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Eight new algorithms for reaction path following are presented, ranging from third order to 
sixth order. Like the second-order algorithm [J. Chem. Phys. 90,2154 ( 1989) ] these are 
implicit methods, i.e., they rely on the tangent (and in some cases the curvature) at the 
endpoint of the step. The tangent (and the curvature, if needed) are obtained by a constrained 
optimization using only the gradient. At most, only one Hessian calculation is needed per step 
along the path. The various methods are applied to the Miiller-Brown surface and to a new 
surface whose reaction path is known analytically to test their ability to follow the reaction 
path and to reproduce the curvature along the path. 

I. INTRODUCTION 

In the study of both reaction mechanisms and reaction 
kinetics, the concept of the reaction path is central.’ For 
theoretical studies of mechanisms, it is desirable to follow 
the lengthy and curved path from the transition state for- 
ward to the products and back to the reactants at the lowest 
computational cost possible. For the calculation of rate con- 
stants by variational transition-state theory, accurate values 
for the curvature and frequencies along the path are need- 
ed,2 preferably with as little computational effort as possi- 
ble. However, reaction paths are notoriously difficult to fol- 
low, especially if the path is curved and twisted or if accurate 
properties such as curvature and frequencies are needed.3*4 
Numerous algorithms exist for following reaction paths.3-s 
Many of the traditional numerical methods for solving dif- 
ferential equations have difficulties (e.g., severe oscilla- 
tions) even for simple reactions.3V4 Many steps with very 
small step lengths are often needed to map out the path accu- 
rately. This is not a problem if an analytic surface is avail- 
able; however, if the reaction path is determined directly 
from electronic structure calculations, as in the direct dy- 
namics calculations,4 this leads to excessively long computa- 
tional times. Traditional higher-order methods are not nec- 
essarily more efficient than lower-order methods.4 

A variety of specialized algorithms have been developed 
to overcome some of the difficulties of following reaction 
paths.‘-’ Ishida, Morokuma, and Komornicki’ (IMK), 
with modifications by Gordon et al., added a one-dimension- 
al optimization to the Euler method to step back to the reac- 
tion path. Miiller and Brown6 (MB) used an optimization 
with a constrained step length to find the next point down 
hill along the path. Page and McIver7 have integrated a Tay- 
lor expansion of the energy surface. Depending on the ener- 
gy derivatives used and the terms retained in the integration, 
this yields a sequence of methods of increasing accuracy 
(QUAD, CUBE, etc.; LQA, CLQA, etc.). In earlier pa- 
pers,* we presented a reaction path following algorithm 
based on a constrained optimization that is exact when the 

l ) Current address: Department of Chemistry, Carnegie Mellon University, 
Pittsburgh, PA 15213. 

h’ Author to whom correspondence should be addressed. 

reaction path is an arc of a circle. This method has been 
shown to be more efficient than many of the other algor- 
ithms for small step sizes and better able to follow curved 
paths than other algorithms when large step sizes are used. 
In the limit of small step size, our algorithm is correct to 
second order, i.e., it yields the correct tangent and curvature 
vector both along the path and at the transition state. Be- 
cause of the constrained optimization, our method returns to 
the vicinity of the true path even under conditions which 
cause other second order methods to deviate substantially. 

Traditional numerical techniques use explicit methods 
for integrating ordinary differential equations’ (ODE’s), 
i.e., methods that do not require the value of the function at 
the endpoint of the step. Reaction path following often gives 
rise to stiff ordinary differential equations. Implicit methods 
can be proven to have much greater stability for stiff differ- 
ential equations.’ However, implicit methods require the fi- 
nal value of the function at the end of the integration step 
and, hence, are difficult to implement in a practical manner. 
Our second-order reaction path following algorithm is the 
same as the implicit trapezoid method;’ our contribution is 
the manner of obtaining the final point needed for this meth- 
od, i.e., the constrained optimization. 

In the present paper, we present a family of third-, 
fourth-, and higher-order algorithms for reaction path fol- 
lowing. Like our second-order algorithm, these are implicit 
methods and employ a constrained optimization to obtain 
the next point on the path. Some require no additional infor- 
mation beyond what is needed for the second order algo- 
rithm; some require an extra gradient calculation; others 
need at most only one second derivative calculation for each 
step along the path. The order of each algorithm is deter- 
mined by comparison with the Taylor expansion of the reac- 
tion path. The new methods are tested on two analytical 
model potential-energy surfaces and are compared by their 
ability to follow the path and reproduce the magnitude of the 
curvature along the path. 

II. THEORY 
A. Taylor expansion of the reaction path 

With the notation of Page and McIver,7 the reaction 
path x(s) can be written as a function of the arc length S, 
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x(s) = x(0) + svO(0) + j.?v’(O) + &w(O) + e-e. (1) 

The tangent vector v” and curvature vector v’ are given by GS 

yQ($ s&L- vO(0) + sv’(O) + J.w(O) + -*-, (2) 

v’(s) = dv” z = v’(0) +.4(o) + &.s%3(o) + . * *. (3) 

If the energy surface is expanded in terms of the gradient g, 
the Hessian H, and the third derivatives F, 

B(X) =E(O) + Cg(“)i[xi -x(o)j] 
I 

+ 1 T H(O)G[xi -x(O)i] [Xj -X(O)j] 

+ 8 TF(O)uk [Xi -x(O)i] [Xj -x(O)j] 

x [Xk -x(O),]***, (4) 
then the tangent and curvature at x( 0) are given by 

vow = - guwJg(O) I, (5) 
v’(O) = - (H- [v”(0)‘Hvo(O)]I~vo(O)/~g(O) I. (6) 

At the transition state, g is zero and the tangent vector is the 
eigenvector of the Hessian that corresponds to the negative 
eigenvalue. The curvature vector is given by 

v’(O) = - {H- 2[v”(0)‘Hvo(O)]I}-’ 

x{F’ - [v”(0)‘F1vo(O)]I)vo(O), (7) 
where Fg = Z,F~kvo(0),. 

GSA 

/ 

6. Second-order algorithm 

El, p@/gi!!f::o~~s~ 
m X 

Pi”’ -? = i/12 s?( G’(O) - 3’(s)) 

In previous work,’ we developed a reaction path algo- 
rithm that is formally second order and is able to follow an 
arc of a circle exactly. As shown in Fig. 1 (a), the algorithm 
consists of two steps: (a) a move of 4 cr from x (0) along 
v( 0) to x* (no energy or gradient calculations are carried 
out at this pivot point) and (b) a move of J a from x* and 
optimize x(s) under the constraint Ix(s) -x*1 = 1 
0. When the optimization has converged, the gradient per- 
pendicular to x(s) -x* must be zero, i.e., 
g(s) = const.[x(s) - x*]. Since v’(s) = - g(s)/]g(s)l 
and v’(s) is a unit vector, the displacement from the pivot 
point can also be written as 

FIG. 1. Schematics for the second-order algorithm, third-order method 
A, and fourth-order method F. 

x(s) and v’(s) without resorting to approximations. 
The step size u is related to the arc length s by 
s = 2ue cot e 12, (10) 

where v’(O) *V”(S) = cos 0. 
The method can be generalized by writing it as a 2 bar 

linkage, 

z - Z(0) = l/2 s TO(O) 

x(s) - x* = pvO(s) (8) 
[recall that Ix(s) - x*1 = 1 a]. The second-order algo- 
rithm can then be summarized as 

x(s) = x(O) + @-vO(0) + pvO(s), (9) 
where v’(s) is obtained by optimization of x(s) such that 
Ix(s) - x*1 = ?j u. s ince @v”( 0) and @v”(s) form an isos- 
celes triangle, the path between x(O) and x(s) with tangents 
v’(O) and v’(s) is an arc of a circle, by construction. This 
method is, in fact, the implicit trapezoid method or the im- 
plicit second order Runge-Kutta method of integrating or- 
dinary differential equations.’ Normally, implicit methods 
such as this are not practical because they require the value 
of the function at the endpoint [in this case v’(s)]. How- 
ever, the constrained optimization makes it possible to find 

x(s) = x(O) + OlPI + 02P2. (11) 

The vectors p, and p2 must be tangent to the path at x(O) 
and x(s), respectively. Thus 

p, = vO(O), pz = vO(s). (12) 
As discussed earlier, p2 is obtained by a constrained optimiz- 
ation of x(s) such that Ix(s) - x*1 = a,. Insertion of Eq. 
(2) for v’(s) and substitution of p, and p2 into Eq. (11) 
yields 

x(s) = x(0) + (a, + a, )vO(O) + a,sv’(O) + ***. 
(13) 

Comparison with the first- and second-order terms Eq. ( 1) 
gives 

a, = p, a, =js. (14) 
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Therefore, the method is correct to second order as well as 
being exact for a circle. With other choices for g’l and Us, the 
method can be made exact for any planar curve. 

C. Third-order algorithms 

If a second-order implicit method can be constructed 
from a 2 bar linkage, then perhaps a third-order method can 
be built from a 3 bar linkage, 

x(s) = x(O) + alp, + 02P2 + U,P,. (15) 

As in the second-order algorithm, the requirement that the 
path be tangent to the linkage at x(0) and x(s) specifies the 
first and last bars in the linkage, 

p, =vQ(O), p, =vO(s). (16) 
Like the second-order algorithm, p3 is obtained by a con- 
strained optimization of x(s) such that 
(x(s) - [x(O) +a,~, +c2p2]l =u3. A number of re- 
lated methods can be devised depending on the choice of p2. 

MethodA: p2=vi(0) 

For some purposes, such as variational transition-state- 
theory calculations, the Hessian is needed at each point on 
the path. The curvature vector can then be computed from 
the Hessian via Eq. (6). If the Hessian is not available, then 
the curvature vector can be computed by numerical differen- 
tiation with only one additional gradient calculation, 

v’(0) = [v’(A) -v’(O)]/A, A&. (17) 
Substitution of v’(O), v’(O), and v’(s) [from Eq. (2) ] for 
p,,p2,andp, inEq. (15) gives 

x(s) = x(O) + a,vO(O) + a,v’(O) + u3 

[vO(O) +m’(O) +$?v2(o) -I-&s3v3(0) + -]. 
(18) 

Comparing order by order with Eq. ( 1) and requiring terms 
in vO(0), v’(O), and ~~(0) to be correct yields 

01 = 3% a, = 43, a, = 4s. (19) 
The error in the fourth-order term is ,$s4v3 (0). As indicated 
by Eq. (7)) the curvature vector at the transition state de- 
pends on the third derivatives; however, the necessary infor- 
mation can be calculated by finite difference of the gradients, 

F’vO(O) = Cg[x, -I- s’vO(0)] 

+ g[x,> - s’v”(o)])/s’2 (s’4s). (20) 

Alternatively, the second-order algorithm can be used to ob- 
tain the first step away from the transition state. 

I 

Method B: pz = v”(- s) 
A second possibility for p2 is v”( - s), the tangent vec- 

tor from the previous optimized point on the path. Substitu- 
tion of v’(O), v”( - s) (from Eq. (2) 1 and v’(s) [from Eq. 
(2)1 forp,,p,,andp, inEq. (15) gives 

x(s) =x(O) +a,vQ(o) 
+ a, [vO(O> -d(O) ++sv(o) -i3v3(0) + “‘] 

+ (73 [vO(O) +sv’(o) +Jj.sv(o) +$3v3(o> + *-1. 

(21) 
From comparison with Eq. ( 1) the values for the ds are 

(T, = is, a, = -As, 0, =&. (22) 

The error in the fourth-order term is &s4v3 (0). If a previous 
point on the path has already been computed, this method 
requires no additional energy or gradient computations be- 
yond those needed for the second-order algorithm. For the 
first point on the path, the second-order algorithm can be 
used to step away from the transition state. 

Method C: p2=x(0)-x(-s) 

A third possibility for p2 is the displacement vector from 
the previous optimized point on the path 
x(0) - x( -s). Substitution of v”( 0), x( - s) [from Eq. 
(2)] and v’(s) into Eq. (15) gives 
x(s) =x(O) + a,vQ(O) 

+ a* [mQ(O) - gv(O) + &s3v2(0) - &.s4v3(0) + -] 

+a, [vQ(O> +sv’(o) +&.sv(o) +i3v3(0) + -*]. 

(23) 
From comparison with Eq. ( 1) the values for the ds are 

(T, =$, a, = -f, a, =j.s. (24) 

The error in the fourth-order term is &,s4v3(0). As in 
method B, the Hessian is not needed and no additional ener- 
gy or gradient computations are required beyond those for 
the second-order algorithm. 

D. Fourth-order algorithms 
Method D 

A fourth-order method can be constructed by combin- 
ing methods B and C, i.e., by using the tangent at the pre- 
vious point as well as the displacement to the previous point: 

x(s) = x(0) + a, [x(O) - x( -s)] + qvO( -s) 

+ a2v0(0) + a,vO(s). (25) 
Substitution and expansion gives 

x(s) = x(O) -I- ao[mO(0) - gv’(0) + &sv(0) - &V(O) + &+J4(()) + . . ‘1 

+ 01 [vO(0) - ~‘(0) + $s2v2(0) - $3v3(0) + 2$s4v4(0) + . . ‘1 + a2vo(o) 

+ g3 [YO(0) + m ’(O) t TV” t 43v3(0) -I- &s4v4(0) + *-1. 
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Comparison with Eq. ( 1) leads to the following values for 
the o’s: 

a,= -1, u, = js, a, = p, CT’3 = 4s. (27) 
The error in the fifth-order term is &s*Y~(O). Equation 
(27) can be rewritten in a more symmetrically form by step- 
ping from x ( - s) rather than x (0)) 

x(s) =x( -s> + &v”( -s) + +vO(0) + fsvO(s). 
(28) 

In this form, it is clear that method D is actually Simpson’s 
rule for integration (it is also the implicit version of the 
modified midpoint method with extrapolation). Even 
though this is a fourth-order algorithm, the Hessian is not 
needed and no additional energy or gradient computations 
are needed beyond those required for the second-order algo- 
rithm or the third order methods B and C. 

Method E 

Another fourth-order method can be constructed by US- 
ing the curvature at the current point and the tangents at 
x( -s), x(0) and x(s), 

x(s) = x(0) + UI vO( -s) + u2v0(0) 

+ qY’(o) + a4Y”w. (29) 
Substitution for Y’ and Y’, and comparison with Eq. ( 1) 
gives 

u1 = 7$4& 0, = ‘9 m , 0, = g$, LT.+ = ;gs. (30) 
The error in fifth-order term is ,$?Y~(O). 

Method F 

One of the strengths of the second-order method is that 
it uses information only from the beginning and end points of 
the current step, and does not rely on information from pre- 
vious steps. As illustrated in Fig. 1 (c), an analogous fourth- 
order method can be constructed from Y’(O), y*(O), YO(S), 
and Y’(S), 

I 

x(s) = x(0) + o,vO(0) + up’(O) + u,vO(s) + c74qY’(s). 

(31) 
Substitution for v” and Y’, and comparison with Eq. (1) 
gives 

u, = CT’3 = $9, u2= -u4=&?. (32) 
The error in the fifth-order term is &?v4(0). Gear’ has 
discussed this method as a member of a class of A-stable 
methods. Method Fcan also be obtained as the average of a 
forward step from x(0) to x(s) and a backward step from 
x(s) to x( 0) using method A. Implementation of method F 
poses some problems, since Y’ (s) must be calculated iterati- 
vely and the Hessian is needed to calculate Y’(S). To avoid 
repeated (expensive) calculations of the Hessian, the Hes- 
sian can be assumed to be constant in a small region near 
x(s) or could be updated by any of the techniques used by 
quasi-Newton optimization algorithms. Method A can be 
used to get an approximate value for x(s); the Hessian is 
calculated once at this point and Eq. (3 1) is solved iterative- 
ly using this fixed Hessian and Eq. (6) to calculate Y’(S) 
[Ye is still calculated by a constrained optimization]. If 
Y’ is available at the transition state, method Fcan be used to 
take the first step away from the transition state; otherwise, 
the second-order algorithm can be used to take the first step. 

E. Higher-order algorithms 
Method G 

If the Hessian is available at each optimized point on the 
reaction path, it is possible to construct a fifth-order algo- 
rithm that takes advantage of all the available information. 
The new point on the reaction path is written as the current 
position and a linear combination of the tangent and curva- 
ture vectors at the current and previous points and v’(s), 

x(s) =x(O) +alvo( -s) fU2V’( -s) 

+ a3Y”(o) + (74dy’W) + +v”w. (33) 
Equations (2) and (3) are used to expand Y’( + s) and 
v’( + s), 

x(s) = x(O) + u1[4(0) -d(O) + @v(O) - g?s3y3(0) + +gs4v4(0) + * * ‘1 
+u*[Y1(0) -sl+O) + gv(0) -&w(0) + -] 
+ww) +a,Y’(w +05[Y”(o) +sv’(O) +pwo) +&v(o) +&s4v4(0) + -1. (34) 

Comparing with Eq. ( 1) and requiring terms in v”, v’, v2, v3, 
and v4 to be correct gives 

CJ, =f&s, u2=&$, u3=#$, 
a4 =fg$, a, =j?&s. (35) 

Method H 
A sixth-order method can be constructed by combining 

methods Fand G, i.e., using the tangent and curvature from 
XC - ~1, x(O), and x(s), 

I 

x(s) =x(O) +a,vO( -s) fU*V’( -s) +u,vO(o) 

+ u4vL(0) + u,vO(s) + ugv’(s). (36) 
Substitution for v” and vi, and comparison with Eq. (1) 
gives 

u, =&p, uz=&$, a,=*, 
u4=&@, u~=&$, a,= -&.?A (37) 

Some caution is needed with both of these higher-order 
methods. The curvature is much more difficult to compute 
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accurately than the position and tangent of the reaction 
path. Therefore methods G and Hmay be less stable than the 
third- and fourth-order methods discussed earlier. 

III. APPLICATIONS 

The Mtiller-Brown surface has been used in a number of 
previous studies to test reaction path following algorithms: 

E(x,y) = i A,exp[a,(x -xy)” 
i= I 

+bi(X-x?)(Y-.Y~) +ci(Y-YP)2], 

A = ( - 200, - 100, - 170, 15), 
x0 = (1.0, 0.0, - 0.5, - l.O), 
y” = (0.0, 0.5, 1.5, l.O), 
a=(- 1.0, - 1.0, - 6.5, 0.7), 

b = (0.0, 0.0, 11.0, 0.6), 
c= ( - 10.0, - 10.0, - 6.5, 0.7). (38) 

Although this is only a two-dimensional surface, the curved 
reaction path is difficult to follow accurately with a large 
step size, and can serve as a suitable test of the methods 
discussed earlier. The true path on the Miiller-Brown sur- 
face was computed by the Euler method with a small step 
size (0.01) . Except for gross inadequacies in an algorithm, 
path following ability is not a sensitive indicator of the accu- 
racy of an algorithm. A much more demanding test is the 
ability of an algorithm to yield a path with the correct curva- 
ture. All of the methods were tested using a step size of 0.15. 
The necessary numerical and symbolic manipulations were 
carried out using Mathematics.” 

FIG. 2. Performance of some low-order reaction path following algor- 
ithms on the Miiller-Brown surface ( t , IMK, X, MB; A, LQA, V, 
CLQA; 0, GS) . 

FIG. 3. Performance of some higher-order reaction path following algor- 
ithms on the Mtiller-Brown surface (0, method A; A, method B; V, method 
C, X, method D, + , method E; 0, method F; 0, method G, 0, method 
H). On the resolution of this plot, all methods except Dare equally good 
at reproducing the position of points the reaction path. 

Figure 2 compares the path following ability of the low- 
order methods. The IMK method’ has serious difficulties 
when step sizes as large as 0.15 are used. The Miiller-Brown 
method6 cuts the corner. The LQA method’ is slightly wide 
of the true path; the CLQA method7 is closer to the path 
(both were started on the true path at s = 0.15 rather than at 
the transition state).. Our second-order method’ (which 

n + + 
!J \ X 

-I- 

+ IMK 

X MB 

X A LQA 

v CLQA 
III GS 

X 
A 

rl-, 
FIG. 4. Magnitude of the curvature along the reaction path on the 
Muller-Brown surface computed by lower-order methods ( + , IMK; X, 
MB; A, LQA; V, CLQA, 0, GS) . 
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V 

V 

0 GS 

oA 

AB 

vc 

FIG. 5. Magnitude of the curvature along the reaction path on the 
Miil ler-Brown surface computed by second- and third-order methods (0, 
second-order method; 0, method A; A, method B; V, method C). 

needs only gradients) follows the path as closely as the 
CLQA method (which requires the Hessian and estimates of 
components of the cubic force constants). 

The third-, fourth-, and higher-order algorithms pro- 
posed in the present paper are compared in Fig. 3. The sec- 
ond-order method was used for the first step away from the 

+D 

XE 

OF 
oG 

+ 

0 

OH 

0 

0.2 0.4 0.6 0.8 ” 1 

FIG. 6. Magnitude of the curvature along the reaction path on the 
Miil ler-Brown surface computed by fourth- and higher-order methods 
( + , method D ; X, method E; 0, method F; 0, method G; 0, method H). 

transition state for methods A-E and G; method Fwas used 
to start method H. Except for method D, all methods appear 
to be equally good on the scale of the figure. 

Given a point on an approximate reaction path, the cur- 
vature can be computed using Eq. ( 6 1. The calculated mag- 
nitudes of the curvature vectors for the low-order algorithms 

FIG. 7. Model surface with an analytical 
reaction 1 lath given by Eqs. (39) and (40). 
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FIG. 8. Performance of some low-order reaction path following algor- 
ithms on the surface given by Es. (39) ( + , IMK; X, MB; A, LQA; V, 
CLQA; Cl, GS). 

are shown in Fig. 4 along with the magnitude of the curva- 
ture for the true path. The IMK and MB methods perform 
poorly, as could be anticipated from their strong deviation 
from the true path. The LQA, CLQA, and the second-order 
algorithms are equally good prior to the peak in curvature; 
the CLQA and second-order methods are better than LQA 
after the peak. All of these methods have some problems in 
the final straight region. 

Figure 5 shows the curvatures computed for the second- 
and third-order methods. The second-order method and 
third-order methods A and B are about equal; method C is 
unsatisfactory. The higher-order methods D through Hare 
compared in Fig. 6. Methods D and G are clearly inadequate. 
Method E performs about as well as methods A and B and 
the second-order algorithm. Based on their ability to repro- 
duce the curvature toward the end of the reaction path, 
methods F and H appear to be the best algorithms. 

The second model surface used to test the reaction path 
following algorithms is given by Eq. (39) and is shown in 
Fig. 7: 

E(xg) =arccot[ -@cot(+--T)] 

-2exp[ - (Y-sinx)2/2]. (39) 
This rather unpleasant looking function” has the highly de- 

FIG. 9. Performance of some higher-order reaction path following algor- 
ithms on the surface given by E$. (39) (0, method A; A, method B, V, 
method C, X, method D ; f , method E; 0, method E 0, method G; Cl, 
method H) . 

2.0 
T 

+ 
1.6.. + x+ 

V A 

12 v0 x V 
+ IMK 

0.8 

2 4 6 8 
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X M B  

A LQA 

V CLQA 

Cl GS 

70 

FIG. 10. Magnitude of the curvature along the reaction path on the sur- 
face given by Fq. (39) computed by lower-order methods ( + , IMK; x, 
MB; A, LQA; V, CLQA; 0, GS). 

sirable feature of possessing a simple, analytical form for the 
reaction path and the curvature, 

y = sinx, K2 = sin’x/(l + COS2X)3. (40) 
By scaling both the x and y coordinates, any desired maxi- 
mum curvature can be obtained (i.e., x’ = x/b, y’ = y/b, 
K’ = bK) . If necessary, the reaction path can be made more 
difficult to follow (i.e., the differential equation can be made 
stiffer) by increasing the exponent in the Gaussian term. 

For a stepsize of 0.6, the results for the various reaction 
path following algorithms on the surface given by Eq. (39) 
are qualitatively similar to the M iiller-Brown surface. As 
shown in Fig. 8, the low-order techniques all follow the path 
quite well except for LQA and CLQA. For the higher-order 
methods presented in Fig. 9, only methods D and G have 
difficulty in following the path. The plots of the magnitude 
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FIG. 11. Magnitude of the curvature along the reaction path on the sur- 
face given by Eq. (39) computed by second- and third-order methods (D, 
second-order method; 0, method A; A, method B; V, method C). 
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FIG. 12. Magnitude of the curvature along the reaction path on the sur- 
face given by Eq. ( 39 ) computed by fourth- and higher-order methods ( + , 
method D ; x , method E; 0, method F; 0, method G; Cl, method H). 

of the curvature vs the path length reveal that this surface is 
more demanding than the M iller-Brown surface. Even with 
a stepsize of 0.002, the Euler method gives a maximum in the 
curvature that is about 2% too low. As illustrated in Fig. 10, 
the IMK, MB, LQA, and CLQA methods yield a fairly ran- 
dom scatter of values for the curvature. The second-order 
algorithm is qualitatively correct (i.e., two peaks) but is 
40% too high at the first maximum. Figure 11 shows that 
method A is slightly better than the second-order algorithm 
and that both are better than methods B and C. Of the high- 
er-order algorithms shown in Fig. 12, D, E, and G are poorer 
than both method A and the second-order method. Method 
His somewhat better; however, the only algorithm that re- 
produces the curvature satisfactorily at this stepsize is meth- 
od F. With larger stepsizes (e.g., 0.9) the superiority of 
method F is even more evident. 

IV. CONCLUSIONS 
The tests of the proposed path following methods on the 

model surfaces have once again illustrated that formal order 
is not necessarily an appropriate measure to judge an algo- 
rithm. The M iiller-Brown surface illustrates that second- 
order method is better than methods C (third order), D 
(fourth order), and G (fifth order). Apparently, using the 
position of the prior point on the reaction path degrades the 
performance of reaction path following. The second-order 

method is comparable to methods B (third order) and E 
(fourth order); thus, use of the tangent from the prior point 
appears to be more stable than use the displacement. The 
third-order method A, which requires one Hessian calcula- 
tion for each step along the path, is generally similar to or 
slightly better than the second-order algorithm, which uses 
only the gradient. The fourth-order method Fand its exten- 
sion, sixth-order method H (both of which require one Hes- 
sian calculation per step), seem to be the best at reproducing 
the curvature for reasonable stepsizes. However, method Fis 
better for the large steps taken on the surface given by Eq. 
(39). Both methods are implicit in the tangent and the cur- 
vature. This suggests that using the curvature at the end- 
points of the step is the underlying reason for the good per- 
formance of methods F and H, rather than the higher order 
of these methods. Method F has an elegant simplicity and 
symmetry to it; the fact that no information from prior steps 
is used means that method F is self-starting and is not sus- 
ceptible to numerical problems caused by rapid changes in 
prior steps along the path. Method F, along with a number of 
the other methods, will be coded into ab initio electronic 
structure codes so that these methods can be tested on high- 
er-dimensional reaction paths. 
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