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Some Thoughts on Reaction-path Following
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Errors in reaction-path following have been examined with the aid of a simple model surface and a local
correction scheme has been proposed. Two new fourth-order explicit methods for reaction-path following have
been developed, and two potential-energy surfaces with analytical reaction paths have been constructed. Some
aspects of reaction-path bifurcation are also discussed.

In exploring a potential-energy surface for a reaction, nor-
mally the first step is to optimize the geometry of the relevant
stationary points, i.e. the reactants, transition structure and
products.! To confirm a reaction mechanism, it may be
necessary to prove that the particular transition structure
found in the optimization connects the desired reactants and
products. This can be done by following the path of steepest
descent downhill from the transition structure toward the
reactants and toward the products. Following the reaction
path can also show whether the mechanism involves any
intermediates between reactants and products. Although the
path of steepest descent depends on the coordinate system, a
change in the coordinate system does not change the nature
of the stationary points and does not alter the fact that the
energy decreases monotonically along the reaction path from
the transition structure toward reactants or products. Thus
any coordinate system can be used to explore the mechanism
of a reaction. One system, mass-weighted cartesian coordi-
nates, has special significance for reaction dynamics, and the
path of steepest descent in this coordinate system is called the
intrinsic reaction coordinate (IRC).2

The next step in characterizing a reaction in a theoretical
study of a potential-energy surface is to calculate the rate of
the reaction. At the simplest level, one can use conventional
transition-state theory (TST), which depends on the geometry
and vibrational modes of the transition structure.® If the
barrier is low or broad, the dynamic bottleneck may not be
at the transition structure, and one needs to use variational
transition-state theory (VIST).* This requires the reaction
path or IRC near the transition state and the vibrational fre-
quencies perpendicular to the path. Tunnelling corrections
may also be important and can be estimated from the IRC
and the shape of the potential-energy surface near the tran-
sition state.

Following reaction paths is, therefore, central to any treat-
ment of reactions on potential-energy surfaces that goes
beyond locating transition structures. Methods for comput-
ing reaction paths have been reviewed recently.>® Despite
their conceptual simplicity, reaction paths are remarkably dif-
ficult to follow efficiently and accurately. Many small steps
may be needed to follow the path closely, and this can be
quite costly if the potential-energy surface is obtained by
high-level ab initio electronic structure calculations. The
reason for these difficulties is that the defining equations for
reaction paths belong to a class of stiff differential equations.
With this short paper we hope to stimulate discussion by
offering two new fourth-order path-following methods, some
new test surfaces and a few thoughts on bifurcation of reac-
tion paths.

Definitions

A potential-energy surface E(x) can be expanded as a Taylor
series about x,,

E(x) = Eq + go(x — xo) + $(x — xo)Ho(x — x5) + -+ (1)

where E,, g, and H, are the energy, gradient and Hessian at
X,. The reaction path on this surface can also be expanded as
a Taylor series

x(s) = x(0) + v°(0)s + 4v'(0)s% + --- )

where s is the arc length along the path, v° is the tangent
vector, and v is the curvature. The tangent vector for the path
of steepest descent is

dx(s) _ —g(x)

ds  |g(x)
The curvature can be computed for the Hessian:
v'(s) = —[Hr® — (0"Ho°W ) /|g(x)]; x=|v'| (4

At the transition structure, the gradient is zero and the
tangent is given by the eigenvector of the Hessian corre-
sponding to the negative eigenvalue, and the curvature is
given by

v'(s) = —[H — 20"HvM] " [F'v° — 0®F'v°)%°] (5)

where F}; = Y, F;; o0 and F, are the third derivatives.

A number of quantities are needed for treatments of reac-
tion rates that go beyond conventional transition-state
theory. The vibrational frequencies perpendicular to the reac-
tion path can be obtained by diagonalizing the projected
Hessian:

v%(s) =

©)

H

oy = PHP; P =1 — %" (6)
The coupling terms between motion along the path and
vibrational modes perpendicular to the path are given by:
dL} do®

=EUO=L;E=L;.’1 (7)
where L are the eigenvectors of the projected Hessian. For-
mulae for other terms appearing in the VTST and reaction-
path Hamiltonian treatments of reaction rates can be found
in the literature.”"®

Bi, s

Bifurcation

Bifurcation is a novel aspect of reaction paths and has been
discussed extensively by Ruedenberg® and others. A
potential-energy surface in which one valley divides into two
has a valley-ridge inflection point (VRI). On one side of the
VR], all second derivatives perpendicular to the reaction path
are positive, indicating a valley; on the other side, one per-
pendicular mode has a negative eigenvalue, indicating a
ridge. Thus, the VRI is characterized by a zero eigenvalue for
the second derivatives perpendicular to the path. Baker and
Gill'® have published an algorithm for locating VRIs on
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Fig. 1 Model potential-energy surface showing a bifurcating valley
and a VRI. Two paths of steepest descent, displaced a small distance
either side of the VRI follow the ridge for a considerable distance
beyond the VRI before diverging.

potential-energy surfaces calculated by electronic structure
methods.

Although Ruedenberg has clearly stated that the valley,
not the reaction path, divides at the VRI, there may still be a
general misconception that the reaction path also splits in
two at the VRI. Ruedenberg has pointed out that the path
does not bifurcate at a VRI unless it is a stationary point,
and that for a non-stationary point, the path of steepest
descent follows the ridge. Even when they are displaced a
small amount to either side of the ridge, paths of steepest
descent follow the ridge for a considerable distance before
diverging (see Fig. 1). By way of comparison, note that paths
infinitesimally displaced either side of the valley converge.
The dilemma is then to develop a concept of a bifurcating
reaction path that follows the valleys and not the ridge.

For a normal path of steepest descent, one can think of a
marble rolling down the potential-energy surface very slowly
(e.g. in molasses). We suggest for a bifurcating path, one

10 "0

Fig. 2 A family of paths descending on a model potential-energy
surface with a bifurcating valley and a VRI. A hard-sphere potential
prevents the paths from coming closer than a preset minimum dis-
tance.
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should consider a pair of marbles, side by side, rolling slowly
down the surface. The hard-sphere repulsion keeps them
separated by a fixed distance and the paths are parallel to the
path of steepest descent until the VRI is reached. After the
VRI, the paths diverge, as shown in Fig. 2. The rate of diver-
gence depends on the distance from the ridge, the slope along
the path and the vibrational modes perpendicular to path.
This concept can be generalized to many hard-sphere test
particles descending on a surface. The resulting paths are
similar to streamlines in incompressible fluid flow. For a
wavepacket following the path, it is perhaps better considered
as compressible fluid and to replace the hard-sphere potential
with a softer repulsive potential [e.g. 1/r, 1/r?, exp(—ar?)].
One could even speculate that it may be possible to choose a
form of this repulsion so that the streamlines correspond to
lines of equal probability along a wavepacket trajectory.

Relation between Errors in the Reaction Path, Tangent,
Curvature and Projected Frequencies

A little work with a model potential can reveal some inter-
esting connections between various errors encountered in
reaction-path following. Consider a simple two-dimensional
linear trough:

00
E(x, y) = —ax + 3by*; g=(—a, by); H=[O b] ®

Let the previous, current and next points on the reaction
pathbe x_, =(—c, 0), x, = (=0, 0) and x, = (¢, 0); for each
point the tangent and curvature are v° = (1, 0) and »' = (0,
0), respectively. Consider an error in the lateral position of
the current point, x; = (0, Ay). The tangent and curvature at
this point can be found by substituting into eqn. (3) and (4):
(@, —bAy)
T J@+ b2 AyY)
(0, —b sin 8) — b sin? H(cos 6, —sin 6)
J(@ + b* Ay?)
_ bcos@sind
—J@ +b* Ay
For small displacements such that a? » b? Ay?, the tangent
and the magnitude of the curvature are approximately

v°~ (1, —b Ay/a); x = b* Ay/a® (11)

70

=(cos 6, —sinf); tanf@=>bAy/a (9)

vl=

(sin 6, cos 0) = x(sin 6, cos 6) (10)

Thus the error in the tangent is a factor of b/a times the error
in the coordinate of the reaction path. This factor can be sig-
nificantly larger than 1 if a, the gradient along the path, is
small (e.g. near the transition state) and/or if b, the second
derivative perpendicular to the path, is large (e.g. a narrow
valley). The amplification factor for the error in the curvature
is the square of the factor for the tangent, indicating that it is
even more difficult to compute accurate values for the curva-
ture, and quantities that depend on it, such as the coupling
coefficients in eqn. (7). The relative error in the projected fre-

quency

Wo— @  +J(b) —/(bcos® ) - b? Ay?
o NC) =1—cos O~ 2 (12)

is smaller than the error in the tangent, since b Ay/a < 1. The
errors in the normal modes are similar to the error in the
tangent vector.

This analysis suggests that the coordinates of the reaction
path need to be determined quite accurately near the tran-
sition state where the gradients are small, and for those in
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perpendicular mode with large force constants. This also sug-
gests some strategies for improving the calculations.

For first-order methods, one can obtain a suitable estimate
of the tangent from the displacement

vo - xé)_x—l - (C’Ay)
T lxo—x_,0 J(E+AY)

= (cos 8, —sin 6)

tan § = —Ay/c (13)

This will lead to an improvement in the curvature and pro-
jected frequencies if 1/c < b/a. Note that the errors in v"° and
(xo — x_,)/| xo — x_, | are opposite in sign; if the two factors
are comparable in magnitude, an improved estimate of the
tangent is

Xo— X_,
2, = (v"’ +—)/|
[xo —x_4|

If subsequent points along the path have already been calcu-
lated, a better estimate can be obtained by central difference:

’0 Xo — X

(14)

[xo — x_4|

X=X
0o _ _*1 -1
Vet =

(15)

|x; —x_,]

For higher-order explicit methods for reaction-path follow-
ing, such as LQA and CLQA,!* the estimated tangent analo-
gous to eqn. (13) can be obtained by integrating the path and
averaging the tangent of the integrated path and the calcu-
lated tangent, e.g.,

00 = —(g_1+H_Ax o))

rea |lg-y + H_ | Ax g4l ’

—{g_1 + H_,[x(s) —x_,1}
lg-1 + H_[x(s) — x_,]|

vge = (0" + 00a)/17° + vl 17

Axigp =

ds (16)

An improved estimate in the spirit of eqn. (I15) can be
obtained by matching the path integrated forward from the
previous point and backward from the next point, and
averaging the two tangents.

This approach can be taken one step further to calculate a
local correction to the coordinates of the reaction path, based
on the gradient and Hessian, and the estimated tangent from
above. This can be done by minimizing in the space perpen-
dicular to the estimated tangent:

AxO = _H(; 1[g0 - (g'o ”gst)”gst] (18)
0 = —(go + H, Ax)/1go + Ho Ax,| (19)

The new tangent and the current Hessian can then be used to
calculate improved estimates of the curvature and projected
frequencies. It should be emphasized that the effect of this
correction is to clean up small errors in the path coordinates,
and not to increase the order of the reaction-path following
method. If eqn. (14), or its higher-order analogues such as
eqn. (16), are used to estimate the tangent, this approach can
be viewed as a generalization of the stabilization method
used to improve the behaviour of the Euler method for
reaction-path following.!2

New Fourth-order Methods for Reaction-path Following

Numerical methods for integrating differential equations can
be divided into two categories. For implicit methods, the step
taken depends on the gradient at the end of the step, whereas
for explicit methods it does not. Following reaction paths by
the latter technique is computationally simpler and algo-
rithms that have been used include Euler’s method, the
Ishida—Morokuma—Komornicki or stabilized Euler method
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(IMK or ES),'? RungeKutta and predictor—corrector
methods,!3 the local quadratic approximation (LQA),'! LQA
with cubic correction (CLQA),!! and the Sun—Ruedenberg
modification of LQA.!* These methods employ a fixed
number of calculations per step; some require only gradients
and must take relatively small steps; others use second deriv-
atives and have somewhat greater stability. Implicit methods
are more difficult to implement, since the end-point of a step
must be found by an optimization.!>% In return, these
methods are more stable than explicit methods and can
perform well with larger step sizes. Implicit methods for reac-
tion path following include the Miiller-Brown method
(implicit Euler),!” the second-order method of Gonzalez and
Schlegel'® (implicit trapezoid) and higher-order implicit
methods by Gonzalez and Schlegel.'®

For use with variational transition-state theory and
reaction-path Hamiltonian calculations, it is highly desirable
to combine the stability of implicit methods yet avoid the
constrained optimization used to determine the end-point of
a step. The method should also be higher than second order
(so that larger steps can be taken) and use the gradient and
Hessian at each point on the path (since the rate calculations
need the Hessian at each point). We have combined ideas
from the local corrections discussed above and from various
implicit and explicit methods to devised two new fourth-
order reaction-path following algorithms.

Method 1 combines an LQA predictor step'! with a cor-
rector step based on the fourth-order method F of Gonzalez
and Schlegel.'® The LQA step is obtained by integrating a
local quadratic approximation for the gradient from x,, the
current point on the path to x5:

dx(s) _ =g, + Hy(x — x))
ds  Igh + Hiylx — %)

where g} and M are the gradient and Hessian calculated at
x}, a point near x,. The gradient and Hessian, g, and H,,, are
then calculated at x’,. Eqn. (3) and (4) are used to calculate
v%(0) and »'(0) from g, ~ g} + Hi(x, — x}) and H, = H};
likewise v%(s) and »'(s) are calculated from g, = g, + H(x,
—x,) and H, ~ MH’,. Then x, is adjusted iteratively until
eqn. (21) (the defining equation for method F9) is satisfied,

xy =x; + 3[0%0) + 0°(s)1s + 3[v'(0) — 015> (21

where s is chosen to minimize | x, — x’, |. Because method F is
correct to fourth order, the resulting step from x; to x, is
also fourth order, provided that |x, — x}| and |x, — x}| are
sufficiently small so that local quadratic approximations
around x| and x), are valid.

Method 2 combines an LQA step with an integration on a
quartic surface. The LQA step from x, to x, and the calcu-
lation of g, and H’, are the same as in method 1. A quartic
energy surface (cubic surface for the gradient) is constructed
by fitting to the gradients g}, g, and the Hessians H), and
H,.

(20)

g(x) = {g) + Hj[(x — xy) — t(x; — x)1} /1(1)
+ H(x; — x) ()
+ {g2 + Hl(x — x3) — (1 — t)x; — x))]}
x fill — 1) + Hy(xy — x5) fo(1 — 1) 22
t=(x—xy)x; — xj)/|x; — xy ?
fi=1-32+23;, f,()=t—-22+13

This approximation for the gradient is used in eqn. (3) and
the reaction path between x, and x, is obtained by inte-
grating the differential equation using an accurate numerical
method such as the Bulirsch-Stoer method.®
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Both methods outlined above are fourth order, but they
have different contributions from higher-order terms. Since
they use the same information (g}, g5, H;, H>), one can
readily compute the step along the path by both methods.
The difference between the two paths gives an estimate of the
error in the reaction-path following. If this error estimate is
outside the acceptable range, the size of the next step can be
adjusted accordingly. If the corrections to the LQA step
become sizeable, it may be better to calculate x, by the
CLQA method,!! or by integrating the quartic approx-
imation from the previous step.

Test Surfaces for Reaction-path Following

Four surfaces are considered in this section: the quadratic
and helical valleys are special because they are treated exactly
by the LQA and second-order Gonzalez—Schlegel methods,
respectively; the Fresnel and logarithmic spirals are impor-
tant because they have a very simple dependence on the cur-
vature on the reaction path.

A quadratic surface for testing reaction-path following is
almost trivial, but is of some interest because the path can be
obtained analytically, and because the LQA algorithm (and
any method derived from it) is exact for this class of surfaces.
For simplicity, consider a two-dimensional surface where the
eigenvectors of the Hessian aligned with the axes and the
minimum is at the origin; the surface, path of steepest
descent, tangent and curvature are:

E = $ax? + 1by*; g =(ax, by) (23)
x(s) = [xo exp(—at), y, exp(—b1)];
g = \/[a*x} exp(—2at) + by} exp(—2bt)] (24)

o [—ax, exp(—at), —by, exp(—bt)]

* = Jlax2 exp(—2at) + b?y2 exp(—2bt)]

= (cos 0, sin 6)

25
b 0 b—
tan 0 = 2Yo exp[—(b — a)t]; d— = — 2 sin 20
ax, dt 2
de® dv®do dt
1 _ =————= i -_—
v = 4 - do dr ds k(sin 6, —cos 6) (26)
_|d8del (b — a)sin 26
T |dt ss| 2\/[a*x2 exp(—2at) + b2y3 exp(—2bt)]

Fig. 3 shows a typical path. For equal displacements along
both axes, the descent is first along the mode with the largest
eigenvalue until the gradient for this mode becomes compa-
rable to the gradient along the other modes. Thus, many of
the regions of high curvature seen in reaction paths arise
when the descent along one mode is nearly complete and the
path turns to descend along another mode. The magnitude of
the curvature, k, reaches a maximum near 6 = n/4, and the
value at the maximum depends primarily on the difference in
the eigenvalues.

A series of incrementally more challenging test functions
can be constructed to have analytical reaction paths with the
following properties: (a) zero curvature [k =0, a linear
trough, eqn. (8)], (b) constant curvature (x = constant, circu-
lar helix), (c) curvature linearly dependent on the arc length
(x = as, a Fresnel spiral) and (d) curvature inversely depen-
dent on the arc length (x = a/s, a logarithmic spiral).

J. CHEM. SOC. FARADAY TRANS.,, 1994, VOL. 90

B Sy
[} S
2
_
J—
-1
=1 0 1 2 3 4

Fig.3 A simple quadratic surface showing a path of steepest
descent. The maximum curvature depends on the difference in the
eigenvalues.

A circular helix, shown in Fig. 4, is a.three-dimensional
curve with constant curvature, x, and torsion, 7. We have
devised a simple potential whose reaction path is a circular

helix:
E(r, 8,2) = bz + < (r—ro)* + d [1 — cos(E -0+ 00>];
2 2 a

sin 8, = — % @n
x(s) = (ro cos 0, ry sin 6, ab); s=06,/(r3 +a*  (28)
v%(s) = (—rp sin 6, ry cos 6, a)//(r} + a?) (29)

v'(s) = (—rg cos 8, —r, sin 6, 0)/(r3 + a?);
K =ro/ry + a?) (30)

The second-order and fourth-order method F of Gonzalez
and Schlegel are exact for this class of surfaces if they are
started on the path, but methods such as LQA, CLQA and

Fig. 4 Three-dimensional contour for the helical valley, eqn. (27)
witha=1/r,b=0and c=4d
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traditional numerical methods for integrating differential
equations are not.

Integration of the appropriate equations for k = ns leads
to the Fresnel integrals'®

x(5) = [C(s), S(5)]; C(s) = J;scos nx%/2 dx;

S(s) = Jssin nx2/2 dx (31)
o

v°(s) = (cos 8, sin 6); 6 = ns?/2 (32)

v'(s) = k(—sin 6, cos 0); Kk =ms (33)

The reaction path, a Fresnel spiral, is shown in Fig. 5 and for
large s has the limiting behaviour of r26 = const. Despite the
simple functional form of k, none of the reaction-path algo-
rithms devised so far (including method F) is exact for the
Fresnel spiral.

A logarithmic spiral is obtained if one integrates the equa-
tions of x = a/s, where s is the distance from the centre of the
spiral. We have constructed a simple energy surface with a
logarithmic spiral as a reaction path.

1
E(r, 0)=-g|:1—cos<%—0+00)]+clnr

b x Inr
=5|:1 —;COS(T+00>
- % cos(lnTr + 90)] +clnr (34)

sin 8, = —2ac/(1 + a®)b
x(s) = exp(ab)cos 6, sin ); s=./(1 + a¥exp(ad)/a (35)
v°(s) = (a cos @ — sin 8, a sin @ + cos 0)/\/(1 + @)  (36)
—asin @ — cos 0, a cos 6 —sin 9
[(1 + a®exp(ab)] ’

The surface is shown in Fig. 6. Like the Fresnel spiral, none
of the reaction-path methods developed to date are exact for
the logarithmic spiral.

Fig. 6 shows a contour plot of the surface and compares
reaction-path following methods 1 and 2 of the present work

vl(s) = k=als (37

0.7
0.6
0.5
04
0.3
0.2

0.1

0.2 0.4 0.6
Fig. 5 A Fresnel spiral, x = [C(s), S(s)] [see eqn. (31)—33)]
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=10 0 10 20 30 40
Fig. 6 Contour plot of a logarithmic spiral valley [eqn. (34), a = L
b =1, c = 1] and a comparison of reaction-path following methods 1
() and 2 ([J) with LQA (+), second-order GS (x) and the exact
path (——-)

with the LQA method of Page and Mclver, the second-order
methods Gonzalez-Schlegel and the exact path. When the
valley is broad and the curvature small compared to the step
size, then all methods behave quite well. As the valley
becomes narrower and more curved, methods 1 and 2
perform better than LQA. All of the methods eventually fail
when the valley becomes too high and curved for a given step
size.

Summary

A number of thoughts on reaction-path following have been
collected together in this paper. To address the dilemma of
bifurcation, we offer the concept of a set of hard-sphere test
particles descending the surface, tracing out paths akin to
streamlines, that follow the bifurcating valleys. We have used
a simple model to analyse errors in reaction-path following
and have proposed a local correction method that is a gener-
alization of the Euler stabilization approach. We have devel-
oped two new fourth-order reaction-path following methods
that make maximal use of the gradient and Hessian at each
step. Lastly, we have examined a number of test surfaces and
devised two new potentals with analytical reaction paths.
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