transfer and terminated by reductive elimination.

Experimental Section

The experimental setup has been described in earlier papers.² Briefly, Fe^+ is generated from $Fe(CO)_5$ by electron impact ionization (100 eV). A VG Instruments ZAB-HF-3F triple-sector mass spectrometer with a B(1)EB(2) configuration was used for the analysis. The machine and its operation have been described elsewhere.¹⁶ In a typical experiment $Fe(CO)_5$ and the nitrile 11 were mixed in a specially designed test tube¹⁷ in an approximate ratio of 2:3. The ions corresponding to RCN/Fe⁺ having 8-keV kinetic energy are mass selected and focused with B(1)E. Collision gas (He, pressure ca. 5×10^{-6} to 1×10^{-5} Torr) is introduced in the collision chamber located in the third field-free region, and fragment ions are recorded by scanning B(2). In the collision experiment the intensity of the primary ion beam is attenuated to ca. 85%; this corresponds on average to 1.1 collisions.¹⁸ Due to the poor signal-to-noise ratio, signal-averaging techniques were used only in the case of the MI/CA experiment of structure 23 generated from $11-Fe^+$ (Scheme IV, and text under heading E); all other spectra were obtained by single scans only.

Compounds 11 and 11a were synthesized according to Scheme IX by standard laboratory procedures as described in the references given in Scheme IX. For the synthesis of 11c, the starting tert-butyl chloride 29 was replaced by its fully deuteriated isotopomer (CD₃)₃CCl, which was synthesized in 82% yield from 29 by either H/D exchange with DCl/D₂O (110° C for 24 h)¹⁹ or reaction of isobutene with DCl/D₂O (room temperature for 24 h). All compounds were fully characterized by spectroscopic methods and purified by various chromatographic means. Full details are reported in ref 17.

Acknowledgment. We greatly appreciate financial support of our work by the following institutions: Deutsche Forschungsgemeinschaft, Stiftung Volkswagenwerk, Fonds der Chemischen Industrie, and Technische Universität Berlin.

(19) (a) Stephens, J. C.; Leitch, L. C. J. Labelled Compd 1967, 3, 65. (b) Thomas, A. F. Deuterium Labeling in Organic Chemistry; Appleton Century, Fox: New York, 1971; p 115.

(20) Brandsma, L. Preparative Acetylenic Chemistry; Elsevier: Amsterdam, The Netherlands, 1971; p 189.

(21) Reference 20, p 112.
(22) (a) Mori, K.; Tominaga, M.; Matsui, M. Tetrahedron 1975, 31, 1846.
(b) Schwarz, M.; Waters, R. M. Synthesis 1972, 567.
(23) Marvell, T. Synthesis 1973, 457.

(24) Tietze, L.-F.; Eicher, Th. Reaktionen und Synthesen im Organisch-Chemischen Praktikum; Thieme Verlag: Stuttgart, Germany, 1981. (25) Roush, W. R.; Gillis, H. R.; Hall, S. E. Tetrahedron Lett. 1980, 1023. (26) Baird, W. C., Jr.; Franzus, B.; Surridge, J. H. J. Am. Chem. Soc.

1967, 89, 410.

Do Supra-Antara Paths Really Exist for 2 + 2 Cycloaddition **Reactions?** Analytical Computation of the MC–SCF Hessians for Transition States of C_2H_4 with C_2H_4 , Singlet O_2 , and Ketene

Fernando Bernardi,*,[†] Andrea Bottoni,[†] Massimo Olivucci,[†] Michael A. Robb,*,[‡] H. Bernard Schlegel,[§] and Glauco Tonachini[#]

Contribution from the Dipartimento di Chimica "G. Ciamician", Universita di Bologna, Via Selmi 2, 40126 Bologna, Italy, Department of Chemistry, King's College London, Strand, London WC2R 2LS, England, Department of Chemistry, Wayne State University, Detroit, Michigan 48202, and Instituto di Chimica Organica, Universita di Torino, Via Bidone 36, Torino, Italy. Received December 7, 1987

Abstract: The "transition structures" for the $2_s + 2_a$ cycloaddition of ethylene with ethylene, with singlet O₂, and with ketene have been determined by MC-SCF gradient methods. The subsequent characterization of these critical points by analytical Hessian computation shows that in each case the critical point is a saddle point of index 2 (i.e., there are two imaginary vibrational frequencies). Thus, the results show that the supra-antara reaction path may not exist at all for 2 + 2 cycloadditions.

One of the novel features of the Woodward-Hoffmann treatment of 2 + 2 cycloadditions¹ was the hypothesis that there are two concerted pathways, a least motion pathway with suprafacial attack on both reactants (supra-supra attack denoted as $2_s + 2_s$) and a non least motion pathway with suprafacial attack on one reactant and antarafacial attack on the other (supra-antara attack denoted as $2_s + 2_s$). Furthermore, while the $2_s + 2_s$ process is supposed to be thermally forbidden, the $2_s + 2_a$ process should be thermally allowed.

In 2 + 2 cycloadditions of normal olefins the $2_s + 2_a$ process is expected to be energetically unfavorable because of steric hindrance and framework distortion. However, this reaction path may become the preferred one in the cycloadditions of olefins with cumulenes, since in the latter species orbitals belonging to two orthogonal planes can be involved, thereby reducing the effects associated with steric hindrance and framework distortion.

This important hypothesis can now be tested rigorously in terms of ab initio computations. In the present paper we present the results obtained on three different cycloaddition reactions for a supra-antara approach: (i) ethylene + ethylene, (ii) ethylene + singlet oxygen, and (iii) ethylene + ketene. The ethylene + ethylene reaction is the textbook example normally used in the discussion of the supra-antara approach. The ethylene + singlet oxygen reaction represents a situation with reduced steric repulsion and framework distorsion. The third reaction, ethylene + ketene,

^{(16) (}a) Weiske, T. Ph. D. Thesis, Technical University, Berlin, 1985. (b) Terlouw, J. K.; Weiske, T.; Schwarz, H.; Holmes, J. L. Org. Mass Spectrom. 1986, 21, 665. (17) Prüsse, T. Diploma Thesis, Technical University, Berlin, 1987.

⁽¹⁸⁾ Holmes, J. L. Org. Mass Spectrom. 1985, 20, 169.

Universita di Bologna.

King's College London.

¹Wayne State University.

Instituto di Chimica Organica.

⁽¹⁾ Woodward, R. B.; Hoffmann, R. Angew. Chem., Int. Ed. Engl. 1969, 8, 781.

я

b

С

Figure 1. Geometries of supra-antara critical points (numerical values of structural parameters given in Table I): (a) $C_2H_4 + C_2H_4$, (b) C_2H_4 + O_2 , and (c) C_2H_4 + ketene.

represents an example where the supra-antara approach should be favored.

Computational Details

In all cases we have used the CAS (complete active space) MC-SCF method. Integral and derivative calculations have been performed with the GAUSSIAN 82 series of programs,² while the MC-SCF gradient computations were carried out with the codes described in ref 3 and 4. The active space was chosen to contain the four π orbitals for the ethylene + ethylene reaction and six π orbitals for the other two systems. In each case, the various critical points have been fully optimized by MC-SCF gradient techniques and characterized by diagonalizing the related Hessian matrices computed analytically at the MC-SCF level.

Of course, the various supra-antara critical points do not have a plane of symmetry, and in each case one of the π bonds is partly broken due to twisting of the ethylenic double bond. Thus, some comment on the choice of the active (or valence) orbital space is necessary. For the STO-3G computations, the active orbitals are unambiguous at infinite interfragment separation. At the interfragment separation of interest, the initial active orbital space can be obtained by orthogonalizing the orbitals obtained at infinite interfragment separation. For the 4-31G computations, the initial orbitals are obtained by projection from the STO-3G optimum orbitals. The nature of the MC-SCF optimized active orbitals is naturally determined by the MC-SCF process itself, and the results are unambiguous provided the occupation numbers of these active orbitals do not approach 2 or 0.

The geometry optimizations have been performed at the STO-3G⁶ and 4-31G7 levels. For reaction i the Hessian matrix has been computed at both the STO-3G and 4-31G levels. Since the two Hessian matrices were very similar and had the same number of directions of negative curvature, the Hessian matrices for reactions ii and iii were computed only at the STO-3G level.

Results and Discussion

In each case we have found the critical point associated with

Table I.	Relevant	Geometrical	Parameters	(for Notation	n, See Figure 1)	1
Together	with the	Values of the	e Two Imag	inary Frequen	cies Computed	for the
Supra-A	ntara Cri	tical Points a	t the STO-3	G and 4-31G	Levels	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Supra-Antara Critical Points at the S10-3G and 4-31G Levels									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	geometrical	STO 10	4.110	geometrical	570.20	4.21.0				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	param	510-36	4-316	param	ST0-3G	4-31G				
total energy -154.0230 -155.7562 imaginary -1126 -1072 frequencies -404 -327 ϑ 38.0 40.8 C2-C1 1.40 1.41 C1-C2-H3 120.0 119.9 H1-C1 1.08 1.07 C1-C2-H4 121.1 121.2 H2-C1 1.08 1.07 C1-C2-H4 121.1 15.7 H3-C2 1.08 1.07 H3-C2-H4 115.7 115.4 H4-C2 1.08 1.07 H3-C2-C4 107.3 107.5 C3-C1 2.30 2.27 C1-C3-C4 85.2 85.0 C4-C3 1.49 1.46 C1-C3-H5 78.1 76.0 H5-C3 1.08 1.07 C1-C3-H6 146.3 144.1 H6-C3 1.08 1.07 C1-C3-H6 146.3 144.1 H6-C3 1.08 1.07 C1-C3-H6 146.3 144.1 H6-C3 1.09 1.09 C4-C3-H5 117.8 120.0 H7-C4 1.08 1.07 C4-C3-H6 115.6 115.9 H8-C4 1.09 1.09 C4-C3-H6 115.6 115.9 C2-C1-H1 120.0 119.9 C2-C4-C3 85.2 85.0 C2-C1-H2 121.1 121.2 C2-C4-H7 78.1 76.0 C2-C1-H2 15.7 115.4 C3-C4-H7 117.8 120.0 H1-C1-C3 107.3 107.5 C3-C4-H8 115.6 116.9 H2-C1-C3 93.6 95.6 H7-C4-H8 115.6 116.9 H2-C1-C3 93.6 95.6 H7-C4-H8 115.6 116.9 H1-C1-C3 107.3 107.5 C3-C4-H8 115.6 116.9 H1-C1-C3 107.3 107.5 C3-C4-H8 115.6 116.9 H1-C1-C3 107.3 107.5 C3-C4-H8 115.6 116.9 H1-C1-C3 107.8 10.7 H1-C1-O1 106.8 92.7 H2-C1 1.08 1.07 H2-C1-O1 98.0 103.4 H3-C2 1.08 1.07 C1-C2-H3 120.0 120.9 H4-C2 1.08 1.07 C1-C2-H3 120.4 120.9 H3-C2-C1 1.40 1.41 H2-C1-C3 94.7 95.7 C2-C1-H1 119.4 120.9 H3-C2-O2 98.0 92.7 C2-C1-H1 119.4 120.9 H3-C2-O2 106.8 103.4 H3-C2 1.08 1.07 C1-C2-H3 120.4 120.9 H3-C2 1.08 1.07 C1-C2-H3 120.4 120.9 H3-C2-C1-H1 119.4 120.9 H3-C2-O2 98.0 92.7 C2-C1-H1 119.4 120.9 H3-C2-C2 106.8 103.4 H3-C2 1.08 1.07 C1-C2-H3 120.4 120.3 H3-C2 1.08 1.07 C1-C3-H5 114.3 114.8 C2-C1-H2 1.08 1.08 C1-C2-H4 110.6 112.1 C3-C1 2.14 2.09 H3-C2-C4 110.6 112.1 C4-C3 1.08 1.07 C1-C3-H5 85.6 H1-C1-C3 1.08 1.07 C1-C3-H5 85.6 H1-C1	Ethylene + Ethylene									
$\begin{array}{llllllllllllllllllllllllllllllllllll$	total energy	-154.0230	-155.7562							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	imaginary	-1126	-1072							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	frequencies	-404	-327							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	38.0	40.8							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C2-C1	1.40	1.41	C1-C2-H3	120.0	119.9				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H1-C1	1.08	1.07	C1C2H4	121.1	121.2				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H2-C1	1.08	1.07	C1C2C4	87.2	86.2				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H3C2	1.08	1.07	H3C2H4	115.7	115.4				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H4-C2	1.08	1.07	H3-C2-C4	107.3	107.5				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3-C1	2.30	2.27	H4-C2-C4	93.6	95.6				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C2	2.30	2.27	C1-C3-C4	85.2	85.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C3	1.49	1.46	C1-C3-H5	78.1	76.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HS-C3	1.08	1.07	СІ-СЗ-Н6	146.3	144.1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ho-C3	1.09	1.09	C4-C3-H5	117.8	120.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H8-C4	1.00	1.07	U5-C2-U6	110.6	110.9				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C1-H1	120.0	119.9	$C_{2}-C_{4}-C_{3}$	85.2	85.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C1-H2	121.1	121.2	C2-C4-H7	78 1	76.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C1-C3	87.2	86.2	C2-C4-H8	146.3	144.1				
$\begin{array}{c ccccc} H1-C1-C3 & 107.3 & 107.5 & C3-C4-H8 & 115.6 & 116.9 \\ H2-C1-C3 & 93.6 & 95.6 & H7-C4-H8 & 110.6 & 111.0 \\ \hline \\ H2-C1-C3 & 93.6 & 95.6 & H7-C4-H8 & 110.6 & 111.0 \\ \hline \\ total energy & -224.6919 & -227.2647 \\ \hline \\ imaginary & -1516 & -227.2647 \\ \hline \\ frequencies & -565 & & & & & & & & & & & & & & & \\ \hline \\ \vartheta & 23.1 & 26.8 & C2-C1-O1 & 87.2 & 87.8 \\ C2-C1 & 1.44 & 1.42 & H1-C1-H2 & 115.9 & 117.0 \\ H1-C1 & 1.08 & 1.07 & H1-C1-O1 & 106.8 & 92.7 \\ H2-C1 & 1.08 & 1.07 & H2-C1-O1 & 98.0 & 103.4 \\ H3-C2 & 1.08 & 1.07 & C1-C2-H3 & 120.0 & 120.9 \\ H4-C2 & 1.08 & 1.07 & C1-C2-H4 & 115.9 & 117.0 \\ C2-C1 & 2.04 & 2.12 & C1-C2-O2 & 87.2 & 87.8 \\ O2-C2 & 2.04 & 2.12 & H3-C2-H4 & 115.9 & 117.0 \\ C2-C1-H1 & 119.4 & 120.9 & H3-C2-O2 & 98.0 & 92.7 \\ C2-C1-H1 & 119.4 & 120.9 & H3-C2-O2 & 106.8 & 103.4 \\ \hline \\ total energy & -226.8320 & -229.4089 \\ \hline \\ imaginary & -1447 \\ frequencies & -403 & & & & & & & \\ \hline \\ \vartheta & 32.0 & 35.1 & & & & & & & & \\ C2-C1 & 1.08 & 1.08 & C1-C2-H3 & 120.4 & 120.9 \\ H2-C1 & 1.08 & 1.08 & C1-C2-H4 & 116.8 & 103.4 \\ \hline \\ H3-C2 & 1.08 & 1.07 & C1-C2-C4 & 81.3 & 77.2 \\ H4-C2 & 1.08 & 1.07 & H3-C2-H4 & 116.5 & 112.1 \\ C3-C1 & 2.14 & 2.09 & H3-C2-C4 & 110.6 & 112.1 \\ C3-C1 & 2.14 & 2.09 & H3-C2-C4 & 110.6 & 112.1 \\ C3-C1 & 2.14 & 2.09 & H3-C2-C4 & 110.6 & 112.1 \\ C4-C2 & 2.29 & 2.36 & H4-C2-C4 & 93.7 & 91.0 \\ C4-C3 & 1.45 & 1.43 & C1-C3-H5 & 86.1 & 89.0 \\ H6-C3 & 1.09 & 1.09 & C1-C3-H5 & 86.1 & 89.0 \\ H6-C3 & 1.09 & 1.09 & C1-C3-H6 & 138.9 & 132.8 \\ O1-C4 & 1.23 & 1.21 & C4-C3-H5 & 114.3 & 114.8 \\ C2-C1-H1 & 119.4 & 119.0 & C4-C3-H6 & 117.2 & 117.2 \\ C2-C1-H2 & 120.5 & 119.9 & H5-C3-H6 & 111.0 & 112.7 \\ C2-C1-H2 & 120.5 & 119.9 & H5-C3-H6 & 111.0 & 112.7 \\ C2-C1-H2 & 120.5 & 119.9 & H5-C3-H6 & 111.0 & 112.7 \\ C2-C1-H2 & 103.8 & 102.6 & C3-C4-O1 & 135.0 & 136.0 \\ \end{array}$	H1-C1-H2	115.7	115.4	C3-C4-H7	117.8	120.0				
$\begin{array}{c ccccc} H2-C1-C3 & 93.6 & 95.6 & H7-C4-H8 & 110.6 & 111.0 \\ & Ethylene + O_2 \\ total energy & -224.6919 & -227.2647 \\ \hline maginary & -1516 \\ frequencies & -565 \\ \hline \vartheta & 23.1 & 26.8 & C2-C1-O1 & 87.2 & 87.8 \\ C2-C1 & 1.44 & 1.42 & H1-C1-H2 & 115.9 & 117.0 \\ H1-C1 & 1.08 & 1.07 & H1-C1-O1 & 106.8 & 92.7 \\ H2-C1 & 1.08 & 1.07 & H2-C1-O1 & 98.0 & 103.4 \\ H3-C2 & 1.08 & 1.07 & C1-C2-H3 & 120.0 & 120.9 \\ H4-C2 & 1.08 & 1.07 & C1-C2-H4 & 115.9 & 117.0 \\ O2-C2 & 2.04 & 2.12 & C1-C2-O2 & 87.2 & 87.8 \\ O2-C2 & 2.04 & 2.12 & C1-C2-O2 & 87.2 & 87.8 \\ O2-C2 & 2.04 & 2.12 & H3-C2-O2 & 98.0 & 92.7 \\ C2-C1-H1 & 119.4 & 120.9 & H3-C2-O2 & 98.0 & 92.7 \\ C2-C1-H1 & 119.4 & 120.9 & H3-C2-O2 & 106.8 & 103.4 \\ \hline \\ \hline \\ & \hline \\ total energy & -226.8320 & -229.4089 \\ \hline \\ imaginary & -1447 \\ frequencies & -403 \\ \hline \vartheta & 32.0 & 35.1 \\ C2-C1 & 1.40 & 1.41 & H2-C1-C3 & 94.7 & 95.7 \\ H1-C1 & 1.08 & 1.08 & C1-C2-H4 & 120.4 & 120.9 \\ H2-C1 & 1.08 & 1.08 & C1-C2-H4 & 120.4 & 120.9 \\ H2-C1 & 1.08 & 1.08 & C1-C2-H4 & 120.8 & 121.3 \\ H3-C2 & 1.08 & 1.07 & H3-C2-H4 & 116.5 & 112.1 \\ C3-C1 & 2.14 & 2.09 & H3-C2-C4 & 110.6 & 112.1 \\ C4-C2 & 2.29 & 2.36 & H4-C2-C4 & 93.7 & 91.0 \\ C4-C3 & 1.45 & 1.43 & C1-C3-C4 & 85.6 & 86.4 \\ H5-C3 & 1.09 & 1.09 & C1-C3-H6 & 138.9 & 132.8 \\ O1-C4 & 1.23 & 1.21 & C4-C3-H5 & 114.3 & 114.8 \\ C2-C1-H1 & 119.4 & 119.0 & C4-C3-H6 & 117.2 & 117.2 \\ C2-C1-H2 & 120.5 & 119.9 & H3-C3-H6 & 111.0 \\ T1.2 & C2-C1-H2 & 120.5 & 119.9 & H3-C3-H6 & 111.0 \\ H1-C1-C3 & 103.8 & 102.6 & C3-C4-O1 & 135.0 & 136.0 \\ \hline \end{array}$	H1C1C3	107.3	107.5	C3-C4-H8	115.6	116.9				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H2-C1-C3	93.6	95.6	H7-C4-H8	110.6	111.0				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Estadama I. (`						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	total energy	-224 6010	=227.2647	J_2						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	imaginary	-1516	-227.2047							
$\begin{split} \vartheta & 23.1 & 26.8 & C2-C1-O1 & 87.2 & 87.8 \\ C2-C1 & 1.44 & 1.42 & H1-C1-H2 & 115.9 & 117.0 \\ H1-C1 & 1.08 & 1.07 & H1-C1-O1 & 106.8 & 92.7 \\ H2-C1 & 1.08 & 1.07 & C1-C2-H3 & 120.0 & 120.9 \\ H4-C2 & 1.08 & 1.07 & C1-C2-H3 & 120.0 & 120.9 \\ H4-C2 & 1.08 & 1.07 & C1-C2-H4 & 119.4 & 120.2 \\ O1-C1 & 2.04 & 2.12 & C1-C2-O2 & 87.2 & 87.8 \\ O2-C2 & 2.04 & 2.12 & H3-C2-H4 & 115.9 & 117.0 \\ C2-C1-H1 & 119.4 & 120.9 & H3-C2-O2 & 98.0 & 92.7 \\ C2-C1-H1 & 119.4 & 120.9 & H3-C2-O2 & 98.0 & 92.7 \\ C2-C1-H2 & 120.0 & 120.2 & H4-C2-O2 & 106.8 & 103.4 \\ \hline & & & & & & & & & & & & & & & & & &$	frequencies	-565								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	22.1	24.0	C2 C1 C1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		23.1	20.8	U_2 - C_1 - O_1	8/.2	87.8				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	81-01	1.44	1.42		106.9	117.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H2-C1	1.08	1.07	H2-C1-01	08.0	92.7				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H3-C2	1.08	1.07	C1-C2-H3	120.0	120.4				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H4-C2	1.08	1.07	C1-C2-H4	119.4	120.2				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01-C1	2.04	2.12	C1-C2-O2	87.2	87.8				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2C2	2.04	2.12	H3-C2-H4	115.9	117.0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C2C1H1	119.4	120.9	H3C2O2	98.0	92.7				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C2-C1-H2	120.0	120.2	H4C2O2	106.8	103.4				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Katana + Ethu	anaf						
$\begin{array}{c cccc} \mbox{trimaginary} & -1447 \\ \mbox{frequencies} & -403 \\ \hline \vartheta & 32.0 & 35.1 \\ \mbox{C2-C1} & 1.40 & 1.41 & H2-C1-C3 & 94.7 & 95.7 \\ \mbox{H1-C1} & 1.08 & 1.08 & C1-C2-H3 & 120.4 & 120.9 \\ \mbox{H2-C1} & 1.08 & 1.08 & C1-C2-H4 & 120.8 & 121.3 \\ \mbox{H3-C2} & 1.08 & 1.07 & C1-C2-C4 & 81.3 & 77.2 \\ \mbox{H4-C2} & 1.08 & 1.07 & H3-C2-H4 & 116.5 & 112.1 \\ \mbox{C3-C1} & 2.14 & 2.09 & H3-C2-C4 & 110.6 & 112.1 \\ \mbox{C4-C2} & 2.29 & 2.36 & H4-C2-C4 & 93.7 & 91.0 \\ \mbox{C4-C3} & 1.45 & 1.43 & C1-C3-C4 & 85.6 & 86.4 \\ \mbox{H5-C3} & 1.08 & 1.07 & C1-C3-H5 & 86.1 & 89.0 \\ \mbox{H6-C3} & 1.09 & 1.09 & C1-C3-H6 & 138.9 & 132.8 \\ \mbox{O1-C4} & 1.23 & 1.21 & C4-C3-H5 & 114.3 & 114.8 \\ \mbox{C2-C1-H1} & 119.4 & 119.0 & C4-C3-H6 & 117.2 & 117.2 \\ \mbox{C2-C2-C1-H2} & 120.5 & 119.9 & H5-C3-H6 & 111.0 & 112.7 \\ \mbox{C2-C1-H2} & 115.0 & 114.7 & C2-C4-C3 & 87.0 & 85.5 \\ \mbox{H1-C1-H2} & 115.0 & 114.7 & C2-C4-O1 & 135.0 & 136.0 \\ \end{tabular}$	total energy	-226 8320	-229 4089	ICHC.						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	imaginary	-1447	223.1003							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	frequencies	-403								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 41	32.0	35 1							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Č2-C1	1 40	1 41	H2-C1-C3	94 7	95 7				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H1-C1	1.08	1.08	C1-C2-H3	120.4	120.9				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H2-C1	1.08	1.08	C1-C2-H4	120.8	121.3				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H3-C2	1.08	1.07	C1-C2-C4	81.3	77.2				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H4-C2	1.08	1.07	H3-C2-H4	116.5	112.1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3-C1	2.14	2.09	H3-C2-C4	110.6	112.1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C2	2.29	2.36	H4-C2-C4	93.7	91.0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C4-C3	1.45	1.43	CI-C3-C4	85.6	86.4				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H3-C3	1.08	1.07	CI-C3-H5	86.1	89.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	no-U3	1.09	1.09	CI-CJ-HO	138.9	132.8				
C2-C1-H2 120.5 119.9 H5-C3-H6 111.0 112.7 C2-C1-C3 94.2 97.1 C2-C4-C3 87.0 85.5 H1-C1-H2 115.0 114.7 C2-C4-O1 113.2 114.0 H1-C1-C3 103.8 102.6 C3-C4-O1 135.0 136.0	C2-C1-H1	1.25	119.0	C4-C3-H5	114.5	114.6				
C2-C1-C3 94.2 97.1 C2-C4-C3 87.0 85.5 H1-C1-H2 115.0 114.7 C2-C4-O1 113.2 114.0 H1-C1-C3 103.8 102.6 C3-C4-O1 135.0 136.0	C2-C1-H2	120.5	119.0	Н5-С3-Н6	1110	117.2				
H1-C1-H2 115.0 114.7 C2-C4-O1 113.2 114.0 H1-C1-C3 103.8 102.6 C3-C4-O1 135.0 136.0	C2-C1-C3	94.2	97.1	C2-C4-C3	87.0	85.5				
H1-C1-C3 103.8 102.6 C3-C4-O1 135.0 136.0	H1-C1-H2	115.0	114.7	C2-C4-O1	113.2	114.0				
	H1-C1-C3	103.8	102.6	C3-C4-O1	135.0	136.0				

^a Due to poor termination of the geometry optimization the 4-31G structure has an rms force of 0.004 rather than the usual 0.0003.

the $2_s + 2_a$ approach. The corresponding geometries are shown in Figure 1 while the geometrical parameters (including the dihedral angle ϑ between the CC bonds of each fragment) have been collected in Table I. In this table we have also given the imaginary frequencies computed for each structure. The STO-3G results for the critical point associated with reaction i have already been reported.⁸ It can be seen that in all cases the structure of the transition state is very similar. The transition structure is distinguished by (a) a very long interfragment distance (i.e. greater than 2 Å), (b) a dihedral angle ϑ between the CC bonds of each fragment of 20-40°, and (c) a slightly distorted planar geometry for one ethylene fragment and a distorted geometry for the other

⁽²⁾ Binkley, J. S.; Frisch, M.; Krishnam, R.; DeFrees, D. J.; Schlegel, H.
B.; Whiteside, R. A.; Fluder, E.; Seeger, R.; Pople, J. A. Gaussian 82; Carnegie Mellon University: Pittsburgh, PA, 1982.
(3) Hegarty, D.; Robb, M. A. Mol. Phys. 1979, 38, 1795. Robb, M. A.;

⁽⁴⁾ Schlegel, H. B.; Robb, M. A. Mol. Phys. 1979, 35, 1795. Robb, M. A.;
(4) Schlegel, H. B.; Robb, M. A. Chem. Phys. Lett. 1982, 93, 43.
(5) Robb, M. A.; Schlegel, H. B., to be submitted for publication.
(6) Hehre, W. J.; Stewart, R. F.; Pople, J. A. J. Chem. Phys. 1969, 51, 2657

²⁶⁵⁷

⁽⁷⁾ Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724.

⁽⁸⁾ Bernardi, F.; Bottoni, A.; Robb, M. A.; Schlegel, H. B.; Tonachini, G. J. Am. Chem. Soc. 1985, 107, 2260.

Figure 2. Normal modes corresponding to the two imaginary frequencies for the $2_s + 2_a$ critical point of index 2 for the addition of two ethylene molecules. Only the motion of the carbon atoms is shown: (a) normal mode connecting reactants and products; (b) normal mode connecting two possible gauche transition structures.

fragment (in the case of ethylene, the methylene groups twisted by almost 90°).

The characterization of these critical points by analytical Hessian computation shows that in each case the critical point is a saddle point of index 2. The evolution of the two directions of negative curvature is shown in Figure 2 where we have given the carbon atom components of each normal mode of ethylene + ethylene as an example. Motion along one direction of negative curvature (Figure 2a) leads to the product, while motion along the other direction of negative curvature (Figure 2b) leads to an adjacent gauche transition state, which has been optimized and characterized in all cases. For the ketene + ethylene reaction we have found two different adjacent gauche transition states, one bonded at C1 and the other bonded at C2.

Conclusions

8

Since each of the supra-antara saddle points is not a true transition structure but rather a local maximum with two directions of negative curvature, the supra-antara reaction pathway does not exist for the examples studied. For the case of ethylene + ethylene and ethylene + oxygen, this might have been expected

since the direction of negative curvature that leads to the gauche minimum breaks the symmetry; however, in the case of ketene + ethylene, there is no symmetry. Thus, the results tend to indicate that the supra-antara reaction path may not exist at all for 2 + 2 cycloadditions.

Of course, these computations were carried out with quite modest basis sets. There are numerous examples in the literature where the qualitative nature of a stationary point (see for example ref 9 and 10) was altered by augmenting the basis set with polarization functions. However, for the supra-antara critical points, the second negative direction of curvature (see Figure 2b) connects two gauche fragmentation transition states. A posteriori, it would seem rather unlikely that one could find a maximum (between the supra-antara critical point and the gauche fragmentation transition state) along this coordinate as would be required if the supra-antara critical point were a true transition state.

We do also have some numerical evidence that the qualitative nature of the critical points will not be basis set dependent for these examples. For the ethylene + ethylene example, the very low (>1 kcal/mol) barrier to fragmentation from the trans diradical minimum of tetramethylene appears to be sensitive to the basis set.⁸ Doubleday et al.¹¹ have recently reexamined this problem with a 6-31G* basis. They find that, at the MC-SCF level, the barrier is increased by ca. 1 kcal/mol from the 4-31G [8]/6-31G*¹¹ result so that the qualitative nature of the critical point does not change in this case.

Registry No. Ethylene, 74-85-1; oxygen, 7782-44-7; ketene, 463-51-4.

Pseudorotation in Pentacoordinated Phosphorus Compounds. The Influence of the Conformational Transmission Effect on the Barriers to Pseudorotation in Cyclic Alkoxyphosphoranes

A. E. H. de Keijzer,* L. H. Koole, and H. M. Buck

Contribution from the Department of Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. Received September 1, 1987

Abstract: A variable-temperature ¹³C NMR study on a series of monocyclic oxyphosphoranes enabled us to examine the influence of the conformational transmission effect on the barriers to pseudorotation in pentacoordinated phosphorus compounds. It is demonstrated that the pseudorotation rate of monocyclic oxyphosphoranes exhibiting the conformational transmission effect is 2-4 times faster as compared to their counterparts in which the effect is absent. It is shown that the conformational change in the basal ligands of the intermediate SP structures, due to the conformational transmission effect, is responsible for the lowering of the activation barriers by $2-3 \text{ kJ-mol}^{-1}$.

Pseudorotation of stable oxyphosphoranes has been the topic of several studies during the past two decades.¹ The polytopal exchange of ligands around pentacoordinated phosphorus has been extensively studied, both because these compounds are presumed

to be intermediates in many biological processes involving phosphate esters² and especially because of the growing interest in the stereochemistry of reactions of tri- and tetracoordinated phosphorus compounds. These reactions proceed via penta-coordinated phosphorus intermediates, and therefore, the pseudorotation processes may have a great influence on the structure of the reaction products.³ In the past few years a lot of information has been obtained concerning the influence of the conformational transmission effect on the structure and dynamics

⁽⁹⁾ Yoshika, Y.; Goddard, J. D.; Schaefer, H. F. J. Am. Chem. Soc. 1983, 105, 1760.
(10) Saxe, P.; Schaefer, H. F. J. Chem. Phys. 1981, 74, 1855.

⁽¹¹⁾ Doubleday, C.; Page, M.; McIver, J. W. *THEOCHEM* **1988**, *163*, 331.

^{(1) (}a) Luckenbach, R. Dynamic Stereochemistry of Pentacoordinated Phosphorus and Related Elements; George Thieme Verlag: Stuttgart, 1973.
(b) Ramirez, F.; Ugi, I. Advances in Physical Organic Chemistry; Academic: London, 1971; Vol. 9, pp 25-126. (c) Hellwinkel, D. Organic Phosphorus Compounds; Wiley-Interscience: New York, 1972; Vol. 3, pp 185-339. (d) Holmes, R. R. Pentacoordinated Phosphorus; American Chemical Society: Washington, 1980; Vol. 1 and 2, ACS Monograph No. 175 and 176. (e) Emsley, J.; Hall, D. The Chemistry of Phosphorus; Harper & Row: New York, 1976.

⁽²⁾ Benkovics, S. J.; Schray, K. J. *The Enzymes*, 3rd ed.; Academic: New York; 1973; Vol. VII, Chapter 6.

⁽³⁾ Trippett, S. Phosphorus Sulfur 1976, 1, 89.