Heats of Formation of SiH_mCl_n Calculated by ab Initio Molecular Orbital Methods

Ming-Der Su and H. Bernhard Schlegel*

Department of Chemistry, Wayne State University, Detroit, Michigan 48202

Received: February 22, 1993

Optimized geometries and vibrational frequencies for SiH_mCl_n were calculated at the MP2/6-31G(d,p) level. Energy differences were computed at the MP4/6-31+G(2df,p) level (all structures) and the G-2 level (structures containing no more than two chlorines). The heats of formation of SiH_mCl_n were estimated using the following isodesmic and isogyric reactions: $[(4 - n)/4]SiH_4 + (n/4)SiCl_4 \rightarrow SiH_{4-n}Cl_n, SiH_m + SiH_{4-n}Cl_n \rightarrow SiH_{m-n}Cl_n + SiH_4, {}^3/_4Si + {}^1/_4H_2 + SiH_3Cl \rightarrow SiCl + {}^1/_2H + {}^3/_4SiH_4, {}^1/_2Si + {}^1/_2H_2 + SiH_{4-n}Cl_n \rightarrow SiH_{2-n}Cl + H + {}^1/_2SiH_4, and {}^1/_4Si + {}^1/_2H + SiH_{4-n}Cl_n \rightarrow SiH_{3-n}Cl_n + {}^1/_4H_2 + {}^1/_4SiH_4$. The calculated heats of formation (kcal/mol; 298 K, 1 atm) are as follows: SiCl, 36.5 ± 1.5 ; SiHCl, 15.0 ± 1.5 ; SiCl₂, -38.6 ± 1.5 ; SiH₂Cl₃, -15.8 ± 1.5 ; SiH₂Cl₂, -74.2 ± 1.5 ; SiHCl₃, -116.8 ± 1.5 (based on experimental values for SiH_n and SiCl₄). The present study uses a significantly higher level of theory than that used in earlier work and confirms the heats of formation predicted by the best previous theoretical studies to within ± 0.8 kcal/mol. The theoretical heats of formation are within the error bars of the most recent experimental values except for SiCl (46 ± 5 kcal/mol), suggesting that a new experimental value would be desirable for SiCl.

Introduction

Chlorosilanes are important reagents in chemical vapor deposition processes used in the semiconductor industry,¹ and reliable heats of formation are essential for any discussion of the mechanistic details of chemical vapor deposition. The thermochemistry of small silicon compounds has been the subject of a number of recent reviews.^{2,3} The heats of formation of the chlorosilanes are fairly well-known experimentally, and reasonable experimental estimates are available for the subchlorides, SiCl_n. The thermochemistry of SiH_mCl_n has also been the subject of a number of theoretical studies.⁴⁻⁷ In general there is good agreement between the recent experimental and theoretical values. In the course of a study of the pathways for thermal decomposition of chlorosilanes,⁸ we had the opportunity to re-examine the heats of formation of SiH_mCl_n, (n + m = 1-4) at a higher level of theory than that used in previous studies.

The heat of formation of tetrachlorosilane has been measured directly from the heat of chlorination of silicon.⁹ Farber and Srivastava¹⁰ determined ΔH_f° for SiH_{4-m}Cl_n and SiCl_n from effusion/mass spectroscopy studies. Walsh et al.^{2b,11} obtained ΔH_f° (SiCl₃) from SiHCl₃ + I, calling into question the value from the effusion/mass spectrometric study. Experimental estimates of ΔH_f° (SiCl) are also available from spectroscopic studies¹² and from studies on Si⁺ + SiCl₄.¹³

Theoretical studies on the heats of formation of SiH_mCl_n have been carried out with the bond additivity method at the MP4/ 6-31G(d,p) level (BAC-MP4) with⁴ and without⁵ bond length or spin corrections. These estimates are expected to have error bars of ± 3 kcal/mol. Heats of formation have also been computed using isodesmic reactions at the MP4/6-31G(d) level.^{6,7} Both sets of calculations support Walsh's value for ΔH_f° (SiCl₃). Good agreement with experimental is also found for SiH_{4-n}Cl_n and SiCl₂, but SiCl is calculated to be 10 kcal/mol more stable than inferred experimentally.

Computational Method

Ab initio molecular orbital (MO) calculations were carried out with the GAUSSIAN 92 series of programs.¹⁴ Geometries were fully optimized using analytical gradients by second-order Møller–Plesset perturbation theory with the 6-31G(d,p) basis set.¹⁵ Vibrational frequencies, zero-point energies, and thermal corrections (298 K, 1 atm) were calculated at the MP2/6-31G-(d,p) levels using analytical second derivatives.¹⁶ Energy differences for isodesmic reactions were computed by fourth-order Møller-Plesset perturbation theory¹⁷ (MP4SDTQ, frozen core) with the 6-31+G(2df,p) basis set and the G-2 level of theory.¹⁸ In the G-2 method,¹⁸ the energy computed at MP4/6-311G(d,p)is corrected for the effect of diffuse functions obtained at MP4/ 6-311+G(d,p) and MP2/6-311+G(3df,2p), for the effect of higher polarization functions obtained at MP4/6-311G(2df,p) and MP2/6-311+G(3df,2p), and for the effect of electron correlation beyond fourth-order obtained at QCISD(T)/6-311G-(d,p). The average absolute error of the additivity assumptions in the G-2 level of theory is only 0.30 kcal/mol.^{18b} Higher level corrections for deficiencies in the energy are estimated empirically by comparing with well-established atomization energies, ionization energies, electron affinities, and proton affinities. At the G-2 level of theory, the mean absolute error in these energy differences is 1.3 kcal/mol.¹⁸ A similar level of accuracy can be expected in the present study. Because of computational cost, the G-2 level was used only for molecules containing at most two chlorines.

Results and Discussion

The calculated total energies, zero-point energies, and thermal corrections are listed in Table I. The optimized geometries are given in Table II. The MP2/6-31G(d,p) optimized Si-Cl bond lengths are ca. 0.005-0.010 Å shorter than the HF/6-31G(d) values. The valence angles and Si-H bond lengths are within 0.5° and 0.005 Å of the HF/6-31G(d) values. The experimental and theoretical vibrational frequencies are listed in Table III and plotted in Figure 1. The calculated harmonic frequencies are ca. 6% too high, primarily due to the neglect of vibrational anharmonicity. Figure 1 shows a very good linear correlation between theory and experiment ($R^2 = 0.997$). The only significant exceptions are the Si-H stretching modes in SiH₃. An earlier assignment¹⁹ of the SiH₃ spectrum has been questioned.²⁰⁻²⁴ Accurate experimental values are available for the umbrella and degenerate deformation modes, ^{21,22} but the Si-H stretching region is difficult to observe directly because of overlap with SiH₄. The present MP2 calculations and previous studies^{5a,24} predict the symmetric and degenerate stretches at 2140-2150 and 2180-2190 cm⁻¹, respectively. If the Si-H stretches of SiH₃ are dropped,

TABLE I: Total Energies⁴

	6-31G(d,p)	6-31+G(2df,p)			MP2/6-31G(d,p)	
molecule	MP2	MP2	MP4	G-2	ZPE	thermal
SiH (211)	-289.481 22	-289.489 97	-289.514 04	-289.546 00	3.07	1.48
SiCl(² II)	-748.587 25	-748.643 35	-748.684 74	-748.768 62	0.78	1.60
$SiH_2(^1A_1)$	-290.093 98	-290.106 22	-290.134 49	-290.167 71	7.77	1.80
SiHCl(¹ A')	-749.195 37	-749.255 01	-749.300 33	-749.385 96	5.10	1.94
$SiCl_2(^1A_1)$	-1208.301 79	-1208.409 87	-1208.472 01	-1208.610 39	1.84	2.37
$SiH_3(^2A_1)$	-290.708 70	-290.721 20	290.748 64	-290.773 51	14.07	1.87
$SiH_2Cl(^2A')$	-749.792 19	-749.852 34	-749.896 98	-749.975 83	10.99	2.04
$SiHCl_2$ (² A')	-1208.878 38	-1208.986 56	-1209.048 53	-1209.181 95	7.38	2.49
$SiCl_3$ (² A ₁)	-1667.964 35	-1667.120 54	-1668.199 97		3.32	3.18
SiH4	-291.349 86	-291.364 78	-291.396 56	-291.419 04	20.57	1.90
SiH ₃ Cl	-750.434 14	-750.496 47	-750.545 32	-750.621 81	17.31	2.10
SiH ₂ Cl ₂	-1209.520 71	-1209.630 82	-1209.696 86	-1209.828 17	13.54	2.56
SiHCl ₃	-1668.607 26	-1668.765 26	-1668.848 59		9.31	3.22
SiCl	-2127.691 64	-2127.897 26	-2127.997 99		4.81	3.99

^a Total energies in atomic units (1 au = 627.51 kcal/mol), zero-point energies (ZPE) and thermal energies (298 K, 1 atm) in kilocalories per mole; G-2 values for SiH_n and SiCl from ref 18. Note that the definition of the G-2 energy includes ZPE.

TABLE II: MP2/6-31G(d,p) Optimized Geometries^a

molecule	symmetry	R(SiH)	R(SiCl)	∠HSiH	∠HSiCl	∠ClSiCl
SiH	$C_{\infty p}$	1.515				
SiC1	$C_{\infty p}$	2.072				
SiH ₂	C_{2v}	1.508		92.33		
SiHCl	C,	1.509	2.077		95.25	
SiCl ₂	C_{2v}		2.073			101.7
SiH ₃	C_{3v}	1.473		111.2		
SiH ₂ Cl	С,	1.472	2.056	111.0	109.1	
SiHCl ₂	С,	1.473	2.047		108.3	110.8
SiCl ₃	C_{3v}		2.043			109.7
SiH4	T_d	1.472				
SiH ₃ Cl	C_{3v}	1.468	2.056	110.3	108.6	
SiH ₂ Cl ₂	C_{2v}	1.463	2.042	112.5	108.5	110.5
SiHCl ₃	C_{3v}	1.459	2.032		109.2	109.7
SiCl ₄	Td		2.025			

^a Bond lengths in angstroms; angles in degrees.

TABLE III: MP2/6-31G(d,p) Vibrational Frequencies⁴

molecule	frequencies (cm ⁻¹)			
SiH	2144 (1970)			
SiCl	547 (534)			
SiH ₂	1078 (1004), 2178 (1964), 2178 (1973)			
SiHCl	545 (522), 859 (808), 2162			
SiCl ₂	208 (202), 540 (502), 540 (514)			
SiH₃	822 (723), 985' (870'), 2325 (1955), 2362' (1999')			
SiH ₂ Cl	569, 680, 781, 976, 2324, 2359			
SiHCl ₂	185, 538, 608, 700, 802, 2327			
SiCl ₃	171', 253, 494 (470), 617' (582')			
SiH ₄	974" (913"), 1018' (972'), 2348 (2186), 2360" (2189")			
SiH ₃ Cl	572 (551), 691' (663'), 1003' (952'), 1016 (945),			
	2366 (2201), 2382' (2211')			
SiH ₂ Cl ₂	193 (188), 548 (527), 617 (590), 623 (602), 746 (710),			
	936 (876), 1008 (954), 2390 (2224), 2408 (2237)			
SiHCl ₃	180' (176'), 262 (254), 511 (499), 628' (600'), 852' (811'), 2420 (2261)			
SiCl	151' (149'), 229" (220"), 434 (425), 647" (620")			

^a Experimental (anharmonic) values in parentheses; doubly degenerate marked with a prime; triply degenerate marked with a double prime.

a scale factor of 0.945 ± 0.002 is obtained at the MP2/6-31G-(d,p) level. A similar value (0.93) was found in HF/6-31G(d) calculations on SiH_mCl_n⁵ (frequencies below 1900 cm⁻¹ only) and SiH_mF_n²⁵ (all frequencies).

Table IV summarizes the enthalpy differences for three sets of isodesmic and isogyric reactions used in the estimation of the heats of formation of SiH_mCl_n . The first set interpolates between SiH_n and $SiCl_n$.

$$\frac{m-n}{m}\mathrm{SiH}_m + \frac{n}{m}\mathrm{SiCl}_m \to \mathrm{SiH}_{m-n}\mathrm{Cl}_n \tag{1}$$

Since the experimental ΔH_f° of SiH₄ and SiCl₄ are firmly established,⁹ this reaction is used to estimate the heats of formation

Figure 1. Comparison of experimental anharmonic vibrational frequencies and MP2/6-31G(d,p) calculated harmonic vibrational frequencies.

of SiH₃Cl, SiH₂Cl₂, and SiHCl₃. The experimental and theoretical ΔH_f° of SiH, SiH₂, and SiH₃ are in close agreement,^{2,3} but the experimental ΔH_f° of SiCl, SiCl₂, and SiCl₃ are less well-known.² Hence, a different set of reactions must be used. Given the ΔH_f° of SiH, SiH₂, and SiH₃, the heats of formation of SiCl, SiHCl, SiCl₂, SiH₂Cl, SiHCl₂, and SiCl₃ can be computed by transferring the chlorines from SiH_{4-n}Cl_n.

$$\operatorname{SiH}_{m} + \operatorname{SiH}_{4-n}\operatorname{Cl}_{n} \to \operatorname{SiH}_{m-n}\operatorname{Cl}_{n} + \operatorname{SiH}_{4}$$
(2)

Previous studies have used the bond additivity method^{4,5} to estimate the ΔH_f° of SiH_mCl_n at the MP4/6-31G(d,p) level of theory. Cast into the form of an isodesmic reaction, the bond additivity method uses the following reaction to compute the heat of formation:

$$\frac{4-m-n}{4}\operatorname{Si} + \frac{m}{4}\operatorname{Si} H_4 + \frac{n}{4}\operatorname{Si} Cl_4 \to \operatorname{Si} H_m Cl_n \qquad (3)$$

This assumes that the corrections for a given bond are independent of the number and nature of the other substituents. There is some evidence that a variety of properties, including the energy, are not linear with the number of halogen substituents.⁶ Since reliable values for the ΔH_f° of SiH_{4-n}Cl_n can be determined from (1), reaction 3 can be modified to keep the number of chlorines bonded to a silicon the same in reactants and products:

$$\frac{4-m-n}{4}\operatorname{Si} + \frac{m}{4}\operatorname{SiH}_{4-n}\operatorname{Cl}_n \to \operatorname{SiH}_m\operatorname{Cl}_n + \frac{4-m-n}{4}\operatorname{SiH}_4$$
(4)

Although reactions 3 and 4 are isodesmic, they are not isogyric (i.e. reactants and products do not have the same number of unpaired electrons). This can be remedied by adding the

TABLE IV: Isodesmic Reactions^a

	6-31G(d.p)	6-31+G(2df,p)			
reaction	MP2	MP2	MP4	G-2	expt ^b
$1/2SiH_2 + 1/2SiCl_2 \rightarrow SiHCl$	1.73	2.05	1.98	1.80	
$2/_{3}SiH_{3} + 1/_{3}SiCl_{3} \rightarrow SiH_{2}Cl$	1.32	1.47	1.56		
$\frac{1}{3}$ SiH ₃ + $\frac{2}{3}$ SiCl ₃ \rightarrow SiHCl ₂	0.70	0.77	0.85		
$^{3}/_{4}SiH_{4} + ^{1}/_{4}SiCl_{4} \rightarrow SiH_{3}Cl$	1.15	1.31	1.42		-0.5
$\frac{1}{2}SiH_4 + \frac{1}{2}SiCl_4 \rightarrow SiH_2Cl_2$	0.63	0.73	0.86		-1.5
$\frac{1}{4}$ SiH ₄ + $\frac{3}{4}$ SiCl ₄ \rightarrow SiHCl ₃	-0.15	-0.19	-0.0 9		-1.9
$SiH + SiH_3Cl \rightarrow SiCl + SiH_4$	-12.75	-12.71	-12.87	-12.54	-1.0
$SiH_2 + SiH_3Cl \rightarrow SiHCl + SiH_4$	-10.20	-10.19	-10.18	-9.77	
$SiH_2 + SiH_2Cl_2 \rightarrow SiCl_2 + SiH_4$	-22.18	-22.59	-22.35	-21.14	-21.0
$SiH_3 + SiH_3Cl \rightarrow SiH_2Cl + SiH_4$	0.66	0.51	0.42	0.25	
$SiH_3 + SiH_2Cl_2 \rightarrow SiHCl_2 + SiH_4$	1.03	0.73	0.56	0.39	
$SiH_3 + SiHCl_3 \rightarrow SiCl_3 + SiH_4$	1.60	1.22	0.94		-1.2
$^{3}/_{4}Si + ^{1}/_{4}H_{2} + SiH_{3}Cl \rightarrow SiCl + ^{1}/_{2}H + ^{3}/_{4}SiH_{4}$	20.70	19.92	19.73	19.73	31.4
$\frac{1}{2}$ Si + $\frac{1}{2}$ H ₂ + SiH ₃ Cl \rightarrow SiHCl + H + $\frac{1}{2}$ SiH ₄	49.51	48.08	48.49	48.86	
$\frac{1}{2}$ Si + $\frac{1}{2}$ H ₂ + SiH ₂ Cl ₂ \rightarrow SiCl ₂ + H + $\frac{1}{2}$ SiH ₄	37.53	35.68	36.32	37.49	38.7
$1/4$ Si + $1/2$ H + SiH ₃ Cl \rightarrow SiH ₂ Cl + $1/4$ H ₂ + $1/4$ SiH ₄	-9.30	-9.49	-9.92	-10.88	
$\frac{1}{4}$ Si + $\frac{1}{2}$ H + SiH ₂ Cl ₂ \rightarrow SiHCl ₂ + $\frac{1}{4}$ H ₂ + $\frac{1}{4}$ SiH ₄	-8.92	-9.27	-9.78	-10.74	
$^{1}/_{4}Si + ^{1}/_{2}H + SiHCl_{3} \rightarrow SiCl_{3} + ^{1}/_{4}H_{2} + ^{1}/_{4}SiH_{4}$	-8.35	-8.78	-9.40		-8.7

^a Calculated enthalpy differences (298 K, 1 atm) in kilocalories per mole. ^b Using the experimental heats of formation listed in Table V (first entry is used in cases where there is more than one value).

TABLE V:	Heats of	Formation	and	Entrop	oies"
----------	----------	-----------	-----	--------	-------

molecule	$expt \Delta H_f^{o}_{298}$	present calc $\Delta H_{\rm f}^{\circ}_{298}$	previous calc $\Delta H_1^{\circ}_{298}$	calc S298
SiH	89.6 ± 1.2^{b}		91.7,'91.0,'89.9,*87.8'	46.0
SiCl	46 ± 5,° 47.4 ● 1.6 ^d	36.5	37.9, ¹ 37.8, ¹ 36.6 ^m	55.6
SiH ₂	$65.5 \pm 1.0^{\circ}$		68.1, ⁱ 64.8, ^j 65.7, ^k 62.4 ⁱ	50.9
SiHCl		15.0	17.0,115.8	59.9
SiCl ₂	-40.3 ± 0.8 , ^d $-39.4 \oplus 3.4$ ^c	-38.6	$-37.6, i - 36.2, j - 38.9^{m}$	68.5
SiH ₃	47.9 ± 0.6^{d}		47.8, 47.4, 47.7, 46.7	53.9
SiH ₂ Cl		8.0	7.8, 7.9	62.4
SiHCl ₂		-34.0	-34.3, -34.0	70.5
SiCl ₃	$-80.1 \pm 2.2^{\prime}$	-75.8	-76.5, ⁱ -76.4, ^j -76.4 ^m	75.9
SiH ₄	8.2 🛥 0.55		6.0 ⁱ	53.7
SiH ₃ Cl	$-33.9 \pm 2.5^{\mu}$	-32.0	-32.2,'-32.0'	61.9
SiH ₂ Cl ₂	76.6 9 3,#75.3 ± 2 ^h	-74.2	-74.574.4	69.6
SiHCl ₃	$-118.6 \pm 1.5, -119.3 \pm 1.5^{h}$	-116.8	$-117.0^{1}_{,i}$ $-117.1^{j}_{,i}$	76.8
SiCl	-158.4 ± 1.3^{s}			83.9

^a 298 K, 1 atm; enthalpies in kilocalories per mole, entropies in calories per mole Kelvin. ^b Reference 26. ^c Reference 13. ^d References 9, and 10a. ^e Reference 27. ^f References 2a, and 11. ^e Reference 9. ^h Reference 10b. ⁱ Reference 5. ^f Reference 4. ^k Reference 25. ^f Reference 18. ^m Reference 7.

appropriate multiple of the reaction $H_2 \rightarrow 2H$ to reaction 4 to balance the number of unpaired spins:

$${}^{3}_{4}\text{Si} + {}^{1}_{4}\text{H}_{2} + \text{SiH}_{3}\text{Cl} \rightarrow \text{SiCl} + {}^{1}_{2}\text{H} + {}^{3}_{4}\text{SiH}_{4}$$

$${}^{1}_{2}\text{Si} + {}^{1}_{2}\text{H}_{2} + \text{SiH}_{4-n}\text{Cl}_{n} \rightarrow \text{SiH}_{2-n}\text{Cl}_{n} + \text{H} + {}^{1}_{2}\text{SiH}_{4}$$

$${}^{1}_{4}\text{Si} + {}^{1}_{2}\text{H} + \text{SiH}_{4-n}\text{Cl}_{n} \rightarrow \text{SiH}_{3-n}\text{Cl}_{n} + {}^{1}_{4}\text{H}_{2} + {}^{1}_{4}\text{SiH}_{4}$$
(5)

Although not as simple as reaction 2, reaction 5 has the advantage that the ΔH_f° for SiH_mCl_n can be computed without reference to the ΔH_f° for SiH, SiH₂, and SiH₃.

For the reactions collected in Table IV, there is generally very good agreement among all of the levels of theory listed (including MP2/6-31G(d,p)). The average absolute difference between the MP4/6-31G(2df,p) and G-2 energies is 0.5 kcal/mol; the largest difference is 1.2 kcal/mol for SiCl₂. This level of agreement illustrates the capabilities of carefully selected isodesmic and isogyric reactions, and validates earlier calculations of the heats of formation of SiH_mF_n based on similar isodesmic reactions.²⁵

The final estimates of the ΔH_f° for SiH_{4-n}Cl_n, listed in Table V, are obtained from reaction 1 using the MP4/6-31+G(2df,p) energies; the ΔH_f° for the remaining SiH_mCl_n are calculated as an average of the values obtained from reactions 2 and 5 using the G-2 energies for SiCl, SiHCl, SiCl₂, SiH₂Cl, and SiHCl₂ and the MP4/6-31+G(2df,p) energies for SiCl₃. The estimated error in the heats of formation is ±1.5 kcal/mol. The ΔH_f° for SiCl_n are within 0.6 kcal/mol of the values obtained from isodesmic reactions at the MP4/6-31G(d,p) level.⁷ The values for SiH_{4-n}Cl_n

and $SiH_{3-n}Cl_n$ are within 0.7 kcal/mol of the BAC-MP4 calculations.^{4,5} The differences for SiCl₂, SiHCl, and SiCl are somewhat larger but are still inside the ±3 kcal/mol error estimated for BAC-MP4.

Most of the present calculations are within the error bounds of the experimental heats of formation, with the exception of SiCl and SiCl₃. In a kinetic iodination study, Walsh^{2b,11} measured $D_0(Cl_3Si-H) = 91.3 \pm 1.5 \text{ kcal/mol and obtained } \Delta H_f^{\circ}_{298}(SiCl_3) = -80.1 \pm 2.2 \text{ kcal/mol using } \Delta H_f^{\circ}_{298}(SiHCl_3) = -119.3 \pm 1.6 \text{ kcal/mol}$. The present calculations give $D_0(Cl_3Si-H) = 93.1 \text{ kcal/mol}$ and $\Delta H_f^{\circ}_{298}(SiHCl_3) = -116.8 \text{ kcal/mol}$. Thus, the apparent discrepancy for SiCl₃ is due to the value used for the heat of formation of SiHCl₃. Since isodesmic reaction 1 is quite reliable, especially at the level of theory used in the present work, the calculated heat of formation of SiHCl₃ can be combined with the measured $D_0(Cl_3Si-H)$ to yield $\Delta H_f^{\circ}_{298}(SiCl_3) = -77.6 \pm 2.5 \text{ kcal/mol}$.

The experimental $\Delta H_f^{\circ}_{298}$ for SiCl has been questioned previously.^{2-5,7} Mass spectral/effusion studies give 47.4 ± 1.6 kcal/mol;^{10a} analysis of spectroscopic data yields 32, 33, and 43 kcal/mol;¹² thresholds for Si⁺ + SiCl₄ \rightarrow SiCl + SiCl₃⁺ give 46 ± 5 kcal/mol.¹³ On the basis of the available data, Walsh^{2b} recommended 37 ± 10 kcal/mol "with caution but not with great confidence". Theoretical calculations consistently predict a heat of formation in the range of 36–38 kcal/mol.³ Until an accurate value for heat of formation for SiCl can be determined experimentally, the present theoretical estimate, $\Delta H_f^{\circ}_{298}(SiCl) = 36.5$ ± 1.5 kcal/mol, is recommended. Heats of Formation of SiH_mCl_n

Acknowledgment. We wish to thank the Pittsburgh Supercomputer Center for generous allocations of computer time. This work was supported by a grant from the National Science Foundation (CHE 90-20398).

References and Notes

(1) For some leading references, see: (a) Jasinski, J. M.; Gates, S. M. Acc. Chem. Res. 1991, 24, 9. (b) Jasinski, J. M.; Meyerson, B. S.; Scott, B. A. Annu. Rev. Phys. Chem. 1987, 38, 109. (c) Jensen, K. F. Adv. Chem. Ser. 1989, 221, 199.

(2) (a) Walsh, R. In *The Chemistry of Organic Silicon Compounds*; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1988. (b) Walsh, R. J. Chem. Soc., Faraday Trans 1 1983, 79, 2233. (c) Doncaster, A. M.; Walsh, R. J. Chem. Soc., Faraday Trans 2 1986, 82, 707. (d) Walsh, R. Acc. Chem.

Res. 1981, 14, 246. (3) Gordon, M. S.; Francisco, J. S.; Schlegel, H. B. Adv. Silicon Chem. 1993, 2, 137.

(4) (a) Ho, P.; Melius, C. F. J. Phys. Chem. 1990, 94, 5120. (b) Allendorf,
M. D.; Melius, C. F. J. Phys. Chem. 1993, 97, 720.
(5) Ho, P.; Coltrin, M. E.; Binkley, J. S.; Melius, C. F. J. Phys. Chem. 1985, 89, 4647; 1986, 90, 3399.

(6) Ignacio, E. W.; Schlegel, H. B. J. Phys. Chem. 1992, 96, 5830.
(7) Darling, C. L.; Schlegel, H. B. J. Phys. Chem. 1993, 97, 1368.
(8) Su, M.-D.; Schlegel, H. B. J. Phys. Chem., in press.
(9) Chase, M. W.; Davies, C. A.; Downey, J. R.; Frurip, D. J.; McDonald, R. A.; Szverud, A. N. JANAF Thermochemical Tables, 3rd ed. J. Phys. Chem. Ref. Data 1985, 14.

(10) (a) Farber, M.; Srivastava, R. D. J. Chem. Thermodyn. 1979, 11, 939.
 (b) Farber, M.; Srivastava, R. D. Chem. Phys. Lett. 1979, 60, 216.

(11) Walsh, R.; Wells, J. M. J. Chem. Soc., Faraday Trans 1 1976, 72, 1212.

(12) (a) Gaydon, A. G. Dissociation Energies and Spectra of Diatomic Molecules; Chapma and Hall: London, 1969. (b) Kuzyakov, Y. Y. Vestn. Mosk. Univ. 1969, 23, 21. (c) Singhal, S. R.; Verma, R. D. Can. J. Phys. 1971, 49, 407.

(13) (a) Weber, M. E.; Armentrout, P. B. J. Phys. Chem. 1989, 93, 1596. (b) Fisher, E. R.; Armentrout, P. B. J. Phys. Chem. 1991, 95, 4765

(14) Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M.

A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart,

J. J. P.; Pople, J. A. GAUSSIAN 92; Gaussian, Inc.: Pittsburgh, PA, 1992. (15) (a) Hariharan, P. C.; Pople, J. A. Theor. Chem. Acta 1973, 28, 213,

and references cited therein. (b) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654. (c) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265, and references cited therein. The 6-31G(d) and 6-31G(d,p) basis sets are the same as 6-31G* and 6-31G**, respectively.

(16) (a) Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S. Int. J. Quantum Chem. Symp. 1979, 13, 225. (b) Trucks, G. W.; Frisch, M. J.; Head-Gordon, M.; Andres, J. L.; Schlegel, H. B.; Salter, E. A. J. Chem.

 Phys., submitted for publication.
 (17) (a) Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618. (b) For a review, see: Bartlett, R. J. Annu. Rev. Phys. Chem. 1981, 32, 359.

(18) (a) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J.

Chem. Phys. 1991, 94, 7221. (b) Curtiss, L. A.; Carpenter, J. E.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 1992, 96, 9030.

(19) Milligan, D. E.; Jacox, M. E. J. Chem. Phys. 1970, 52, 2594.

(20) Fredin, L.; Hauge, R. H.; Kafafi, Z. H.; Margrave, J. L. J. Chem. Phys. 1985, 82, 3542.

(21) Yamada, C.; Hirota, E. Phys. Rev. Lett. 1986, 56, 923.

(22) Johnson, R. D.; Tsai, B. P.; Hudgens, J. W. J. Chem. Phys. 1989, 91, 3340.

(23) Abouaf-Marguin, L.; Lloret, A.; Oria, M.; Seoudi, B. Chem. Phys. 1988, 127, 385.

(24) Allen, W. D.; Schaefer, H. F., III. Chem. Phys. 1986, 108, 243.

(25) Ignacio, E. W.; Schlegel, H. B. J. Chem. Phys. 1990, 92, 5404.

(26) Berkowitz, J.; Green, J. P.; Cho, H.; Ruscic, B. J. Chem. Phys. 1987, 86, 1235.

- (27) Moffat, H. F.; Jensen, K. F.; Carr, R. W. J. Phys. Chem. 1991, 95, 145
 - (28) Pople, J. A.; Curtiss, L. A. J. Phys. Chem. 1987, 91, 155, 3637.