are require
optimize the TS, 6 steps to optimize cyclohexene, an
steps to reach convergence on the steepest-descent path
quicker TS optimization in the relaxation procedure co
pared to QST3 can be mainly attributed to a better Hessia
the first few steps and to a better search direction. Figu
shows the energy profile for the reaction as obtained by
7-point relaxation procedure.

F. Ene reaction

The ene reaction proceeds through a six-membered
transition state where one bond is broken and two are form
~Fig. 7!. Not surprisingly, the search for the TS is very ch
lenging using the regular procedure~see Table I!. The search
only converges when started with an exact Hessian. Us
the present procedure the TS is found in 14 steps. The s
tures for the reactant and products found in Ref. 13 are
meant to be good approximations of the actual reactant
product structures, but rather are only intended to provide
TS search with good transition vector. Since the optimizat
of pentene from the structure in Ref. 13 takes in excess o
steps, the relaxation procedure was started with the c
verged reactant geometry. The path is fully converged a
15 steps. As for the Diels–Alder reaction an improvemen
found in the TS search over the redundant internal QS
procedure which takes 18 steps.1

TABLE I. Number of steps required to converge to the stationary points
to the reaction path.

Reactiona

Path relaxationb Regularc

TS R,P Total TSd Totale

CH3O→CH2OH 8 4,7 51 12 57~15!
SiH4→SiH21H2 7 3 47 11 59~16!
C2H41HF→clusterf 11 5,8 73 16 94~26!
Diels–Alder reaction 7 6 41 56 122~22!
ene reactiong 14 101 fail .126 (36)

aStructure given in Ref. 13; all calculations at the HF/3-21G level of theo
bPath represented by 7 points, not including anchor poins for bimolec
reactions.
cUsing one structure and nonredundant internal coordinates.
dEmpirical estimate of the Hessian with two to four preliminary steps
calculate key rows and columns of the Hessian by numerical differen
tion.
eNumber of gradient calculations required to determine the path using
GS algorithm, estimated as three times the number of points along the
The estimate of the number of points is based upon the distance bet
reactant and TS plus the distance between TS and product and a step s
0.3 a.u.
fOn theCs potential energy surface. The guess structure for the clu
modified from Ref. 13 as discussed in the text.
gThe optimized structure of pentene was used as an anchor point fo
relaxation.
J. Chem. Phys., Vol. 10
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IV. CONCLUSIONS

We have outlined an efficient procedure to find the tra
sition state and reaction path connecting two structures.
approximate path represented by a small number of poin
iteratively relaxed until it converges to the transition sta
and the steepest descent reaction path. The method com
the efficiency of redundant internal coordinates for geome
optimization, the robustness of the quadratic synchron
transit guided approach for finding transition states and
stability of the Gonzalez–Schlegel algorithm for reacti
path following. Only gradients are used; analytical Hessia
are not necessary. The procedure appears to be particu
well suited for studying reactions involving flexible an
polycyclic transition states.
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