An ab Initio Study of Hydrogen Atom Abstractions from Substituted Methanes by Substituted Methyl Radicals

Gary L. Fox and H. B. Schlegel*
Department of Chemistry, Wayne State University, Detroit, Michigan 48202 (Received: July 16, 1991)

Abstract

The reactions $\mathrm{CH}_{3} \mathrm{X}+{ }^{\circ} \mathrm{CH}_{2} \mathrm{Y} \rightarrow{ }^{\circ} \mathrm{CH}_{2} \mathrm{X}+\mathrm{CH}_{3} \mathrm{Y}\left(\mathrm{X}, \mathrm{Y}=\mathrm{H}, \mathrm{F}, \mathrm{Cl}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{CN}\right)$ have been studied using ab initio molecular orbital theory at the UHF $/ 3-21 \mathrm{G}$ and UHF $/ 6-31 \mathrm{G}^{* *}$ levels. The Marcus relation can be used to predict the barrier heights of the cross reactions based on the information from the identity reactions and the changes in energy for the cross reactions. This method predicts the barrier heights accurately with two exceptions ($\mathrm{X}=\mathrm{CN}$ and $\mathrm{Y}=\mathrm{NH}_{2}$ or OH); the average absolute error is $0.98 \mathrm{kcal} / \mathrm{mol}$ when compared to the ab initio barrier heights. Charge-transfer states have been found to play a significant role in the reactions where $\mathrm{X}=\mathrm{CN}$ and $\mathrm{Y}=\mathrm{NH}_{2}$ or OH and a minor role in a few other reactions.

Introduction

Theories for predicting reaction rates and barriers are extremely useful tools of both experimental and theoretical chemists. ${ }^{1}$ These theories can be used as predictive tools when experimental results are lacking or as supporting evidence for the mechanisms of reactions. One such approach is Marcus theory ${ }^{2}$ which was developed to describe electron-transfer processes and has been expanded to include proton transfer ${ }^{3}$ and methyl group transfer ${ }^{4}$ reactions. Marcus theory expresses the barrier for the cross reactions ($\Delta E^{\ddagger}{ }_{\mathrm{XY}}$) in terms of an intrinsic barrier, $\Delta E_{\mathrm{I}}^{\ddagger}$ and the change in energy of the reaction, ΔE_{rxn}.

$$
\begin{equation*}
\Delta E_{\mathrm{XY}}^{\ddagger}=1 / 2 \Delta E_{\mathrm{rxn}}+\Delta E_{\mathrm{l}}^{\ddagger}+\frac{\left(\Delta E_{\mathrm{rxn}}\right)^{2}}{16 \Delta E_{\mathrm{I}}^{*}} \tag{1}
\end{equation*}
$$

The intrinsic barrier, ΔE^{*}, is often estimated by the arithmetic average of the symmetric reaction barriers ($\Delta E_{1}^{*}=1 / 2\left[\Delta E^{*} \mathrm{xx}_{x}\right.$ $\left.+\Delta E^{\ddagger}{ }_{\mathrm{YY}}\right]$). Thus, if intrinsic barriers are available for a few symmetric reactions, the barrier heights for a wide variety of reactions can be predicted from the heats of reaction. If Marcus theory can reproduce the barrier heights for hydrogen-abstraction reactions, it will help unify and simplify the treatment of barrier heights and substituent effects for this class of reactions. It may

[^0]also be possible to extend Marcus theory to other classes of abstraction reactions.

It is noteworthy to point out that all of the information needed to predict the barrier heights via Marcus theory can be calculated easily. The geometries and total energies of the reactants and products are obtained by simple optimizations to minima on the potential energy surfaces; the symmetric transition states ($\mathrm{X}=$ Y) needed to compute the intrinsic barriers can be located by minimization within the symmetry constraints of the transition states. The energy differences, $\Delta E_{\mathrm{rx}}, \Delta E_{\mathrm{XX}}{ }_{\mathrm{XX}}$, and $\Delta E^{*}{ }_{\mathrm{YY}}$ can then be calculated directly from these total energies.

In the present study we have tested the barrier heights predicted via Marcus theory against the ab initio calculated barriers for the following radical abstraction reactions:

$$
\begin{gather*}
\mathrm{CH}_{3} \mathrm{X}+{ }^{\cdot} \mathrm{CH}_{2} \mathrm{Y} \rightarrow{ }^{\bullet} \mathrm{CH}_{2} \mathrm{X}+\mathrm{CH}_{3} \mathrm{Y} \\
\left(\mathrm{X}, \mathrm{Y}=\mathrm{H}, \mathrm{~F}, \mathrm{Cl}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{CN}\right) \tag{2}
\end{gather*}
$$

It is our immediate goal to test the utility of this methodology for this class of reactions and not to reproduce the experimental barriers of reaction. Calculations accurate enough to compare with experimental rates would require a larger basis set, the inclusion of electron correlation corrections, and a proper treatment of the reaction dynamics including tunneling, which is known to be significant for these heavy-light-heavy reactions. ${ }^{5}$

Method

Many of the geometries of the reactants and products were obtained from the Quantum Chemistry Archive, ${ }^{6}$ and the remaining geometries of the reactants, products, and transition states were optimized using analytic gradient techniques ${ }^{7}$ at the HF/ 3-21G and HF/6-31G** levels of theory (UHF for open shell and RHF for closed shell molecules) using the GAUSSIAN 90 series of programs. ${ }^{8}$ The stationary points on the potential energy surfaces were characterized by the analytic calculation of vibrational frequencies. ${ }^{9}$ All of the reactants and products have only real frequencies; each transition state has exactly one imaginary frequency corresponding to the breaking of the reactant carbon-

[^1]TABLE I: Total Energies, $\boldsymbol{S}^{\mathbf{2}}$ Values, and Zero Point Energies for the Transition States

X, Y	UHF/3-21G			UHF/6-31G**		
	$E(\mathrm{au})$	S^{2}	$\underset{(\mathrm{kcal} / \mathrm{mol})}{\mathrm{ZPE}}$	$E(\mathrm{au})$	S^{2}	$\begin{gathered} \mathrm{ZPE} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$
H, H	-79.276139	0.793	49.97	-79.7187775	0.791	49.10
F, F	-275.889676	0.793	41.84	-277.3983600	0.792	41.58
Cl, Cl	-992.701 862	0.793	39.61	-997.5156038	0.791	39.58
OH, OH	-228.123005	0.793	56.67	-229.4129932	0.792	57.27
$\mathrm{NH}_{2}, \mathrm{NH}_{2}$	-188.699 352	0.792	74.38	-189.7711967	0.793	74.95
CN, CN	-261.718100	0.972	50.37	-263.1884733	0.901	49.38
Cl, F	-634.296337	0.793	40.77	-637.4573124	0.792	40.63
$\mathrm{CN}, \mathrm{NH}_{2}{ }^{\text {a }}$	-225.214264	0.868	62.54	-226.4849786	0.837	62.36
$\mathrm{CN}, \mathrm{NH}_{2}{ }^{\text {b }}$	-225.214 264	0.868	62.54	-226.4849783	0.837	62.35
F, H	-177.583005	0.793	45.92	-178.5586696	0.791	45.40
NH_{2}, OH	-208.415410	0.792	66.16	-209.5922312	0.792	66.14
Cl, H	-535.989 995	0.792	44.85	-538.6176755	0.791	44.40
OH, Cl	-610.413846	0.792	58.65	-613.465 2414	0.791	48.39
$\mathrm{CN}, \mathrm{OH}^{\text {a }}$	-244.926482	0.862	54.21	-246.308 3666	0.833	54.27
$\mathrm{CN}, \mathrm{OH}^{\text {b }}$	-244.922851	0.871	53.50	-246.3035272	0.837	53.24
OH, F	-252.007079	0.793	49.22	-253.406 1009	0.792	49.43
$\mathrm{NH}_{2}, \mathrm{Cl}$	-590.704 158	0.791	57.00	-593.6454038	0.791	57.31
OH, H	-153.698894	0.793	53.29	-154.565 5096	0.791	53.23
$\mathrm{NH}_{2}, \mathrm{~F}$	-232.298439	0.792	58.65	-233.585 3260	0.792	58.26
CN, Cl	-627.209610	0.868	45.02	-630.3524318	0.839	44.53
CN, F	-268.804665	0.872	46.20	-270.2949348	0.838	45.65
NH_{2}, H	-133.988 297	0.792	62.22	-134.7454939	0.792	62.07
CN, H	-170.498505	0.864	50.29	-171.4555371	0.833	49.37

TABLE II: Partial Summary of the Structures of the UHF/6-31G** Transition States ${ }^{a, b}$

X, Y	r_{1}	r_{2}	r_{3}	r_{4}	r_{5}	r_{6}	a	b	c	d	e	Ω_{1}	Ω_{2}
H, H	1.3560		1.0804				180.00	105.56				120.00	
F, F	1.3581		1.3512		1.0800		180.00	106.88		106.54		118.91	
Cl, Cl	1.3456		1.7577		1.0766		180.00	107.53		105.85		119.10	
OH, OH	1.3501		1.3854		1.0843		180.00	104.29		104.86		120.55	
$\mathrm{NH}_{2}, \mathrm{NH}_{2}$	1.3813		1.4297		1.0828		180.00	113.32		104.34		121.80	
CN, CN	1.3590		1.4393		1.0785		180.00	106.88		103.30		120.60	
Cl, F	1.3570	1.3453	1.7617	1.3485	1.0767	1.0798	183.58	107.43	106.76	106.23	106.24	118.99	118.91
$\mathrm{CN}, \mathrm{NH}_{2}{ }^{\text {c }}$	1.4087	1.3375	1.4379	1.4140	1.0788	1.0812	178.21	107.59	113.52	103.84	102.79	120.61	121.97
$\mathrm{CN}, \mathrm{NH}_{2}{ }^{\text {d }}$	1.4086	1.3376	1.4379	1.4141	1.0788	1.0812	178.29	107.58	113.54	103.84	102.79	120.60	121.98
F, H	1.3523	1.3588	1.3514	1.0806	1.0805	1.0800	185.86	106.83	105.99	106.89	105.04	118.86	120.21
$\mathrm{NH}_{2}, \mathrm{OH}$	1.3360	1.3990	1.4271	1.3857	1.0817	1.0852	174.45	113.83	103.32	103.66	105.60	122.02	120.29
Cl, H	1.3539	1.3474	1.7610	1.0801	1.0769	1.0797	178.82	107.87	105.72	106.42	104.81	119.01	120.20
OH, Cl	1.3371	1.3574	1.3822	1.7632	1.0841	1.0764	185.53	103.84	107.73	104.68	106.10	120.51	119.04
$\mathrm{CN}, \mathrm{OH}^{\text {e }}$	1.3859	1.3467	1.4394	1.3670			165.98	103.80	107.61				
$\mathrm{CN}, \mathrm{OH}^{d}$	1.3506	1.3553	1.4410	1.3785	1.0785	1.0835	171.28	107.85	103.12	103.66	104.22	120.77	120.41
OH, F	1.3503	1.3575	1.3845	1.3524	1.0843	1.0800	184.37	103.46	107.62	105.18	106.24	120.38	119.09
$\mathrm{NH}_{2}, \mathrm{Cl}$	1.3207	1.4149	1.4214	1.7635	1.0817	1.0771	179.28	113.81	107.45	103.41	106.62	122.01	118.82
OH, H	1.3471	1.3595	1.3843	1.0807	1.0798	1.0849	185.69	106.07	104.31	104.92	105.17	120.26	120.54
$\mathrm{NH}_{2}, \mathrm{~F}$	1.3354	1.4077	1.4251	1.3541	1.0819	1.0809	174.21	114.09	105.94	103.58	107.42	122.06	118.55
CN, Cl	1.3424	1.3626	1.4413	1.7527	1.0788	1.0765	177.57	107.49	107.23	103.75	105.26	120.66	119.15
CN, F	1.3500	1.3625	1.4411	1.3446	1.0788	1.0792	171.70	107.72	105.63	103.87	105.98	120.71	118.66
$\mathrm{NH}_{2}, \mathrm{H}$	1.3316	1.4091	1.4272	1.0804	1.0823	1.0807	177.38	113.16	105.64	104.29	105.43	121.80	120.02
CN, H	1.3478	1.3649	1.4424	1.0795	1.0789	1.0792	180.40	107.65	105.09	104.40	104.33	120.54	120.17

${ }^{a}$ The geometrical parameters are defined in Figure 1. ${ }^{b}$ Bond lengths in angstroms and angles in degrees. ${ }^{c}$ For the C_{1} symmetry structures the average of the geometrical parameters are given. ${ }^{d} C_{s}$ symmetry structure. ${ }^{\text {e }}$ The complete structure of this transition state is given in Figure 3.
hydrogen bond and the formation of the product carbon-hydrogen bond. Total atomic charges were obtained from a Mulliken population analysis at the UHF/6-31G** level.

Discussion

The total energies, zero point vibrational energies, and S^{2} values are collected in Table I; optimized geometries of the transition states are summarized in Figure 1 and Table II. All data are tabulated with the symmetric reactions listed first followed by the cross reactions in the order of increasing exothermicity (as calculated at the HF/6-31G** level); all discussions will pertain to the reactions progressing in the exothermic direction. The symmetric transition states ($\mathrm{X}=\mathrm{Y}$) were obtained by optimizations constrained to $C_{2 h}$ symmetry, except for $\mathrm{X}=\mathrm{H}$, which is of $D_{3 d}$ symmetry. Other rotamers of the transition states may exist but are expected to be of very similar energy. All of the symmetric transition states have the odd electron in the anti-

Figure 1. Definitions of the geometrical parameters of the transition states. The dihedral angles Ω_{1} and Ω_{2} are defined as the angles of H_{1} and H_{2} to the $\mathrm{X}-\mathrm{C}-\mathrm{H}-\mathrm{C}-\mathrm{Y}$ plane.
symmetric combination of the σ bonds being formed and broken (this corresponds to the ${ }^{2} B_{u}$ electronic state in the $C_{2 h}$ point group and the ${ }^{2} \mathrm{~A}_{2 u}$ state ${ }^{10}$ in the $D_{3 d}$ point group). Comparison of the

Figure 2. (a) Plot of the UHF/6-31G** barrier height of the reactions versus the change in energy of reaction (the numbers correspond to the reaction numbers listed in Table III). (b) Plot of the barrier heights predicted by Marcus theory versus the UHF/6-31G** barrier heights.
geometries of the different symmetric transition states shows that the carbon-hydrogen bonds being formed/broken are all $1.36 \pm$ $0.02 \AA$. The symmetric transition states have barriers ranging from 29 to $35 \mathrm{kcal} / \mathrm{mol}$. The imaginary frequencies that correspond to the reaction coordinate are in the range of $2500 i-2700 i$ wavenumbers. The lowest energy molecular vibrations have frequencies of approximately 20 wavenumbers for the internal rotation mode, indicating the surface is very flat in the region of the transition state.
For each of the 15 cases, the electronic structure of the cross transition state ($\mathrm{X} \neq \mathrm{Y}$) is characterized by the odd electron in an orbital corresponding to the out of phase combination of the σ orbitals for the bonds being formed/broken. All of the cross transition states except $\mathrm{X}=\mathrm{CN}$ and $\mathrm{Y}=\mathrm{NH}_{2}$ or OH are of C_{s} point group symmetry. For the $\mathrm{X}=\mathrm{CN}$ and $\mathrm{Y}=\mathrm{NH}_{2}$ or OH , the C_{s} structures are a maximum with respect to two degrees of freedom; further optimization leads to C_{1} symmetry transition structures with a single imaginary frequency. The $X=C N$ and $\mathrm{Y}=\mathrm{NH}_{2}$ transition state breaks the planar symmetry by only 0.1°; however, the $\mathrm{X}=\mathrm{CN}$ and $\mathrm{Y}=\mathrm{OH}$ transition state adopts a conformation with the OH and CN groups gauche. Details of
(10) At the UHF/3-21G level the $X=Y=H$ transition state is in the ${ }^{2} A_{2 u}$ state and at the UHF/6-31G** level the wave function has broken symmetry (lower symmetry than the nuclear framework).

Figure 3. UHF/6-31G** structure of $X=C N$ and $Y=O H$ transition state. Bond lengths are in angstroms and angles in degrees. The dihedral angles in degrees are $\mathrm{O}-\mathrm{C}_{1}-\mathrm{H}_{1}-\mathrm{C}_{2}=19.1, \mathrm{C}_{1}-\mathrm{H}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}=24.4, \mathrm{H}_{1}-$ $\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{N}=2.9, \mathrm{H}_{3}-\mathrm{C}_{1}-\mathrm{H}_{1}-\mathrm{C}_{2}=136.9, \mathrm{H}_{4}-\mathrm{C}_{1}-\mathrm{H}_{1}-\mathrm{C}_{2}=-103.7, \mathrm{H}_{5}-$ $\mathrm{C}_{2}-\mathrm{H}_{1}-\mathrm{C}_{1}=-95.1, \mathrm{H}_{6}-\mathrm{C}_{2}-\mathrm{H}_{1}-\mathrm{C}_{1}=144.4, \mathrm{H}_{7}-\mathrm{O}-\mathrm{C}_{1}-\mathrm{H}_{1}=-67.8$.
the geometry of the $\mathrm{HOCH}_{2}-\mathrm{H}-\mathrm{CH}_{2} \mathrm{CN}$ transition state are given in Figure 3. Inspection of the geometries of the cross transition states, listed in Table II and depicted in Figure 1, shows that these reactions do not follow Hammond's postulate rigorously; however, there is a general tendency for the breaking carbon-hydrogen bond to be shorter than the forming bond when the reaction proceeds in the exothermic direction. The variation in the forming/breaking carbon-hydrogen bonds is slightly higher than the symmetric reactions $(R(\mathrm{C}-\mathrm{H})=1.36 \pm 0.05 \AA$). The changes in the bond lengths are so small that no useful trends can be extracted. The range of the UHF/6-31G** barrier heights for the cross reactions is $25-31 \mathrm{kcal} / \mathrm{mol}$. The imaginary frequencies that correspond to the reaction coordinate are between $2400 i$ and $2700 i$ wavenumbers. These transition states also have a very low frequency molecular vibration ($2-32$ wavenumbers) corresponding to a very flat potential energy surface with respect to internal rotation in the transition state.
The UHF/3-21G, UHF/6-31G**, and the Marcus barrier heights are reported in Table III. As can be seen in Figure 2a there is a slight trend for the reaction barrier to decrease as the exothermicity increases; however, the scatter in the data prevents this trend from being useful in predicting the barrier heights. By contrast Figure 2b shows that the agreement between the Marcus barrier heights and the ab initio barrier heights is very good, except for the cases of $\mathrm{X}=\mathrm{CN}$ and $\mathrm{Y}=\mathrm{NH}_{2}$ or OH . Even in these cases the errors are only 3.23 and $4.82 \mathrm{kcal} / \mathrm{mol}$ too high. The average error for the Marcus barriers is $1.42 \mathrm{kcal} / \mathrm{mol}$ at the HF/3-21G level, $0.98 \mathrm{kcal} / \mathrm{mol}$ at the $\mathrm{HF} / 6.31 \mathrm{G}^{* *}$ level using all of the data, and $0.52 \mathrm{kcal} / \mathrm{mol}$ if the points for $\mathrm{X}=\mathrm{CN}$ and $\mathrm{Y}=\mathrm{NH}_{2}$ or OH are ommitted. At least-squares fit of a straight line to the data in Figure 2b yields a correlation coefficient of 0.85 .

There are two factors that contribute to the difference between Marcus theory and ab initio barrier heights: changes in geometry and changes in electronic structure. The largest errors are for the transition states that break the planar symmetry, $\mathrm{X}=\mathrm{CN}$ and $\mathrm{Y}=\mathrm{OH}$ or NH_{2}. Both of these planar structures are sec-ond-order saddle points (each has two imaginary frequencies) that are 3.03 and $0.0002 \mathrm{kcal} / \mathrm{mol}$ higher in energy than the real transition states. This explains most of the discrepancy for the $\mathrm{X}=\mathrm{CN}, \mathrm{Y}=\mathrm{OH}$ transition state; however, the origin of the forces that cause the change in geometry require further investigation.

An understanding of the electronic structure factors that influence the barriers can be obtained from state correlation diagrams and the curve-crossing model. These approaches have been used quite effectively to analyze and interpret barrier heights for a variety of chemical reactions. ${ }^{11,12}$ Shaik ${ }^{13}$ has pointed out that the electronic structure of transition states can include significantly greater contributions from higher lying electronic states than the reactants or products. Near the transition state the energy surfaces

[^2]TABLE III: Changes in Energy of Reaction ab Initio Barrier Heights, Marcus Predicted Barrier Heights (All in kcal/mol), and Group Charge Differences

	X, Y	UHF/3-21G				UHF/6-31G**				
		$\Delta E_{\text {rxn }}$	ΔE^{t}	ΔE^{\ddagger} Marcus	error	ΔE_{rxn}	ΔE^{\ddagger}	ΔE^{\ddagger} Marcus	error	$q_{x}-q_{y}{ }^{a}$
1	H, H		27.20				29.73			
2	F, F		28.15				29.77			
3	Cl, Cl		25.18				29.50			
4	OH, OH		42.02				33.16			
5	$\mathrm{NH}_{2}, \mathrm{NH}_{2}$		28.46				30.50			
6	CN, CN		30.91				34.26			
7	Cl, F	4.84	28.73	29.14	0.41	-0.30	29.28	29.49	0.21	-0.083
8	$\mathrm{CN}, \mathrm{NH}_{2}{ }^{\text {b }}$	-1.48	25.47	28.95	3.48	-1.25	28.53	31.76	3.23	-0.235
	$\mathbf{C N}, \mathrm{NH}_{2}{ }^{\text {c }}$	-1.48	25.47	28.95	3.48	-1.25	28.53	31.76	3.23	-0.235
9	F, H	-3.14	26.04	26.12	0.08	-2.25	28.57	28.64	0.07	-0.002
10	$\mathrm{NH}_{2}, \mathrm{OH}$	7.87	36.52	39.28	2.76	-2.30	30.60	30.69	0.09	0.089
11	Cl, H	1.70	26.42	27.05	0.63	-2.55	28.04	28.36	0.32	-0.084
12	OH, Cl	-19.39	23.02	24.60	1.58	-3.51	28.98	29.60	0.62	0.072
13	$\mathrm{CN}, \mathrm{OH}^{\text {b }}$	6.39	35.93	39.72	3.79	-3.55	27.14	31.96	4.82	-0.201
	$\mathrm{CN}, \mathrm{OH}^{\text {c }}$	6.39	38.22	39.72	1.50	-3.55	30.17	31.96	1.79	-0.127
14	OH, F	-14.55	27.34	28.18	0.84	-3.81	29.29	29.59	0.30	-0.017
15	$\mathrm{NH}_{2}, \mathrm{Cl}$	-11.53	18.83	21.37	2.54	-5.81	25.84	27.17	1.33	0.166
16	OH, H	-17.69	26.19	26.33	0.14	-6.06	28.65	28.49	-0.16	-0.012
17	$\mathrm{NH}_{2}, \mathbf{F}$	-6.68	22.50	25.06	2.56	-6.11	26.74	27.16	0.42	0.082
18	CN, Cl	-13.01	21.77	21.92	0.15	-7.06	28.10	28.44	0.34	-0.059
19	CN, F	-8.16	24.96	25.59	0.63	-7.36	27.38	28.44	1.06	-0.135
20	$\mathrm{NH}_{2}, \mathrm{H}$	-9.83	22.57	23.13	0.56	-8.36	25.62	26.08	0.46	0.075
21	CN, H	-11.31	22.53	23.68	1.15	-9.61	25.99	27.37	1.38	-0.141

${ }^{a}$ The charges, $q_{x(y)}$ are defined as the sum of the Mulliken total atomic charges of the $\mathrm{CH}_{2} \mathrm{X}(\mathrm{Y})$ moieties. ${ }^{b} C_{1}$ symmetry structure. ${ }^{c} C_{s}$ symmetry structure.

TABLE IV: UHF/6-31G** Vibrational Frequencies in Wavenumbers for the Transition States

X, Y	ν_{i}	all other vibrational frequencies ${ }^{\text {a }}$
H, H	$2531 i$	41, 346 (2), 504, 760 (2), 1271, 1289, 1469 (2), 1569 (2), 1589 (2), 3210, 3212, 3338
F, F	2637 i	$23,70,204,328,556,747,1201,1212,1282,1305,1312,1350,1539,1540,1612,1628,3245,3245,3343,3345$
Cl, Cl	$2635 i$	$16,83,155,337,548,730,810,824,1129,1157,1157,1237,1514,1534,1552,1552,3248,3284,3390,3391$
OH, OH	2621i	```23,85, 132, 141, 218, 353, 552, 766, 1165, 1194, 1208, 1225, 1281, 1288, 1400, 1414, 1529, 1569, 1631, 1637, 3194, 3194, 3272, 3276, 4157, 4157```
$\mathrm{NH}_{2}, \mathrm{NH}_{2}$	2603i	$\begin{aligned} & 24,91,212,215,301,430,504,714,871,914,1049,1093,1171,1198,1238,1297,1469,1469,1563,1568,1594,1606,1805,1806 \text {, } \\ & 3218,3218,3292,3294,3754,3847,3847 \end{aligned}$
CN, CN	2697i	$\begin{aligned} & 15,69,142,341,408,409,427,460,609,766,1017,1026,1129,1163,1167,1191,1465,1495,1567,1569,2409,2415,3277,3277, \\ & 3364,3364 \end{aligned}$
Cl, F	2622i	$24,78,181,335,555,738,809,1146,1182,1225,1308,1323,1529,1545,1552,1623,3247,3283,3348,3389$
$\mathrm{CN}, \mathrm{NH}_{2}$	$2431 i$	$\begin{aligned} & 9,77,189,264,406,431,452,570,744,810,1025,1065,1120,1191,1224,1268,1459,1524,1543,1571,1602,1808,2429,3420 \text {, } \\ & 3269,3322,3352,3777,3878 \end{aligned}$
F, H	$2576 i$	32, 119, 338, 503, 625, 755, 1210, 1281, 1311, 1313, 1503, 1512, 1580, 1583, 1624, 3213, 3238, 3334, 3340, 3346
$\mathrm{NH}_{2}, \mathrm{OH}$	$2563 i$	$\begin{aligned} & 2,91,162,217,260,414,528,737,876,1067,1161,1202,1208,1283,1288,1396,1465,1549,1571,1602,1632,1806,3181,3234 \\ & 3258,3310,3760,3854,4154 \end{aligned}$
Cl, H	2566i	31, 119, $341,485,613,745,817,1150,1202,1287,1488,1496,1554,1576,1580,3216,3279,3346,3351,3383$
OH, Cl	2609i	$22,86,95,187,341,551,745,807,1143,1166,1205,1231,1284,1411,1521,1550,1559,1635,3198,3280,3285,3392,4157$
CN, OH	$2483 i$	$\begin{aligned} & 65,82,189,362,411,445,523,566,721,1019,1117,1181,1192,1248,1307,1486,1517,1542,1569,1625,2441,3214,3277,3331 \text {, } \\ & 3364,4167 \end{aligned}$
OH, F	$2628 i$	$26,80,135,212,340,554,756,1176,1207,1214,1284,1308,1319,1409,1534,1553,1619,1635,3195,3244,3275,3343,4157$
$\mathrm{NH}_{2}, \mathrm{Cl}$	$2488 i$	```10, 85, 191, 257, 417, 523,717, 805, 846, 1064, 1154, 1159, 1217,1284, 1463,1543, 1550,1558,1602, 1808, 3235, 3274, 3313, 3379, 3768, 3865```
OH, H	2572i	$17,135,143,351,502,622,764,1189,1213,1274,1288,1411,1498,1518,1578,1588,1635,3187,3213,3264,3339,3347,4159$
$\mathrm{NH}_{2}, \mathrm{~F}$	$2559 i$	```14,78, 210, 253, 406, 530,725, 861, 1069, 1186, 1205, 1256, 1311, 1322, 1465, 1553, 1561, 1598,1621, 1807, 3231, 3232, 3308, 3328, 3764, 3859```
CN, Cl	$2645 i$	$18,76,152,339,421,435,584,749,825,1018,1135,1136,1185,1208,1489,1515,1551,1569,2435,3273,3285,3358,3395$
CN, F	$2602 i$	$23,72,172,336,422,448,591,759,1020,1152,1183,1228,1306,1307,1505,1536,1570,1622,2435,3245,3273,3356,3360$
$\mathrm{NH}_{2}, \mathrm{H}$	2508i	$\begin{aligned} & 32,138,248,409,472,600,732,896,1070,1198,1248,1274,1467,1523,1523,1581,1582,1602,1807,3207,3226,3301,3333, \\ & 3336,3758,3851 \end{aligned}$
CN, H	2549i	$19,106,340,425,432,478,660,763,1020,1154,1187,1281,1470,1480,1568,1568,1573,2451,3220,3270,3353,3356,3360$

[^3]representing the ground-state and excited-state valence bond configurations are closer together than at the reactants or products. Hence, these configurations can interact more strongly. The net effect on the ground-state surface is a lowering of the barrier, as shown in Figure 4. Pross et al. ${ }^{12}$ have computed the transition states and barrier heights for a series of hydrogen abstraction reactions $\mathrm{RH}+{ }^{\bullet} \mathrm{X} \rightarrow \mathrm{R}^{\cdot}+\mathrm{HX}(\mathrm{R}=\mathrm{Me}, \mathrm{Et}, \mathrm{iPr}, \mathrm{tBu} ; \mathrm{X}=\mathrm{H}$, Cl, R). In analyzing those barriers using the curve-crossing model, they found significant charge-transfer contributions for RH + Cl .

An estimate of the contribution of ionic configurations can be obtained from the charge distribution in the transition state. Group charges, q_{x} and q_{y}, have been calculated as the sum of the Mulliken
total atomic charges for the $\mathrm{CH}_{2} \mathrm{X}$ and $\mathrm{CH}_{2} \mathrm{Y}$ groups. Charge differences, $q_{x}-q_{y}$, are listed in Table III. Half of the absolute value of the charge differences, $\left|q_{x}-q_{y}\right| / 2$, translates directly into the weight of the ionic configuration, ω_{ct}, of the transition states.

$$
\begin{gathered}
\mathrm{X}^{q_{x}} \mathrm{CH}_{2}-\mathrm{H}-\mathrm{CH}_{2} \mathrm{Y}^{q_{y}}=\omega_{\mathrm{cov}} \mathrm{XCH}_{2}-\mathrm{H}-\mathrm{CH}_{2} \mathrm{Y}+ \\
\omega_{\mathrm{ct}} \mathrm{X}^{+1} \mathrm{CH}_{2}-\mathrm{H}-\mathrm{CH}_{2} \mathrm{Y}^{-1} \quad q_{x}=\omega_{\mathrm{cc}} ; q_{y}=-\omega_{\mathrm{ct}} \\
\mathrm{X}^{q_{x}} \mathrm{CH}_{2}-\mathrm{H}-\mathrm{CH}_{2} \mathrm{Y}^{q_{y}}=\omega_{\mathrm{cov}} \mathrm{XCH}_{2}-\mathrm{H}-\mathrm{CH}_{2} \mathrm{Y}+ \\
\omega_{\mathrm{ct}} \mathrm{X}^{-1} \mathrm{CH}_{2}-\mathrm{H}-\mathrm{CH}_{2} \mathrm{Y}^{+1} \quad q_{x}=-\omega_{\mathrm{ct}} ; q_{y}=\omega_{\mathrm{ct}} \\
\left|\omega_{\mathrm{ct}}\right|=\frac{\left|q_{x}-q_{y}\right|}{2}
\end{gathered}
$$

Figure 4. State-correlation diagrams for the radical abstraction reactions; $\mathrm{D}=$ donor, $\mathrm{A}=$ acceptor, the solid lines are the diabatic representation, and the dashed lines are the adiabatic representation with (a) no excit-ed-state interaction. (b) a low-lying excited state interacting with the ground state; long dashed line is the unperturbed ground state, the short dashed line is the ground state perturbed by the presence of a low-lying excited state. This interaction has lowered the barrier on the ground-state surface by ΔB.
All five reactions that have an error exceeding $0.7 \mathrm{kcal} / \mathrm{mol}$ have a charge difference exceeding 0.10 electron in absolute value and the two largest errors correspond to the two largest charge differences. Figure 5 shows the correlation between the contribution of charge transfer and the error between the Marcus theory and ab initio barrier heights. To separate the effects of structural changes and charge transfer on the energy of the transition states, the C_{s} symmetry structures have been used throughout. ${ }^{14}$ A

[^4]

Figure 5. Plot of the error in the Marcus predicted barrier heights versus the charge differences.
least-squares fit of a quadratic polynomial to the data in Figure 5 gives a correlation coefficient of 0.94 .
The above results provide direct evidence that ionic states can play a larger role in the electronic structure of the transition states for the cross reactions than in the symmetric transition states. For the series of radical abstraction reactions studied, charge-transfer states can be major contributors to the electronic structure of the transition states. These charge-transfer states can be represented as resonance structures of the form

$$
\begin{equation*}
\mathrm{AH}_{2} \mathrm{C} \cdots \mathrm{H}^{\cdots} \mathrm{CH}_{2} \mathrm{D} \leftrightarrow \mathrm{~A}^{-} \mathrm{H}_{2} \mathrm{C} \cdots \mathrm{H}^{-. . \mathrm{CH}_{2} \mathrm{D}^{+}} \tag{3}
\end{equation*}
$$

where D is an electron-donor group and A is an electron-withdrawing group. This effect has also been termed captodative or push-pull stabilization.

Conclusion

Marcus theory accurately predicts the barriers for all of the reactions $\mathrm{CH}_{3} \mathrm{X}+{ }^{\circ} \mathrm{CH}_{2} \mathrm{Y} \rightarrow{ }^{\circ} \mathrm{CH}_{2} \mathrm{X}+\mathrm{CH}_{3} \mathrm{Y}(\mathrm{X}, \mathrm{Y}=\mathrm{H}, \mathrm{F}$, $\mathrm{Cl}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{CN}$) except $\mathrm{X}=\mathrm{CN}$ and $\mathrm{Y}=\mathrm{NH}_{2}$ or OH . Charge-transfer states have been found to be a major contributor to the electronic structure of these two transition states and a minor contributor for a few others. The agreement for the vast majority of the Marcus barrier heights should extend to higher levels of theory (larger basis sets and inclusion of electron correlation).

Acknowledgment. We would like to thank the National Science Foundation for financial support (Grant No. CHE 90-20398) and the Pittsburgh Supercomputing Center for a grant of computer time.

Registry No. H, 1333-74-0; $\mathrm{CH}_{3} \mathrm{~F}, 593-53-3 ; \mathrm{CH}_{3} \mathrm{Cl}, 74-87-3$; $\mathrm{CH}_{3} \mathrm{OH}, 67-56-1 ; \mathrm{CH}_{3} \mathrm{NH}_{2}, 74-89-5 ; \mathrm{CH}_{3} \mathrm{CN}, 75-05-8 ; \mathrm{CH}_{3} \mathrm{H}, 74-82-8$; $\mathrm{CH}_{3}, 2229-07-4 ; \mathrm{CH}_{2} \mathrm{~F}, 3744-29-4 ; \mathrm{CH}_{2} \mathrm{Cl}, 6806-86-6 ; \mathrm{CH}_{2} \mathrm{OH}, 2597-$ 43-5; $\mathrm{CH}_{2} \mathrm{NH}_{2}, 10507-29-6 ; \mathrm{CH}_{2} \mathrm{CN}, 2932$-82-3.

[^0]: (1) See Murdoch, J. R. J. Am. Chem. Soc. 1983, 105, 2159 for an overview of empirical theories for predicting reaction barrier heights.
 (2) (a) Marcus, R. A. J. Chem. Phys. 1956, 24, 966 . (b) Marcus, R. A. J. Chem. Phys. 1956, 24, 979. (c) Marcus, R. A. J. Chem. Phys. 1957, 26, 867. (d) Marcus, R. A. J. Chem. Phys. 1957, 26, 872. (e) Marcus, R. A. Can. J. Chem. 1959, 37, 155. (f) Marcus, R. A. Discuss. Faraday Soc. 1960, 29, 21. (g) Marcus, R. A. J. Phys. Chem. 1963, 67, 853. (h) Marcus, R. A. Annu. Rev. Phys. Chem. 1964, 15, 155. (i) Marcus, R. A. J. Chem. Phys. 1965, 43, 679. (j) Marcus, R. A. Exch. React. Proc. Symp. 1965, 1. (k) For an overview and history of Marcus theory and applications see the Rudolph A. Marcus Commemorative issue J. Phys. Chem. 1986, $90(16)$ and references therein.
 (3) (a) Marcus, R. A. J. Phys. Chem. 1966, 72, 891, (b) Murdoch, J. R. J. Am. Chem. Soc. 1972, 94, 4410. (c) Murdoch, J. R.; Bryson, J. A.; McMillen, D. F.; Brauman, J. I. J. Am. Chem. Soc. 1982, 104, 600. (d) Murdoch, J. R.; Magnoli, D. E. J. Am. Chem. Soc. 1982, 104, 3792. (e) Magnoli, D. E.; Murdoch, J. R. J. Am. Chem. Soc. 1981, 103, 7465.
 (4) (a) Albery, W. J. Pure Appl. Chem. 1979, 5l, 949. (b) Kreevoy, W. J.; Kreevoy, M. M. Adv. Phys. Org. Chem. 1978, 16, 87 . (c) Albery, W. Ann. Rev. Phys. Chem. 1980, 31, 277. (d) Lewis, E. S. J. Phys. Chem. 1986, 90 , 3756. (e) Lewis, E. S. Bull. Soc. Chim. Fr. 1988, No. 2, 259. (f) Lewis, E. S.; Hu, D. D. J. Am. Chem. Soc. 1984, 106, 3292. (g) Lewis, E. S.; Douglas, T. A.; McLaughlin, M. L. Isr. J. Chem. 1985, 26, 331. (h) Lewis, E. S.; Douglas, T. A.; McLaughlin, M. L. In Nucleophilicity; Harris, J. M., McManus, S. P., Eds.; ACS Advances in Chemistry Series No. 215; American Chemical Society: Washington, DC, 1987. (i) Kreevoy, M. M.; Ostovic, D.; Lee, I. S. H.; Binder, D. A.; King, G. W. J. Am. Chem. Soc. 1988, 110, 524. (j) Pellerite, M. J.; Brauman, J. I. J. Am. Chem. Soc. 1980, 102, 5993 . (k) Dodd, J. A.; Brauman, J. I. J. Am. Chem. Soc. 1984, 106, 5356. (1) Dodd, J. A.; Brauman, J. I. J. Phys. Chem. 1986, 90, 3559. (m) Pellerite, M. J; Brauman, J. I. J. Am. Chem. Soc. 1983, 105, 2672. (n) Wolfe, S.; Mitchell D. J.; Schlegel, H. B. J. Am. Chem. Soc. 1981, 103, 7692. (o) Wolfe, S. Mitchell, D. J.; Schlegel, H. B. J. Am. Chem. Soc. 1981, 103, 7694.

[^1]: (5) (a) Truhlar, D. G.; Gordon, M. S. Science 1990, 249, 491. (b) Truhlar, D. G.; Garret, B. C. Acc. Chem. Res. 1980, 13, 440.
 (6) Whiteside, R. A.; Frisch, M. J.; Pople, J. A. The Carnegie-Mellon Quantum Chemistry Archive, 3rd ed.; Carnegie-Mellon University: Pittsburgh, PA, 1983, and associated computer data base.
 (7) Schlegel, H. B. J. Comput. Chem. 1982, 3, 214.
 (8) Frisch, M. J.; Head-Gordon, M.; Trucks, G. W.; Foresman, J. B.; Schlegel, H. B.; Raghavachari, K.; Robb, M.; Binkley, J. S.; Gonzalez, C.; Defrees, D. J.; Fox, D. J.; Whiteside, R. A.; Seeger, R.; Melius, C. F.; Baker, J.; Martin, R. L.; Kahn, L. R.; Stewart, J. J. P.; Topiol, S.; Pople, J. A. Gaussian 90, Revision H; Gaussian, Inc.: Pittsburgh, PA, 1990.
 (9) Pople, J. A.; Schlegel, H. B.; Krishnan, R.; DeFrees, D. J.; Binkley, J. S.; Frisch, M. J.; Whiteside, R. A.; Hout, R. F.; Hehre, W. J. Int. J. Quant. Chem. Symp. 1981, 15, 269.

[^2]: (11) (a) Maitre, P.; Hiberty, P. C.; Ohanessian, G.; Shaik, S. S. J. Phys. Chem. 1990, 94, 4089. (b) Sini, G.; Ohanessian, G.; Hiberty, P. C.; Shaik, S. S. J. Am. Chem. Soc. 1990, 112, 1407. (c) Shaik, S. S.; Canadel, E. J. Am. Chem. Soc. 1990, 112, 1446.
 (12) Pross, A.; Yamataka, H.; Nagase, S. J. Phys. Org. Chem. 1991, 4, 135.
 (13) Shaik, S. S.; Schlegel, H. B.; Wolfe, S. Theoretical Aspects of Physical Organic Chemistry. The $S_{N^{2}}{ }^{2}$ Mechanism; Wiley: New York, in press.

[^3]: ${ }^{a}$ Degeneracies are noted in parentheses.

[^4]: (14) The C_{s} and C_{1} symmetry structures with $\mathrm{X}=\mathrm{CN}$ and $\mathrm{Y}=\mathrm{NH}_{2}$ have the same error and charge differences; however the error and charge difference for the $\mathrm{X}=\mathrm{CN}$ and $\mathrm{Y}=\mathrm{OH} C_{s}$ structure are $1.79 \mathrm{kcal} / \mathrm{mol}$ and -0.127 electron versus the C_{1} values of $4.82 \mathrm{kcal} / \mathrm{mol}$ and -0.201 electron.

