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The value of S2 can be an important diagnostic tool for judging the quality of correlated wave 
functions. A production code has been developed to evaluate S2 for unrestricted MQller-Plesset 
perturbation theory (UMPn), coupled clusters (UCCSD), quadratic configuration interaction 
(UQCISD), and Brueckner doubles (UBD) methods, and to evaluate UMP3 and UMP4 energies 
with spin projection. The code has been used to examine the bond dissociation potentials for 
HF-+H+F and CH,-CHs+H. For both systems, the onset of the RBD-UBD instabitity occurs near 
S2=0.35 for UCCSD or UQCISD calculations. Maximum errors in the UMP4, UCCSD(T), 
UQCISD(T), and UBD(T) single bond dissociation curves are near S2=0.5. The behavior of S2 for 
UCCSD and UQCISD is closer to BD than MP4. Projected MP4 energies are in good agreement 
with full CI calculations, but between the onset of the RHF-UHF instability and the RBD-UBD 
instability, CCSD(T), QCISD(T), and BD(T) are significantly better. If A,,,>1.2 for restricted 
calculations on single bond dissociations, it is better to use a spin-unrestricted method. 

INTRODUCTION 

Spin-unrestricted Hartree-Fock’ (UHF) and post-SCF 
methods based on UHF references such as unrestricted 
MQller-Plesset perturbation theory* (UMPn), unrestricted 
coupled clusters theory3 (UCC), and unrestricted quadratic 
configuration interaction theory4 (UQCI) have been widely 
used for open shell systems. In recent years, unrestricted 
Brueckner doubles5 (UBD) has also become available for 
open shell systems. Spin-unrestricted methods are usually 
quite reliable and yield satisfactory energies and optimized 
geometries. In addition, they approach the correct limit for 
the bond dissociation in the closed shell systems,6 while 
spin-restricted Hartree-Fock7 (RHF) and spin-restricted 
post-SCF methods can give the incorrect results when bonds 
are stretched far away from the equilibrium geometries. Un- 
restricted methods also give reasonable spin densities for 
open shell systems, whereas restricted methods require more 
extensive configuration interaction for an acceptable descrip- 
tion of spin densities.8V9 

The major shortcoming of the UHF and unrestricted 
post-SCF methods is that the wave functions are not eigen- 
functions of the spin operator S2. Frequently this is not a 
problem, since the contributions from higher spin states are 
often small. However, there are circumstances where the spin 
contamination can be large enough to adversely effect the 
shape of the calculated energy surface and the magnitude of 
the spin densities. The amount of spin contamination can be 
determined from (S’). Most electronic structure programs 
(e.g. Ref. 10) evaluate (S2) for simple methods such as UHF 
and UMP2, but there is a need to calculate (S2) for higher 
order MQller-Plesset perturbation theory and for more accu- 
rate methods of treating electron correlation. The first part of 
this paper deals with the calculation of S2 for unrestricted, 
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single reference post-SCF theories, and its use as a diagnos- 
tic tool in assessing the quality of these calculations. 

The second part of this paper is concerned with the treat- 
ment of the spin contamination problem. A number of ap- 
proaches have been used, including restricted open shell 
Hartree-Fock (ROHP) and spin-restricted multiconfiguration 
self-consistent field” (MCSCF) as well as spin projection 
methods. Since ROHF theory uses the same set of spatial 
orbitals for the alpha and beta spin orbitals, the wave func- 
tion is an eigenfunction of S2. Hence ROHF has no spin 
contamination for the open shell systems. Restricted open 
shell MQller-Plesset perturbation theory and coupled-cluster 
methods for electron correlation have been implemented re- 
cently by Pople, Handy,‘2V’3 and Bartlett.i4 Although single 
reference spin-restricted methods are very useful for open 
shell calculations, they are not suitable for the calculation of 
bond dissociation potential energy curves. The MCSCF ap- 
proach is perhaps the best choice since multiple reference 
determinants are used, but it is limited to smaller systems 
than single reference post-SCF calculations and corrections 
for dynamic correlation are more difficult. An alternative 
method is spin projection of unrestricted Hartree-Fock and 
post-SCF theories. Spin projection of UHF calculations was 
discussed a number of decades ago by Lowdin” and Amos 
and Ha11.16 Several years ago we demonstrated that an ap- 
proximate spin projected UMPn method was very effective 
in treating the problem of extremely slow convergence of 
unrestricted Moller-Plesset perturbation theory for cases 
with serious spin contamination in the UHF reference 
determinant.17 Two similar methods for calculating fully spin 
projected unrestricted MBller-Plesset perturbation (proj 
UMPn) energies were proposed by Handy** and ourselves;” 
these methods were tested by comparison with full configu- 
ration interaction (FCI) calculations. Because matrix ele- 
ments such as (5J!‘uIS2/‘P’,) are difficult to evaluate for u and 
v equal to double, triple, and quadruple excitations, these two 
methods have been implemented only at the UMP2 level of 
the theory for practical applications. In this paper we discuss 
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the implementation of spin projected UMP3 and UMP4 
methods, and compare spin projected UMPn results with 
other higher levels of calculations such as UCC, UQCI, and 
UBD on the single bond dissociation curves of I-IF and CH4 
systems. 

S2 for post-SCF methods 

The expectation value of S2 is 

(s2)=(wIs2p)l(wp). (1) 
For most post-SCF methods, the wave function can be par- 
titioned into a reference determinant, ‘Pa, and a correlation 
correction, W,,, , that can be expanded as a sum over single, 
double, triple, quadruple, and higher multiple excitations: 

u = S, D, T, and Q). The nonzero elements of these matrices 
are listed in Table I. The computational effort required to 
evaluate S2 is similar to that required for the energy [i.e., 
O(N6) for MP3, O(N7) for MP4]. 

The total energies and wave functions for truncated con- 
figuration interaction (CID, CISD), coupled clusters (CCD, 
CCSD), quadratic configuration interaction (QCISD), and 
Brueckner doubles (BD) methods can generally be expressed 
as 

E=(*olHI’j’>, 
(6) 

~=~o+~,,=Wo+~ aS*S+C af+Pf+**- , 
u u 

wolfw9=&xr~ 
q=Tl)+*,,,, qcon=c aSWS+ c aDWD 

s D 

+C a,qT+C aQTQ+--* . (2) 
T Q 

For many post-SCF methods, evaluation of Eq. (1) requires 
the matrix elements (W,]#]‘PJ, where u and v are triple or 
higher excitations. This is rather complicated and CPU time 
consuming; hence, Eq. (1) is generally not used in practical 
calculations. 

(7) 

Alternatively, one can add a perturbation XS2 to the 
Hamiltonian and evaluate S2 as 

dE(X) 
(S2)=,, . 

x=0 
(3) 

where q. is the reference determinant; ?y, ‘I!$’ are deter- 
minants that are singly, doubly excited, etc. The CID and 
CISD wave functions are qcD=(l+T2) Y. and 
v cIsD = ( 1 + T, + T.J U. , respectively. The substitution op- 
erators T,=C aft: and T,=X a$?$’ can be express in terms 
of the elementary substitution operators (e.g., 4 replaces oc- 
cupied spin orbital di by unoccupied spin orbital 4, , etc.). 
In the CCD and CCSD approaches, *ccr,=exp(T2) q. and 
* - exp(T, + Ti) qo, respectively (Ti = T2 - $T:). In CCSD - 
the quadratic configuration interaction singles and doubles 
method (QCISD), only the minimum number of excitation 
operators are added to the CI equations to make them size- 
consistent: 

Note that Eq. (3) is generally not equivalent to Eq. (1) if the 
wave function does not satisfy the Hellmann-Feynman theo- 
rem, i.e., Eqs. (1) and (3) are equivalent for Hat-tree-Fock 
and CASSCF methods, but not for a number of post-SCF 
methods such as MPn, CC, QCI, etc. 

The value of S* for UMPn defined by Eq. (3) can be 
written as 

It-1 
(S2)= c (syi, (s2)i=dE;+(h) (4) 

i=O X=0’ 

where (S2)i is the value for the ith order wave function which 
corresponds to the (i + 1 )th order perturbation energy Ei+ , . 
Up to third order (i.e., MP4 energy), this yields 

(~olHI’W’o)=&,m (84 

(~gliil(T,+T2fT,T2)Wo)=afEcOrrr (8f.d 

(‘J$‘lfil(l+T,+T2+~T~)Vo)=a$‘E,,,. (84 

Note that there is no well-defined wave function for the 
QCISD method [i.e., the TIT2 term in Eq. (8b) is not present 
in Eq. (8c)]. 

If one chooses a reference state Go for which the single 
substitution coefficients ai in the expression of CCSD wave 
function become zero, the Brueckner doubles equation is ob- 
tained: 

@~lHl(l +T,Po)=O, 

(+~~IHI(l +T2f $Ti)@o)=atf’E 

(9) 

where (S2)o=(‘Po]S2]?o), the UHF expectation value of S2. 
Equation (5) can also be obtained from Eq. (1) by expanding 
the denominator and collecting the ith order terms. Since S2 
is a two electron operator and 9!t involves only double ex- 
citation, Eq. (5) contains only two types of matrix element 
calculations: (‘Eo]S2]~J (u=S, 0) and (‘l!uJS21q\I) (u=D, 

where E is the total energy. To obtain the Brueckner refer- 
ence state <PO, a set of orbital rotations is performed so that 
the singles amplitudes are zero. As emphasized in the origi- 
nal paper,5 the occupied-virtual block of the Fock matrix 
fi,=(~olHI~~) is nonzero, and occupied-occupied and 
virtual-virtual blocks are not required to be diagonal. 

Based on Eq. (3), S2 for spin-unrestricted CI, CC, QCI, 
and BD is given by 
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TABLE I. Nonzero matrix elements of (YOISzI\y,) and (Yf,“lS*jlu,). 

5959 

o-to 
(Y&*p~)=[s(s+ I)+n,]-g sip;, 

a.3 

0-a (i.a:a) 

(Y,p*lYy)= -TYi,a) 

O-w/3 (i,a:a;j,b:P) 

(YolS21Y$)= - UaB(i,b)Up”(j,a) 

aa-+a (i,j,k,a,b,c:a) 

aa-waa (i,j,k,l,m,a,b,c,d,e:a) 

(Yo,blS’lY$,,) = SaeSbd[ - Gik8j,T*(m,e)+ SikSj,T*(Z,e) + SiJj,T*(k,e)] - 6,,Sb,[ - GiJj,T=(m,d) + Si,Sj,T”(l,d) + 6i,6j,T=(k,d)] 

+ 8*ds*rl- S~kG,~T*(m~c) + GikSjmT*(l,c) + 6ii6,,Tm(kvC)l 

aa++ (i,j,k,l,a,b,c,d:a;m,e:P) 

afl+a (i,k,a,c:a;j,b:fl) 
(Y$‘lS*lY;)= - 6i,U=a(a,j)Us’(b,c) + 8=Jus(k,j)UBn(b,i) + &6=,7’=(b,j) 

(y~~~S2~y~~~~)~~~~~jnr[~~=oc~b~U=B(f,~UB=(~,d)+~,~~~~U=s(f,~Ua=(~,~)~~=Sae~~fU=~(~re)UBr(~,d)-6=~6,fU”B(~~e)Us=(~~~)I 
- S,,S,,[- 6,,6,,U=S(k,f)UB=(n,d)+ 6,d8b,U=~(k,f)U~a(n,c)+ ~,,6b~U=p(k,e)UB=(n,d)- G,dSb,U”S(k,e)UB=(n,c)I 
- i$j, [  - s,,s,,uas(~,~uS=(m,d) + &&,,u=p(~,f)uB=( m,c)+ ~,,~b,U=~(Z,e)U~“(m,d)- ~=d~b~Uua(~,e)Ua=(m,c)] 
+ 8i$j,[ - 6,,6b,UnS(k,~US=(m,d)+ 6=,$b,U”s(k,f)Ua=( m,c)+~,,~~,U=P(k,e)Us’(m,d)-~,~~~~U=s(k,e)UP’(m,c)I 

’ T”(P7qlz 2 Si$qiv 
oee 

T@(p,q)=c SiiSji, U=*s(,,q)=SpG= $,s+&dr, UIB”(p,q)=Spg= &,s-4qdr. 
I I I I 
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(S2)=(Yo1S21Y)+ ‘I’ JH( ( O 

with the restriction that the orbit& of reference state do not 
change with the external perturbation term hS2. First-order 
perturbation theory can be used to estimate d~co,,./dX: 

(W,(H+XS21’P+ &P(h))=[E+ SE(X)](‘P’,(W+ m(A)), 

SE(A)=A(S2). (11) 
By making the approximation 

(Y\Ir,(H-ElSZV,,,)=(E,-Eo)(y‘ll~,,,) (r=SJ), 
(12) 

the expression of (S2) can be written as 

(s~)={(w~~s~~~)+~,+s~}/(1+s~) 

&= - 2 (U,IHI~~~)(U’,bl~)/A~~, 

(13) 
8, = -c (U,lHlUp)(WqlS”l~)/A~ 

where Ai = E, - Ei and A$‘= E, i- l b - Ei - ~~ (the E’S are or- 
bital energies). Because of Brillouin’s theorem, S, is zero for 
UCI, UCC, and UQCI methods; however in the UBD ap- 
proach, this term is nonzero. Note that if the first-order per- 
turbation wave function is substituted for ‘PcO,, the value of 
(S2)Mpz is obtained by omitting the higher order contribu- 
tions. In this paper all values for (S2) for CID, CISD, CCD, 
CCSD, QCISD, and BD are calculated by using Eq. (13). 

An expression for (S2) that is more like the perturbation 
theory results can be obtained by expanding the denominator 
of Eq. (13) and collecting terms up to the first order, 

(S2)=(‘PO~S2~YI)-+‘o~H~‘J’;)~+(‘I’o~H~’l’~~)~~ 

q= -(‘J?;lS”l’I’)lA;, (14) 

2$‘= -(‘P;bI(S2-(S2)o)j’J’)/A$ 

As mentioned above, the QCISD method does not have a 
well-defined wave function, but an approximation to the 
wave function is required to compute (S2)qc1so. Either 
*=(1+T,+T2+iTf$Po or ‘P=(1+TI+T2+T,T2+~T~‘J!o 

can be used in Eq. (13). As will be seen below the two 
choices give almost the same numerical values for (S2). 

Similar to S2 for UMPn, the matrix elements (UolS21Yr,) 
(u = S, D) and (*,,IS21Y J (u = S, 0, T, and Q) are required 
to compute S2 for UCI, UCC, UQCI, and UBD. Since the 
triple excitations can be expressed as T,T2qo, the calcula- 
tion of (~oIHIW~~)(W~~IS21T,T2~o) requires only 0(N6) 
steps. The total computational cost of (S2) is about one-third 
of the cost of one UCCSD iteration which involves 15 
0(N6) order steps.2o 

SPIN PROJECTION OF UMPn ENERGIES 

The equations for the projected Hartree-Fock energy are 
well known and can be written in terms of the LGwdin spin 
projection operator’5 P, : 

i 

Epmj UHF=(~OI~~I~O)/(~OIP~IWO) 

p,=n {[S2-k(k+ l)]/[s(sf 1)-k(k+- l)]}’ 
(15) 

k#s 

Note that P, is idempotent and commutes with H since the 
Hamiltonian is spin free. Often the largest contribution to the 
spin contamination in MPn calculation comes from the next 
highest spin multiplicity. l7 Under such circumstances the full 
spin projection operator can be approximated quite well by 
an operator A,, , that annihilates only the next highest spin, 
A s+l=[S2-(s+2)(s+ 1)1/[(s2),-(s+2)(s+ l)]. 

For MQller-Plesset perturbation theory, full spin projec- 
tion would apply the projector to the correlation corrections 
as well as To. One way of writing projected energies for 
UMPn wave functions ist9 

If the identity I= ZilTi)(~J is inserted into Eq. (16), the 
spin projected energies can be written as 

Eproj ivlPn=(qOIHIWO) 
+c (~olHl~i)(?T’iIP~I~o~~~+...+~~-~} 

i (WolP,[~\Ir,+~,+...+W,_,) . 

(17) 
Alternatively, if H and P, in Eq. (16) are commuted, the spin 
projected energies are 

(18) 

If P, is approximated by A,, , , then 9i in Eq. (18) need only tage is that the computation of (~ilHI~‘,-,) is almost as 
include all single and double excitations. much work as computing q,, or E,+, [this limits practical 

Equation (18) has been implemented previously in the implementation of Eq. (18) to the third order]. On the other 
Gaussian computational package at the UMP2 level.” The hand, Eq. (17) uses only 9,- 1 to calculate the projected 
advantage of using Eq. (18) is that only matrix elements of n&order perturbation energy but it requires the calculation 
the type (~olS21~,) (u = S, D) are used, while the disadvan- of matrix elements of (‘P\Er,lS219”,) (u=S, D, T, and Q). The 
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TABLE II. Values of (S’) for HF+H+F. 

1.2764a 
1.4 
1.6 
1.8 
2.0 
2.1 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 

SCF MP2 MP4 CID CISD CCD 

o.ooocl 0.0000 o.oooo o.oooo o.oocxl o.oooo 
0.3852 0.3282 0.1280 0.3030 0.1085 0.2973 
0.7098 0.6575 0.4807 0.5980 0.3147 0.5808 
0.8590 0.8264 0.7219 0.7599 0.5411 0.7295 
0.9307 0.9122 0.8560 0.8566 0.7334 0.8159 
0.95 13 0.9376 0.8970 0.8904 0.8042 0.8473 
0.9659 0.9557 0.9265 0.9171 0.8583 0.8741 
0.9835 0.9778 0.9628 0.9543 0.9278 0.9177 
0.9923 0.9890 0.9813 0.9759 0.9639 0.9502 
0.9967 0.9947 0.9907 0.9877 0.9823 0.9721 
0.9989 0.9975 0.9954 0.9940 0.9915 0.9854 
1.0000 0.9989 0.9977 0.9972 0.9960 0.9928 
1.0005 0.9996 0.9988 0.9987 0.9982 0.9967 

CCSD Without T,T, With T,T, BD 

0.0000 0.0000 0.0000 o.oooo 
0.0112 0.0108 0.0071 0.0000 
0.0573 0.0603 0.0558 0.0000 
0.1687 0.1702 0.1670 o.oooo 
0.3670 0.3607 0.3591 0.0013 
0.4872 0.4782 0.4772 0.3358 
0.6045 0.5953 0.5947 0.5524 
0.7880 0.7828 0.7826 0.7804 
0.8938 0.8917 0.8916 0.8927 
0.9481 0.9473 0.9473 0.9481 
0.9751 0.9748 0.9748 0.9755 
0.9883 0.9882 0.9882 0.9887 
0.9947 0.9946 0.9946 0.9949 

BOnset of the UHF-RHF instability. 

results presented in this paper utilize Eq. (17). It should be 
emphasized that Eqs. (17) and (18) are identical only for 
full-core calculations. If frozen-core calculations are per- 
formed, Z=ZilUi)(U,l is no longer the identity operator. 
The test results show the differences between Eqs. (17) and 
(18) are a few millihartree for frozen-core calculations of 
projected UMP3 energies. 

The matrix elements needed for projected I-IMP2 and 
UMP3 methods by using Eq. (17) are similar to those for the 
calculation of (S2) for CCSD. The projected UMP4(SDTQ) 
energy requires the coefficients of singles, doubles, triples, 
and quadruples excitations of ‘Its. Since these require up to 
O(N’) work and O(N’) storage, we have omitted these two 
components. As discussed below, comparisons with projec- 
tion calculations using the full CI code (which include these 
terms) shows that this is a reasonable approximation in the 
region where the contributions from the triple and quadruple 
excitations of the third-order correction are not large. Since 
the spin projected correction for the fourth-order energy E4 
is usually not very large, the following less expensive ap- 
proach may also be used to estimated the spin projected 
UMP4(SDTQ) energy 

+c (~oIHIWi)(WiIP,I~o+~l+~2) 
i PoIp~I~o+~l+~2) 

-I- E4( SDTQ). (19) 

RESULTS AND DISCUSSION 

The formulas for (S2) and projected unrestricted Mdller- 
Plesset perturbation theory presented above have been imple- 
mented in the development version of the GAUSSIAN 

program” and tested against the full configuration interac- 
tion (FCI) code. Equation (13) was used to calculate (S2) for 
UCC, UQCI, and UBD methods; Eq. (5) was used for 
UMPn. Projected UMPn energies were computed according 
to Eq. (17). The spin projection operator P, was approxi- 

mated by the single annihilation operator A,+t which re- 
moves only the next highest spin contaminant. The projected 
UMP4 energy does not include the contributions from triple 
and quadruple excitations of the third-order correlation cor- 
rection to the wave function; an approximate approach based 
on projected MPn according to Eq. (19) was also tested. 

To demonstrate the evaluation of S2 and projected ener- 
gies, the single bond dissociation potential curves of 
HF-+H+F and CH,tCH,+H have been calculated with the 
MP4, CCSD, QCISD, and BD methods. These calculations 
may also be relevant for transition states, since many contain 
partially broken bonds. All the calculations used all core, 
valence, and unoccupied orbitals with the 6-3 1G basis set for 
HF and the 6-31G** basis set for CH4. Full CI calculations 
were been performed with the 6-31G basis set for HF disso- 
ciation for the comparison with the various levels of theory. 
The full CI code was also used to evaluate the full spin 
projected UMP4 energies according to Eq. (16) for compari- 
son with Eqs. (17) and (19). To eliminate the effects from 
other modes in the CH, system, the stretching coordinates 
calculated by Hirst21 were used. 

Table II lists the values of S2 for the UMP2, 
UMP4(SDTQ), UCID, UCISD, UCCD, UCCSD, UQCISD, 
and UBD methods at different hydrogen fluoride bond 
lengths; Table III gives similar data for methane. Since the 
QCISD wave function is not well-defined, S2 computed with 
and without the TIT2 To term in the QCISD wave function. 
The differences between these two approaches are no larger 
than 0.005, and either could be used to represent S2 of a 
QCISD calculation. All the post-SCF methods discussed here 
(UMPn, UCC, UQCI, and UBD) have smaller values of S2 
than the Hartree-Fock wave function at the same bond 
length. This is expected since S2 for the exact ground state 
wave function is zero and the correlated wave functions are 
closer to the exact wave function than the UHF wave func- 
tion. For all the unrestricted methods, S2 tend toward 1.0 as 
the bond dissociates. For a two electron two orbital system, 
if the orbitals are well separated and there is no interaction 
between the electrons, the unrestricted Hat-tree-Fock wave 
function contains an equal mixture of singlet (s = 0) and 
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TABLE III. Values of (S’) for Cb+CH,+H. 

QCISD 

R(A) SCF MF’2 MP4 CID CISD CCD CCSD Without TIT1 With T,T, BD 

1.50 0.0000 o.wOO 0.0000 o.O#o 0.0000 0.0000 0.0000 O.ONlO 0.0000 0.m 
1.75 0.2275 0.2303 0.0873 0.2166 0.1318 0.2074 0.0198 0.0246 0.0192 0.m 
2.00 0.6591 0.6001 0.4408 0.5590 0.4223 0.5291 0.1275 0.1302 0.1401 0.0000 
2.25 0.8395 0.7986 0.6993 0.7552 0.6172 0.7110 0.3440 0.3550 0.3490 o.ow4 
2.50 0.9269 0.9008 0.8448 0.8686 0.8310 0.8222 0.6050 0.6106 0.6081 0.5171 
2.75 0.9699 0.9525 0.9212 0.9328 0.9156 0.8948 0.7960 0.7993 0.7984 0.7796 
3.00 0.9911 0.9785 0.9600 0.9675 0.9593 0.9419 0.9005 0.9026 0.9022 0.8973 
4.00 1.0103 1.0022 0.9960 1.0015 0.9997 0.9993 0.9961 0.9963 0.9962 0.9962 

triplet (s = 1) states; hence, the average value of S2 should 
be 1.0. The UHF values of S2 for both hydrogen fluoride and 
methane are slightly larger than 1.0 at large bond lengths, 
indicating that the UHF wave function contains small contri- 
butions from higher spin states (s > 1) . The values of S2 for 
the post-SCF methods are all less than 1.0. 

Figure 1 shows the changes in S2 with respect to bond 
length in hydrogen fluoride and methane. It is readily appar- 
ent that iterative calculations (UCI, UCC, and UQCI) reduce 
the spin contamination much more than noniterative methods 
(UMPn); furthermore, the coupled cluster and quadratic con- 
figuration interaction methods clean up the spin contamina- 
tion better than the truncated configuration interaction 

I-IF->H+F 
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FIG. 1. Values of S* as a function of bond length for HF+H+F and 
CH4-tCH3+H. 

method. In particular, the order of the values of S2 is 
UCCSD~UQCISDCUCISD<UMP4<UMP2<UHF at all 
bond lengths. This ordering is in agreement with the gener- 
ally accepted ranking of the accuracy of these wave func- 
tions. The UQCISD and UCCSD curves in Fig. 1 are nearly 
identical, showing that both methods have very similar be- 
havior with respect to spin. This result supports a statement 
made by Pople2’ that the CCSD and QCISD calculations are 
very similar in quality. 

The values of the S2 for CISD and CCSD theories are 
smaller than those for CID and CCD, indicating that the 
CISD and CCSD wave functions have less spin contamina- 
tion than the CID and CCD wave functions. Table IV lists 
matrix elements (‘P0jS21’P,), (Y\IS2)‘I’s), and (9ujS219&, 
which are the main contributors to S2 for CCD and CCSD. 
As expected, near the onset of the UHF-RHF instability, the 
contributions from the single substitutions are larger than 
from the double substitutions. However, a few tenths of an 
angstrom beyond the instability, the (*eIS2/~p) term domi- 
nates. The absolute value of (T0(S2/1v,) for UCCSD is two 
to four times greater than that for UCCD. Thus at long bond 
lengths, the primary effect of the single substitutions is to 
reduce S2 by increasing the contributions from q’D 
wols21w) th th ra er an reducing S2 directly through contri- 
butions from (~‘olS2~~\Irs). 

Handy and Pople’ have pointed out that the restricted 
Brueckner doubles method is stable with respect to spin- 
unrestricted displacements over a wider range of nuclear ge- 

TABLE IV. Matrix elements of (~u,lS21‘u,,), (1y,IS21+‘J, and (‘P&*)~‘,) for 
UCCD and UCCSD calculations on HF--tH+F. 

UCCD UCCSD 

R(A) wols21\u,) WolS21~,) wols21~s) wJs*1~,) 
1.4 0.385 19 -0.059 89 -0.249 45 -0.123 86 
1.6 0.709 76 -0.103 13 -0.293 20 -0.357 29 
1.8 0.858 99 -0.113 62 -0.195 28 -0.491 76 
2.0 0.930 65 -0.106 07 -0.095 32 -0.464 81 
2.2 0.965 90 -0.087 29 -0.036 22 -0.322 49 
2.4 0.983 46 - 0.063 43 -0.012 19 -0.181 60 
2.6 0.992 26 -0.040 91 -0.004 19 -0.093 41 
2.8 0.996 67 -0.023 94 -0.00159 -0.046 53 
3.0 0.998 87 -0.013 13 -0.000 67 -0.022 87 
3.2 0.999 95 -0.006 97 -o.ooo 33 -0.011 20 
3.4 1.000 48 -0.003 73 -o.ooo 19 -0.005 54 
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TABLE V. Differences in (S’) for HF-+H+F computed using Eqs. (13) and (20). 

QCISD 

R(A) CID CISD CCD CCSD Without TITz With T,T, BD 

1.4 0.0274 0.0067 0.0280 
1.6 0.0249 0.0101 0.0258 
1.8 0.0172 0.0086 0.0159 
2.0 0.0082 0.0057 0.0087 
2.1 0.0059 0.0043 0.0063 
2.2 o.cQ43 0.0032 0.0045 
2.4 0.0021 0.0017 0.0023 
2.6 0.0011 0.0009 0.0011 
2.8 0.0006 0.0005 0.0006 
3.0 0.0003 0.0002 0.0003 
3.2 0.0002 O.Oc%Jl 0.0002 
3.4 O.oool 0.0000 0.0001 

0.0007 
0.0020 
0.0033 
0.0036 
0.0032 
0.0027 
0.0017 

-0.0032 o.cOO5 
-0.0023 0.0022 

0.0003 0.0035 
0.0020 0.0036 
0.0022 0.0033 
0.0021 0.0027 
0.0014 0.0016 
O.OCO8 0.0009 
0.0004 0.0004 
0.0002 0.0002 
0.0001 O.oool 
0.0000 0.0001 

-0.0006 
-0.0772 
-0.0513 
-0.0143 
-0.0043 
-0.0015 
-0.0006 
-0.cOO2 
-0.0001 

‘Equation (20) minus Fq. (13). 

ometries than Hartree-Fock theory. The onset of the UBD- 
RBD instability is at -2 A for hydrogen fluoride with the 
6-3 1G basis set, while the onset of UHF-RHF instability is at 
1.2764 A. From Fig. 1, the UBD curves for both HF and CH4 
have large slopes initially and then merge with the UCCSD 
and UQCISD curves. The similar behavior in S2 a few tenths 
of an Angstrom beyond the onset of UBD-RBD instability 
may explain why UQCISD, UCCSD, and UBD give compa- 
rable results for the single bond dissociation potential curves. 
For both systems, S* for UQCISD and UCCSD is about 0.35 
at the onset of the UBD-RBD instability. This could be quite 
useful in predicting the onset of the UBD-RBD instability for 
single bond dissociations. 

Bartlett and co-workers23 have computed S* for coupled 
cluster wave functions using 

(s2>B=wIls21w. (20) 

Unlike Eqs. (13) and (14), this expression does not consider 
contributions from the change in the wave function arising 
from the spin perturbation. Table V list the differences in the 
values of S2 computed by Eqs. (20) and (13) at various levels 
of the theory for hydrogen fluoride, showing that the two 
approaches give almost the same results. The differences are 
generally less than 0.01 at distances greater than 1.8 A for all 

HF->H+F -99.940- 

--..*.. ROjMP4 
-.-.i--- PMP4 
-m- RCCSD(-lJ 
-m- uccsm 
-a- RQCISD~ 

-1wno 
\ 

( ( , , , , , , I I I , 
0.6 1.0 1.4 1.8 Rk;;!i ’ 26’ ’ ‘3!0’ ’ ‘24 

RG. 2. Potential energy curves for HF+HtF at various levels of theory. 

the levels of theory except UBD. For UBD, the differences 
are very small when Rm is larger than 2.4 A. The relative 
differences (compare Tables II and V) are a few percent or 
less except for UBD for which the differences reach about 
20% just beyond the onset of UBD-RBD instability. This 
indicates that the Hellmann-Feynman theorem is approxi- 
mately satisfied for UCISD, UCISD, and UQCISD wave 
functions for perturbations involving spin for these cases. 
Similar results are found for the CH, system. Although the 
second and third terms and denominator in Eqs. (13) and 
(14) are not small individually for the examples presented 
here, they cancel. 

Figure 2 shows a number of potential energy curves for 
HF computed at various levels of theory. The RMP4 calcu- 
lations give the wrong limit as the HF bond dissociates, 
while UMP4 goes to the correct limit but shows convergence 
problems at intermediate bond lengths. These two features 
are well known. The maximum energy difference between 
UMP4 and full CI is 33 mhartree at the bond length of - 1.6 
A. The values of S2 at Rw= 1.6 A are 0.7 1 for UHF and 0.48 
for UMP4. In the region where the value of S2 is about 0.5 
for the UMP4 calculation, the higher order perturbation cor- 
rections to the energy play an important role. This is the 
recoupling region where the wave function changes character 
from a pair of singlet coupled electrons to a pair of un- 
coupled electrons. The iterative methods for the electron cor- 
relation correction (CCSD, QCISD, and BD) give much bet- 
ter results for the energy in the recoupling region than the 
noniterative method (MP4), similar to the calculations of S2. 
All the unrestricted methods used in Fig. 2 reach the correct 
limit, while the restricted methods give incorrect results 
when the molecule dissociates. 

Table VI lists the differences between projected MP4 
and full CI energies. For practical reasons, two approxima- 
tions need to be made for calculations on larger molecules: 
(a) the single annihilator A,+, is used instead of full projec- 
tor P, and (b) the triples and quadruples contributions to the 
third-order wave function (U 3T,e) are neglected in comput- 
ing the projected MP4 energy using Eq. (17). For compari- 
son, Table VI also lists the projected MP4 energies including 
these terms (computed with the full CI code), the projected 
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TABLE VI. Energy differences (in hartree) between MP4 and full CI calculations for HF+H+F.P.b 

UMP4 with single annihilation UMP4 with full projection 

Eq. (17) Es. (17) 
R(A) RMP4 uMP4 without *\IT,p Es. (19) with *W,Q Eq. (16) 
1.4 0.002 617 0.025 722 0.007 911 0.002 094 0.005 588 0.005 577 
1.6 0.004 573 0.033 031 0.006 301 0.002 494 0.003 773 0.003 793 
1.8 0.006 702 0.024 980 0.004 298 0.002 564 0.002 551 0.002 620 
2.0 0.007 410 0.015 604 0.002 766 0.001942 0.001 729 0.001 836 
2.1 0.006 443 0.011 866 0.002 154 0.001546 0.001 379 0.001 498 
2.2 0.004 119 0.008 887 0.001 655 0.001 181 0.001082 0.001211 
2.4 -0.005 973 0.004 872 o.ooo 964 0.000 628 0.000 659 0.000 800 
2.6 -0.025 194 0.002 680 0.000 584 o.ooo 307 O.OMI 424 o.ooo 57 1 
2.8 -0.055 070 0.001541 0.009 390 o.ooo 139 o.ooo 305 o.ooo 455 
3.0 - 0.096 245 o.ooo 966 0.000 294 o.ooo 055 0.000 247 o.cal399 
3.2 -0.148 515 0.000 682 0.000 248 0.000 016 o.oou22o o.oao 373 
3.4 -0.210 912 o.w0 545 0.000 226 -o.ooo CO3 0.000 208 0.000 361 

MP4 energies calculated by the approximation in Eq. (19), 
and the MP4 energies computed with the full projector. The 
differences between single annihilation and full projections 
are very small for HF dissociation and are generally negli- 
gible for most single bond breaking cases. However, the er- 
ror from neglecting the Vrsr and *se terms is significant in 
the recoupling region. The maximum error is about 2.5 mhar- 
tree and occurs at a bond length of - 1.6 A, which is near the 
maximum in the difference between the UMP4 and full CI 
energies. Although the triple and quadruple excitation terms 
in ‘I!s do not contribute to the UMP4 energy, they do con- 
tribute to the projected energy and speed up the convergence 
of the projected UMPn calculations. For R,> 1.8 A, these 
terms are almost negligible. 

The approximation to spin projected MP4 energy given 
by Eq. (19) assumes that the spin contamination in ‘I’s can be 
neglected. In our previous papers,17,19 this approximation 
was necessary for practical reasons, but appeared to work 
quite well. The energies calculated by Eq. (19) are overesti- 
mated when compared with the fully projected MP4 energy 
from Eq. (16), but the overestimation seems to cancel some 
of the higher order corrections. This method appears to be 
quite effective and practical for a single bond dissociation 
system, since it gives very good results when compared with 

the full CI calculation and its additional cost is negligible 
compared with the UMP4(SDTQ) calculation. 

TABLE VII. Energy differences (in hartree) between single annihilation and 
full projection for HF-+H+F. 

R(A) A&F A&I-Z AEm A&P~ 

1.4 -o.ooa 1347 -o.ooo 0608 -0.000 0128 -o.oco 0105 
1.6 -0.000 4765 -0.000 2397 -O.COO 0946 -o.ooo 0199 
1.8 -0.000 7088 -o.ooo 3760 -0.000 1774 -0.000 0697 
2.0 -0.000 8342 -o.ooo 4553 -0.000 2322 -o.ooo 1068 
2.1 -0.000 8713 -0.000 4798 -0.000 2502 -o.ooo 1194 
2.2 -0.000 8974 - o.ooo 4974 -0.000 2635 -0.000 1289 
2.4 -0.000 9288 -o.om 5191 -0.000 2802 -o.ooo 1410 
2.6 -O.OCG 9446 -o.ooo 5303 -0.000 2890 -0.000 1473 
2.8 -O.COO 9528 -0.000 5361 -0.000 2936 -0.000 1505 
3.0 -0.000 9572 -0.000 5391 -0.000 2960 -O.COO 1522 
3.2 -0.000 9595 -o.ooo 5407 -0.000 2972 -o.coo 1531 
3.4 -0.000 9608 -O.OCO 5416 -0.000 2978 -o.ooo 1535 

Tables VII and VIII list the differences between single 
annihilated and fully projected energies for breaking one 
bond in HF and two bonds in H,O. Three important features 
can be observed: (a) the single annihilated energies are lower 
than fully projected energies for any order of the perturbation 
theory (this was first pointed out by Morokuma and 
co-workersz4); (b) the higher the order of perturbation calcu- 
lation used, the smaller the difference between single anni- 
hilation and full projection; (c) the difference between single 
annihilation and full projection for any order of the wave 
function increases with increasing bond lengths and tends 
toward a constant. For breaking one bond in HF, the error in 
MP3 and MP4 energies with single annihilation are at least 
three and six times smaller than for the UHF calculations, 
respectively. For breaking two bonds in H,O, a reduction in 
the error with higher order MPn calculation is also observed, 
although the error with higher order perturbation calculations 
are still very large when only single annihilation is used. 
However, annihilation of two spin contaminants gives results 
that are in very good agreement with full projection, espe- 
cially with higher order perturbation theory (Table VIII). The 
higher order UMPn calculations tend to reduce the weight of 
the configurations contaminating the UHF wave function. 
Morokumaz4 used an approximate methodI which projected 
out the spin contamination from the UHF wave function but 
not the UMPn wave function; hence the effect of projected 
higher order UMPn was not evident. 

Figure 3 shows the differences between the CCSD(T), 
QCISD(T), BD(T), and full CI energies for HF or MRDCI 
energies** for CH,. In the two regions where hydrogen fluo- 
ride is either well bonded or well separated, the restricted 
and unrestricted CCSD(T), QCISD(T), and BD(T) methods 
are in very good agreement with the full CI calculations, 
respectively. The energy differences are only a few tenths of 
millihartrees in these two limits. In the region between the 
onsets of the UHF-RHF and UBD-RBD instabilities, re- 
stricted and unrestricted CCSD(T), QCISD(T), and BD(T) 
have about the same errors when compared with the full CI 
calculation. The largest errors in this region are -0.6, 1.5, 
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TABLE VIII. Energy differences (in hatttee) between single annihilation, double annihilation, and full projec- 
tion for H,0+2H+O. 

R(A) 
1.425 

1.9 

2.85 

Annihilation ‘%CF AJ%W2 ‘%m AEM, AEups 

single -0.026 297 -0.023 979 -0.013 596 -0.008 210 0.003 940 
double o.ooo 143 0.000 058 -o.ooo 003 -0.000 029 -0.000 038 
single -0.172 142 -0.156 831 -0.120 308 -0.103 502 -0.089 074 
double 0.002 02 1 0.001 122 o.ooo 533 o.ooo 197 o.ooJlo22 
single -0.886 427 -0.471 182 -0.281 200 -0.197 682 -0.153 676 
double 0.003 123 0.001860 0.001067 o.oca 573 0.000 308 

0.9, 0.8, and 1.0 mhartree for RCCSD(T), UCCSD(T), RQ- 
CISD(T), UQCISD(T), and RBD(T), respectively. The maxi- 
mum errors in the UCCSD(T), UQCISD(T), and UBD(T) 
curves are -3.5 mhartree and occur at -2.2 1%, about, 0.2 A 
beyond the onset of the UBD-RBD instability. The values of 
S* at these maxima are 0.5-0.6 (for UMP4, S* is also -0.5, 
but the maximum error in the energy occurs at - 1.6 A. For 
comparison, the error curve for the approximate projected 
MP4 calculated by Eq. (19) is also plotted in Fig. 3. In the 
region where the UCCSD(T), UQCISD(T), and UBD(T) er- 
rors are large, the error in the projected MP4 energy is small; 
conversely, CCSD(T), QCISD(T) and BD(T) are in very 
good agreement with the full CI energies where error in the 
projected MP4 is large. The results for CH, are similar. We 
estimate that the MRD-CI calculations of Hirst*i are about 3 
mhartree above the full CI calculations. 

Figure 4 shows the errors in energy for restricted and 
unrestricted CCSD, QCISD, and BD methods with and with- 
out the noniterative triples correction. In the unrestricted ap- 

HF->H+F -*- PhfP4.FCI 
. ..-o-- RccRqT).FcI 
....... “ccSqr).KI 
- R@xSDmm 
- uactsmm 

0.6 I.0 1.4 1.1 2.2 26 3.0 3.4 
R,(A) 

CH.->CH.+H 

FIG. 3. Energy differences between various levels of theory and full CI 
energies for HFAi t F, and MRDCI energies for CH,-tCH3 t H. 

preach, the triple substitutions play a very important role in 
adjusting the incorrect .behavior remaining in the wave func- 
tions in the recoupling region. This correction becomes less 
important at large bond lengths where the character of the 
pair of uncoupled electrons is well established. On the other 
hand, the restricted calculations without triples tend toward a 
higher limit in energy when the molecule dissociates. This 
result is expected because in the dissociation limit the re- 
stricted Hartree-Fock wave function is a mixture of ionic 
(H++F-) and diradical (H’+F’) configurations. To remove 
the ionic contribution, the restricted wave functions must 
have large amplitudes for the single and double substitutions. 
Hence the triple substitutions produce a large correction to 

HF->H+F 

;-z: 

4.015 
0.020 -0.07.5 -0.030 

0.6 1.0 I.4 1.8 2.2 2.6 3.0 1.4 

R,(A) 

BIG. 4. Energy differences between restricted and unrestricted coupled clus- 
ters, quadratic CI, Brueckner doubles with and without triples correction, 
and full CI for HF-+H+E 

J. Chem. Phys., Vol. 101, No. 7, 1 October 1994 
Downloaded 17 May 2001 to 141.217.27.39. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



5966 W. Chen and H. B. Schlegel: Evaluation of S2 

TABLE IX. Triples contribution to the correlation energy AET (in mhartree) and normalization factor A,,,,,,, for HF-+H+F. 

RCCSD UCCSD RQCISD UQCISD RBD UBD 

R(A) AET A norm AET &mm AET norm A AET &m .A& norm A A-% Lrm 

0.6 -0.464 1.0121 -0.363 1.0122 -0.533 1.0120 
0.8 -0.500 1.0145 -0.396 1.0146 -0.571 1.0144 
1.0 -0.763 1.0185 -0.605 1.0186 -0.871 1.0181 
1.2 -1.251 1.0257 -0.973 1.0258 - 1.408 1.0246 
1.2764 - 1.510 1.0299 - 1.510 1.0299 -1.163 1.0300 -1.163 1.0300 - 1.677 1.0282 
1.4 -2.048 1.0390 -1.512 1.1073 - 1.548 1.039 1 -0.880 1.1267 -2.205 1.0360 
1.6 -3.375 1.0626 -2.786 1.1829 -2.453 1.0619 -2.067 1.2231 -3.360 1.0553 
1.8 -5.552 1.1009 -4.534 1.1969 -3.823 1.0975 -3.707 1.2328 -4.992 1.0849 
2.0 -8.866 1.1554 -4.333 1.1457 -5.698 1.1457 -3.694 1.1648 -7.136 1.1245 -7.127 1.1244 
2.1 - 10.978 1.1875 -3.412 1.1066 -6.798 1.1731 -2.952 1.1185 -8.366 1.1469 -5.171 1.1005 
2.2 - 13.366 1.2216 -2.405 1.0711 -7.977 1.2014 -2.090 1.0778 -9.662 1.1701 -3.135 1.0659 
2.4 - 18.762 1.2910 - 1.085 1.0289 - 10.462 1.2575 -0.914 1.0305 - 12.305 1.2157 - 1.267 1.0270 
2.6 -24.528 1.3555 -0.626 1.0151 - 12.940 1.3079 -0.502 1.0154 - 14.800 1.2569 -0.717 1.0144 
2.8 -30.123 1.4104 -0.501 1.0114 - 15.250 1.3499 -0.393 1.0115 - 16.977 1.2913 -0.572 1.0111 
3.0 -35.140 1.4540 -0.469 1.0105 - 17.295 1.3830 -0.368 1.0105 - 18.775 1.3187 -0.534 1.0103 
3.2 -39.341 1.4870 -0.461 1.0102 - 19.035 1.4080 -0.362 1.0103 -20.206 1.3398 -0.524 1.0101 
3.4 -42.628 1.5109 -0.459 1.0102 -20.465 1.4262 -0.361 1.0102 -21.315 1.3555 -0.521 1.0100 

the energy (see Tables IX and X), resulting in energies that 
are lower than the full CI calculation for bond length greater 
than 1.8 A. The results from restricted CCSD(T), QCISD(T), 
and BD(T) methods do not seem reliable beyond the onset of 
the UBD-RBD instability. It is possible that iterative inclu- 
sion of the triple excitations may partially overcome this 
problem. 

Figure 5 shows the differences between the unrestricted 
CCSD, QCISD, BD, and full CI energies with and without 
the corrections for triple substitutions. In the region where 
the RHF or RBD wave functions are stable, the restricted 
data are used in the plot; beyond the instability the ume- 
stricted data are used. For CCSD and BD without the triple 
substitution, the differences increase and reach the maximum 
at -2.0 A, which is near the onset of the UBD-RBD insta- 
bility. Beyond the instability, the differences decrease and 
reach values of less than 1 mhartree. For QCISD, the results 
are similar except for a local minimum about one-tenth of an 
angstrom beyond the onset of the UHF-RHF instability. The 
maximum values of the differences are 6.7, 5.8, and 7.6 
rnhartree for CCSD, QCISD, and BD, respectively. For the 
calculations with triples, a small bump is found in the 

UCCSD(T) and UBD(T) curves at - 1.6 8, and a larger fea- 
ture at -2.2 A for all three methods. These are associated 
with maxima in the triples corrections near 1.8-2.0 8. 

Replogle and Pople25 compared QCISD and BD meth- 
ods for the potential energy curve for the CH bond dissocia- 
tion in methane with the STO-3G basis set. Depending on 
which solution was lower in energy, either a restricted or an 
unrestricted reference was used (i.e., the same as in Fig. 5). 
They found that QCISD(TQ) and BD(TQ) (where Q indi- 
cates noniterative corrections for quintuple excitations) are 
superior to QCISD(T) and BD(T), which in turn are better 
than QCISD and BD. 

Spin projection has been shown to be very effective in 
the UMP4 calculations. In a previous paper” we proved that 
CCSD energies with and without single annihilation based 
on Eq. (16) are identical. The same theorem holds for 
QCISD and BD energies. Hence, single annihilation will not 
affect the CCSD, QCISD, and BD potential energy curves. 
Since unrestricted calculations on single bond dissociation 
energy curves have only one major spin contaminant, mul- 
tiple spin annihilation is expected to have very little effect on 

TABLE X. Triples contribution to the correlation energy AE, (in mhartree) and normalization factor A- for CH.,+CH,+H. 

RCCSD UCCSD RQCISD IJQCISD RBD UBD 

R(A) AET norm A BET norm A AET &mm AET &om A.% &m AET nom A 

0.757 -3.335 1.0315 -3.245 1.0315 3.411 1.0312 
1.086 -3.630 1.0337 -3.508 1.0337 3.726 1.0334 
1.25 -3.877 1.0359 -3.617 1.0359 3.997 1.0355 
1.50 -4.522 1.0422 -4.239 1.0424 4.692 1.0413 
1.75 -5.701 1.0548 -5.646 1.0960 5.140 1.0551 -7.232 1.1061 5.897 1.0524 
2.00 -7.703 1.0773 -8.194 1.1498 6.542 1.0778 -7.721 1.1708 7.758 1.0713 
2.25 - 10.890 1.1131 -7.197 1.1274 8.531 1.1132 -7.295 1.1383 10.332 1.0999 - 10.328 1.0999 
2.50 - 15.578 1.1638 -4.962 1.0726 11.117 1.1616 -4.833 1.0745 13.531 1.1382 -6.002 1.0681 
2.75 -21.794 1.2262 -3.397 1.0417 14.178 1.2185 -3.292 1.0417 17.101 1.1830 -3.603 1.0401 
3.00 -28.953 1.2924 -2.861 1.0321 17.456 1.2763 -2.785 1.0321 20.689 1.2288 -2.946 1.0315 
4.00 -51.156 1.4761 -2.654 1.0289 27.732 1.4281 -2.594 1.0289 31.100 1.3548 -2.708 1.0285 
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FIG. 5. Energy differences between various levels of theory and full CI for 
HF-+H+F. Restricted methods used in the regions where the RI-IF and RBD 
wave functions are stable; unrestricted methods used otherwise. 

the UCCSD, UQCISD, and UBD single bond dissociation 
curves. 

Tables IX and X give the noniterative correlation correc- 
tion from triple substimtions, AE,, as well as the normalized 
factor A,,,,,, = 41 +Z(&‘+C(LZ$‘)~ for the CCSD, . _. 
QCISD, and BD calculations f&r HF-tH+F and 
CH,+CH,+H, respectively. As mention above, AEr for the 
restricted calculations increase with the bond length because 
large amplitudes are needed for single and double substitu- 
tions to remove the ionic contributions in the RHF reference 
determinant for H+F and CHs+H. The maximum values of 
AE, for the UBD calculations are at the onset of the UBD- 
RBD instability for both systems. The maxima of AE, for 
UCCSD and UQCISD are at -1.8 and 2.0 8, for HF+H+F 
and CH,-+CHs + H, respectively. The correlation energies 
from the triple substitutions for these methods are three to 
ten times higher at the maxima than the values at either the 
well bonded structures or well separated structures. 

The value of A,,, is a good indicator of the magnitude 
of the correlation correction for single reference determinant 
methods.26 Tables IX and X show that A,,, increases with 
the bond length for restricted CCSD, QCISD, and BD. How- 
ever, for unrestricted CCSD, QCISD, and BD, A,,, in- 
creases up to a bond length of 1.8-2.0 A and then decreases 
at longer distances to values similar to those found near equi- 
librium geometries. For these systems UCCSD(T), UQ- 
CISD(T), and UBD(T) give better energies than the corre- 
sponding restricted method if A,,, for the restricted method 
is greater than 1.2. This may also be useful for judging the 
quality of the restricted vs unrestricted calculations for other 
systems.26 

SUMMARY 

The conclusions of this paper can be summarized in the 
following points: 

(a) The value of S2 is a useful diagnostic tool to deter- 
mine the quality of post-SCF calculations. For H-F and 
CHs-H bond dissociation curves, the onset of the UBD- 
RBD instability occurs near S*=O.35 for the UCCSD or UQ- 
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CISD calculations. The maxima in the errors for UMP4, 
UCCSD(T), UQCISD(T), and UBD(T) are at the region 
where S* is 0.5-0.6. 

(b) For the cases considered, the differences in S* com- 
puted by (%‘\IS2]‘P) and dE(hS2)/dX are less than 0.005 for 
CCSD and QCISD calculations. The values of S2 for QCISD 
computed with and without the TIT2 term differ by less than 
0.005. 

(c) Although they are based on UHF orbitals, the behav- 
ior of UCCSD and UQCISD is closer to BD than MP4, as 
judged by the potential energy curves and S*. 

(d) For dissociation of a single bond, the approximate 
spin projected MP4 energy [Eq. (19)] is in good agreement 
with the full CI energy. In the recoupling region (between the 
onsets of the UHF-RHF and UBD-RBD instabilities), the 
iterative methods such as CCSD(T), QCISD(T), and BD(T) 
give better results. 

(e) The restricted and unrestricted calculations of 
CCSD(T), QCISD(T), and BD(T) give about the same errors 
compared with the full CI calculation between the onsets of 
the UHF-RHF and UBD-RBD instabilities. 

(f) Although spin projection greatly improves the UMPn 
energies, it is not expected to have a large effect on CCSD, 
QCISD, and BD energy curves for the single bond dissocia- 
tion. 

(g) For single bond dissociation, single spin annihilation 
results are very close to full projection; however, for the 
system involving the breaking of two single bonds or a 
double bond, annihilation of at least two spin contaminants is 
necessary. 

(h) For A “,,,& 1.2 in single bond dissociations, it is bet- 
ter to use a spin-unrestricted method. 
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